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Abstract

Background: The attributable risk (AR) measures the proportion of disease cases that can be attributed to an
exposure in the population. Several definitions and estimation methods have been proposed for survival data.

Methods: Using simulations, we compared four methods for estimating AR defined in terms of survival functions:
two nonparametric methods based on Kaplan-Meier’s estimator, one semiparametric based on Cox’s model, and one
parametric based on the piecewise constant hazards model, as well as one simpler method based on estimated
exposure prevalence at baseline and Cox’s model hazard ratio. We considered a fixed binary exposure with varying
exposure probabilities and strengths of association, and generated event times from a proportional hazards model
with constant or monotonic (decreasing or increasing) Weibull baseline hazard, as well as from a nonproportional
hazards model. We simulated 1,000 independent samples of size 1,000 or 10,000. The methods were compared in
terms of mean bias, mean estimated standard error, empirical standard deviation and 95% confidence interval
coverage probability at four equally spaced time points.

Results: Under proportional hazards, all five methods yielded unbiased results regardless of sample size.
Nonparametric methods displayed greater variability than other approaches. All methods showed satisfactory
coverage except for nonparametric methods at the end of follow-up for a sample size of 1,000 especially. With
nonproportional hazards, nonparametric methods yielded similar results to those under proportional hazards,
whereas semiparametric and parametric approaches that both relied on the proportional hazards assumption
performed poorly. These methods were applied to estimate the AR of breast cancer due to menopausal hormone
therapy in 38,359 women of the E3N cohort.

Conclusion: In practice, our study suggests to use the semiparametric or parametric approaches to estimate AR as a
function of time in cohort studies if the proportional hazards assumption appears appropriate.

Keywords: Attributable risk, Weighted Kaplan-Meier estimator, Piecewise constant hazards model, Cox model,
Cohort studies, Breast cancer

Background
In epidemiology, it is important not only to assess the
association between one exposure and the occurrence of
health events, but also to quantify the impact of this expo-
sure on the occurrence of these events. This is done by
estimating the attributable risk (AR) or the proportion
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of cases associated with this exposure in the population.
This estimation takes into account not only the strength
of the link between exposure and disease but also the
importance (prevalence) of exposure in the population [1].
It expresses the proportion of disease cases that can be
attributed to exposure [2], that is to say, under certain con-
ditions, the proportion of potentially preventable cases by
eliminating exposure. The AR is defined as:

AR = P(D) − P(D|Ē)

P(D)
, (1)
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where P(D) is the probability of disease (incidence) in
the population, which includes exposed E and unexposed
Ē subjects, and P(D|Ē) is the hypothetical probability
of disease in the same population but with all exposure
eliminated.
The AR can be estimated from different types of studies

including case-control studies for which many estima-
tion methods exist (as reviewed in [3]), but it is rarely
estimated from cohort studies. In the context of cohort
studies and time-to-event outcomes, AR measures can be
defined as functions of time [4-9] although a single AR
estimate has been proposed alternatively [10].
Recent developments for estimating AR as a function

of time from cohort studies in the survival analysis con-
text have not so far led to a consensus definition. Several
definitions have been proposed depending on whether
authors interpret disease incidences P(D) and P(D|Ē)

in Eq. (1) as cumulative distribution functions (CDFs)
[6-9] or as instantaneous hazard functions [4, 5]. The two
definitions converge only for rare diseases or low expo-
sure prevalence [4]. Here we focus on the first definition
of AR based on CDFs which looks more consistent with
the standard AR definition and appears to be the most
used in the literature. Several methods of estimation have
been proposed for the AR defined in this case, includ-
ing nonparametric approaches based on Kaplan-Meier’s
estimator of the survival function [7], a semiparametric
approach based on Cox’s proportional hazards model [7]
and a fully parametric approach assuming a piecewise
constant hazards model [8]. Some evaluations were made
for the nonparametric and semiparametric approaches [7]
but, to the best of our knowledge, the performances of
these various approaches have not been systematically
compared.
The aim of this paper was to compare available methods

for estimating AR when defined using CDFs. In the
sections to follow, we first review the corresponding
estimation methods so far published in the statistical
literature. Simulations were conducted to assess the per-
formance of the proposed AR estimators. The methods
were then applied to data on menopausal hormone ther-
apy (MHT) and breast cancer from the E3N women
cohort (Étude Épidémiologique auprès de Femmes de la
Mutuelle Générale de l’Éducation Nationale) [11]. For the
purpose of our illustration, we considered 38,359 par-
ticipants who were postmenopausal and free of cancer
when they completed a self-administered questionnaire
on their past use of any MHT in January 1992. In total,
17,185 (44.8%) women had ever used MHT at baseline
and were considered exposed thereafter. By June 2008
(for a maximal 16.4 years and mean 14.0 years of follow-
up), 2,228 invasive breast cancers had been diagnosed
(1,106 in unexposed women). A recent work on the E3N
cohort estimated a 14.5% postmenopausal breast cancer

