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ScienceDirect
Bacterial, viral and parasitic zoonotic pathogens that transmit

via the fecal-oral route have a major impact on global health.

However, the mechanisms underlying the emergence of such

pathogens from the animal reservoir and their persistence in the

human population are poorly understood. Here, we present a

framework of human-to-human transmission of zoonotic

pathogens that considers the factors relevant for fecal-oral

human-to-human transmission route at the levels of host,

pathogen, and environment. We discuss current data gaps and

propose future research directions.
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Centre for Infectiology, Necker-Enfants Malades University Hospital,

Institut Imagine, Assistance Publique-Hôpitaux de Paris, Paris, France
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Problem setting
In recent years there have been many examples of patho-

gens crossing the species barrier and infecting humans,

although the vast majority of these zoonotic events did

not result in sustained human-to-human transmission [1–
3]. Nevertheless, the continuing emergence of zoonotic

pathogens is a cause of concern globally, especially due to

the high morbidity and mortality of pathogens like

MERS-CoV and A/H5N1 influenza virus [4,5]. Human-

to-human transmission of microorganisms generally

occurs via one or multiple transmission routes, including

the fecal-oral, airborne, direct contact, or vector-borne

route. Whilst pathogens including bacteria, parasites and

viruses have very different biological properties, they can

employ similar routes of transmission and emergence.

Identification of the mechanisms underlying the effective

human-to-human transmission of emerging zoonotic

pathogens and their commonalities across different

pathogens, may help design of interventions aimed at

reducing the risk of sustained human-to-human transmis-

sion after a zoonotic event.

Expert opinion meeting
As part of the activities of the ANTIGONE consortium

on the emergence of zoonotic pathogens, an expert opin-

ion meeting was organized. Using a comparative approach

including parasites, bacteria and viruses that transmit via

the fecal-oral route, the meeting aimed at identifying the

key drivers of sustained human-to-human transmission

after a zoonotic event, taking into account the host, the

pathogen and the interface (transmission amplifiers). In

addition, major knowledge gaps were identified that

require future research in order to better control emerging

zoonotic pathogens that potentially are transmitted

through a fecal-oral route. The main conclusions of this

meeting are presented in this perspective.

A framework of fecal-oral transmission
Enteric pathogens can be transmitted between humans

by the fecal-oral route via direct contact or indirect

contact via contaminated fluids, including surface water,

food, and carriers such as fomites (Figure 1). The risk of a

zoonotic pathogen becoming human-to-human transmis-

sible depends on its adaptation to the human host and the

environment. To analyze this process, we considered

fecal-oral transmission of a zoonotic pathogen between
Current Opinion in Virology 2017, 22:1–6
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2 Emerging viruses: intraspecies transmission
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Fecal-oral transmission between humans. After shedding from the host enteric pathogens can be transmitted between humans by the fecal-oral

route via direct contact between humans, or via indirect contact via contaminated fluids, including surface water, food, and carriers such as

fomites.
two human hosts as follows; the human host that is

infected with a zoonotic pathogen after a zoonotic event

is defined as the donor while the susceptible human host

that is subsequently infected by the first human host is

considered the recipient. The transmission interface is

the environment that the pathogen encounters after

release from the donor and before infecting the recipient.

For sustained fecal-oral human-to-human transmission

certain elements in this transmission cycle, which we will

refer to as transmission amplifiers, appear essential

whereas other elements are not an absolute requirement,

but increase the likelihood of transmission. Transmission

amplifiers may interact and their presence may or may not

depend on conditions under which transmission occurs,

including for example socio-economic conditions and

cultural and behavioral variation. We designed a frame-

work of human-to-human transmission that includes the

transmission amplifiers relevant for the fecal-oral trans-

mission route at the levels of host, pathogen, and envi-

ronment (Figure 2).
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Transmission amplifiers specific for fecal-oral
transmission
Several key transmission amplifiers are specific for fecal-

oral transmission (Figure 2), such as the intestinal micro-

biomes of the donor and recipient hosts. Individuals with

a healthy intestine are less likely to become infected or

colonized by opportunistic pathogens, although the resis-

tance provided by a healthy colonization (microbiome)

can, in principle, be disrupted by a pathogenic species

depending on its pathogenic potential (virulence) [6,7].

The composition of the human intestinal microbiome is,

amongst others dependent on the presence of a functional

immune system [8–10]. Changes in microbiome compo-

sition, in addition to the impaired immunity itself, may

impact the outcome of infection and subsequent trans-

mission.

Clinical symptoms such as diarrhea and vomiting can

increase the likelihood of fecal-oral transmission as

they can facilitate the spread of a pathogen into the
www.sciencedirect.com
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Figure 2
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Framework for human-to-human transmission after a zoonotic event showing the key transmission amplifiers from the host (triangle), pathogen

(blue) and environmental transmission amplifiers (green), respectively. The transmission amplifiers that are specific to the fecal-oral route are

indicated with a red star.
environment and onto fomites [11]. Remarkably, most

pathogens that transmit via the fecal-oral route are very

stable and can survive under various conditions, which

may be related to the fact that these pathogens have to

pass the hostile conditions of the gastrointestinal tract.

Zoonotic pathogens need to adapt to factors specific to

this niche, such as the acidic conditions in the stomach

and low oxygen in the large intestine, the temperature

and the availability of specific sugars and nutrients. For

example, comparative genomics of Cryptosporidium par-
vum genotype IIc suggests that the ability to establish

an infection in a particular host species may depend in

part on the presence of transporters controlling the

exchange of metabolites between the host cell and

the pathogen [12].

Fecal shedding of a pathogen does not necessarily require

replication in the intestine. For example, the hepatitis E

virus (HEV) is shed via the feces despite its liver tropism

[13]. However, the presence of receptors and the tissue

distribution of these receptors is a crucial element for

tropism of infection, the shedding of microorganisms in

stool and subsequent human-to-human transmission. In

addition, it should be noted that not all pathogens that are
www.sciencedirect.com 
shed via the feces transmit via the fecal-oral route. Several

respiratory viruses of zoonotic origin, that are capable of

human-to-human transmission, are shed in feces. During

SARS-CoV, MERS-CoV and influenza A infection, viral

RNA can be detected in stool. However, for these patho-

gens there is currently no evidence of fecal-oral transmis-

sion resulting in disease [14–19]. Similarly, the enteric

pathogen Campylobacter subspecies jejuni was transmitted

from human-to-human via sexual contact following a

zoonotic event [20].

Once a donor is shedding the pathogen, environmental

factors at the transmission interface can have a large

impact on transmission efficiency. Contamination of

the surface water after flooding can magnify the size of

an outbreak via waterborne and foodborne routes [21].

Food sources can be contaminated by irrigation with

sewage-contaminated water or the use of manure that

contains traces of human feces, or on site by food-hand-

lers. Anecdotally, even food preservation measures can

impact transmission as some additives to preserve lettuce

were shown to also increase the stability of hepatitis A

virus [22]. Transmission via food can have a major impact

on the global spread of pathogens. In 2011 nearly
Current Opinion in Virology 2017, 22:1–6
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4000 people were infected during an Escherichia coli
O104:H4 outbreak in Europe, resulting in 54 deaths. Epi-

demiological and trace-back investigations pointed to salad

sprouts as the possible contaminated food source [23].

Transmission amplifiers not specific for fecal-
oral transmission route
Several factors that are important transmission amplifiers

of the likelihood of fecal-oral transmission are generic to

most human-to-human transmission routes.

The immune system of the human host is an important

factor that has to be confronted for sustained human-to-

human transmission. Most pathogens that successfully

transmit, have acquired genes that can counteract or evade

the adaptive and or innate immune responses. Pathogens

may have adapted through altered domains that are recog-

nized by the cellular or humoral immune system, to evade

pre-existing immunity based on previously infecting patho-

gens. Loss of genes or gene function may also be associated

with adaptation to the human host. A Salmonella enterica
serotype Typhimurium clone which causes bloodstream

infection amongst children and HIV-infected adults in

Sub-Saharan Africa, has adapted to these immuno-compro-

mised hosts through loss of gene functions enabling bacte-

rial survival outside the host, whilst retaining the ability to

cause enteritis in multiple host species [24��].

With the general population aging and technologies be-

coming more invasive, medical interventions can become

an amplifier of human-to-human transmission. Although

medical interventions do not necessarily select for hu-

man-to-human transmissible pathogens, they can in-

crease the duration of infection, and thereby the

likelihood of evolution and adaptation [25]. For instance,

the application of extracorporeal membrane oxygenation

prolongs and increases survival in patients with otherwise

acute fatal infectious disease [26]. The use of immune

modulatory and suppressive drugs has created a human

population that is more susceptible to prolonged patho-

gen proliferation and shedding [27–31]. An immunode-

ficient individual was found to excrete a vaccine-derived

poliovirus for twenty years. During this time the virus

became virulent and changed antigenically [32]. The

unrestrained use of antimicrobial drugs in medical and

veterinary care and in agriculture in low-income, middle-

income, and high-income countries creates an unprece-

dented selective pressure that may select for pathogens

that are more transmissible. Salmonella enterica serotype

Typhimurium has the ability to develop a super shedder

phenotype, that can be induced by antibiotic treatment in

mice [33]. A human reservoir for non-typhoid Salmonella

(NTS) transmission of multiple serotypes was demon-

strated in a study of NTS-infected patients who contin-

ued to shed NTS for months up to years, and strains of

these patients acquired antimicrobial resistance genes
Current Opinion in Virology 2017, 22:1–6 
and virulence genes that possibly affected host–pathogen

interactions [34��].

The infectious dose, replication kinetics and the number

of pathogens being shed can have a major impact on the

efficiency of fecal-oral transmission. For example, noro-

virus and Shigella spp. require a low infectious dose and

can be transmitted via hands and fomites [35,36], whereas

Listeria monocytogenes infections require a high infectious

dose [37], making these transmission routes less likely.

However, surprisingly little is known about the infectious

dose for many fecal-orally transmitted human pathogens.

As for shedding in the environment, several strategies can

be successful, such as shedding of lower amounts of

microorganisms over a long period (chronic/persistent

infection) and thus a long period of transmission associ-

ated with mild clinical symptoms , or shedding of high

loads of microorganisms for a relatively short period with

significant clinical symptoms [36].

Receptor usage is a key element for successful human-to-

human transmission. Not only are the site of the expression

of these receptors in the host and the receptor specificity of

the pathogen of importance, but also the prevalence of

these receptors in the human population can potentially

contribute to the likelihood of efficient transmission. For

group A rotaviruses attachment to histobloodgroup antigens

is an essential step for infection. Interestingly, strains of the

P[9], P[14] and P[25] subtypes that are generally found in

cattle but can also infect humans, attach to the blood group

A epitope [38]. However, since the frequency of blood

group A in human populations ranges from 20% to 40%, the

majority of individuals is expected to be resistant to infec-

tion by these strains, which would constitute a barrier to

transmission. Sustained human-to-human transmission for a

virus with a relatively low R0 would thus require an adap-

tation of the glycan binding capacity to the human HBGA

genetic polymorphism [39]. HEV genotype 1 and 2 exclu-

sively infect humans while genotypes 3 and 4 infect pigs

but occasionally infect and transmit between humans [40].

The high conservation of HEV attachment and entry

factors may explain the observed cross-species transmission

while factors limiting efficient human-to-human transmis-

sion are thought to include regulation of subgenomic trans-

lation and specific virus–host receptor interactions [41,42].

Inherent differences between viruses,
bacteria, and parasites
Surprisingly few differences exist between the basic

requirements of the different types of pathogens to

become human-to-human transmissible. However, bac-

teria can replicate in the environment whereas viruses

and parasites cannot. As the transmittable stages of para-

sites are environmentally very resistant, and can with-

stand water treatment processes, parasites are probably

more likely to be transmitted via food and water com-

pared to direct fecal-oral-transmission [43,44��]. Genome
www.sciencedirect.com
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plasticity is an important factor for all pathogens but while

parasites, viruses and bacteria can all adapt by mutations,

recombination and lateral gene transfer, viruses can also

acquire genes by genome rearrangements and bacteria

can acquire mobile genetic elements that carry genes that

may encode determinants that facilitate increased fitness

in certain conditions.

Synthesis
‘For a zoonotic pathogen the risk of becoming human-to-

human transmissible depends on further adaptation to the

human host. For efficient fecal-oral transmission ampli-

fiers in the transmission interface appear crucial.’

Knowledge gaps and outlook
The focus of the public health and emerging infectious

disease communities on emerging viruses causing severe

infections, has resulted in the discovery of several possible

determinants of sustained human-to-human transmission

of zoonotic viruses. However, the likelihood of sustained

human-to-human fecal-oral transmission after a zoonotic

event of any pathogen type is difficult to assess as these

events are hardly described in current literature. One

could conclude that zoonotic pathogens rarely become

human-to-human transmissible through the fecal-oral

route because there may be need for dual adaptation,

i.e. to the harsh conditions in the environment in addition

to the human host, and therefore these events are rare.

However, we cannot exclude that we may be missing some

of these events, because it can be difficult to distinguish

between strictly human and zoonotic pathogens once the

latter have established themselves in the human popula-

tion or because they remain undistinguished with the use

of current clinical microbiology tools. For example, recent

results strongly suggest that a pig roundworm can act as an

important source of human ascariasis [45–47] but this can

go unnoticed as the human and pig parasite population

show minor phenotypic and genotypic differences. Zoo-

notic pathogens that transmit via the fecal-oral route

appear to cause similar clinical symptoms compared to

other (related) enteric pathogens and further research is

not pushed due the relative lack of (more) serious disease.

We thus may neglect relevant pathogens and even if we do

study these pathogens, the results may have undesired

economic consequences for agriculture and food sectors.

In addition, until recently we lacked tools for studying

important zoonotic events; whilst the small genomes and

rapid evolution of viruses allow identification of novel

causative agents with limited sequencing effort, such

analysis is much more complicated for bacterial and para-

sitic enteric pathogens which have relatively large gen-

omes. Some experimental models for fecal-oral

transmission between hosts have been described, such

as for norovirus [48��], but there is a general lack of

suitable animal models to study fecal-oral transmission.

In fact, most research on host-pathogen interactions is

focused on mechanisms of pathogenicity rather than on
www.sciencedirect.com 
mechanisms of transmission, whilst the latter is crucial for

the development of intervention strategies to prevent

further spread and to prevent sustained human-to-human

transmission of zoonotic pathogens.
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