risk attributable to MHT use after 15 years of follow-up
[12]. We estimated AR as a CDF-based function of time
at four time points using nonparametric, semiparametric
and parametric approaches, as well as the single overall
AR measure proposed by Spiegelman et al. [10].

Methods
Review of estimation methods
When interpreting the incidence of disease P(D) as the
event probability until some time t, the AR is defined as
follows [4, 6, 7]:

A(t) = P(T ≤ t) − P(T ≤ t|Z = z∗)
P(T ≤ t)

where T denotes the time to disease or event time, Z a
p-vector of risk factors and z∗ the p-vector of their cho-
sen target values in order to quantify the potential impact
of modifying the current distribution of Z to z∗. Since,
in most applications, z∗ is defined by setting one of the
components of Z to its baseline (unexposed) level, we use
notation Z = 0 instead of Z = z∗ in the following. Using
the survival functions S(t) = P(T > t) and S0(t) =
S(T > t|Z = 0), the AR for time-to-event outcomes can
be written as follows [7, 9]:

A(t) = S0(t) − S(t)
1 − S(t)

= 1 − 1 − S0(t)
1 − S(t)

. (2)

A natural estimate ofA(t) is obtained by replacing the sur-
vival functions S0(.) and S(.) by their respective estimators
Ŝ0(.) and Ŝ(.). Various estimators Ŝ0(.) and Ŝ(.) have been
proposed, as detailed in the following subsubsections.

Nonparametric approaches
Chen et al. [7] considered several approaches for esti-
mating survival functions S0(.) and S(.) depending on
covariate type: nonparametric when all p covariates are
categorical and independent of time, otherwise semipara-
metric. The former case applies to a single categorical
covariate or several covariates forming K + 1 categories.
When all p covariates are categorical and indepen-

dent of time and under the assumption that censoring
is independent of the covariates, Chen et al. [7] sug-
gested estimating both S0(.) and S(.) by the Kaplan-Meier
method [13].
When all p covariates are categorical and independent

of time but the assumption of covariate-independent cen-
soring does not hold, Chen et al. [7] suggested estimating
S(.) by the weighed Kaplan-Meier (WKM) estimator [14]
and S0(.) by the Kaplan-Meier method. For a p-vector Z
of covariates with K +1 categories, theWKM estimator is
defined as:

Ŝ(t) = 1
n

K∑

k=0
nkŜk(t)
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where Ŝk(t) is the Kaplan-Meier estimator among those
with covariate profile k = 0, 1, 2, . . . ,K and nk is the num-
ber of subjects with covariate profile k so that

∑K
k=0 nk

equals n, the total number of subjects.
In all cases, the estimation of the variance of Â(t) is

based on the expression of {Â(t) − A(t)} as a linear com-
bination of {Ŝ0(t) − S0(t)} and {Ŝ(t) − S(t)} and relies on
counting process results [7].

Semiparametric approach
For a more general type of covariates Z, i.e., when
covariates are continuous, time-dependent or with too
large a number of profile categories for nonparametric
approaches, Chen et al. [7] considered using semipara-
metric instead of nonparametricmethods to estimate S0(.)
and S(.). Of these, the Cox proportional hazards model
[15] is one of the most familiar. It assumes that, at any
time t, the hazard function λ(t|Z) is the product of a
nonparametric baseline hazard λ0(t) and a parametric
function of the p-vector of covariates Z (or Z(t) in the
case of time-dependent covariates) and the p-vector of
corresponding parameters β . The parametric function is
usually taken to be the exponential function, such that
λ(t|Z) = λ0(t) exp(βTZ). In this case,

Ŝ0(t) = exp
[
−�̂0(t)

]
and

Ŝ(t) = 1
n

n∑

i=1
exp

⎡

⎣−
t∫

0

exp{β̂Tzi(u)}d�̂0(u)

⎤

⎦

where �̂0(.) is the Breslow estimator [16] of the baseline

cumulative risk �0(t) =
t∫

0
λ0(u)du and β̂ is the maximum

partial likelihood estimator.
The expression of the variance of Â(t) follows the same

general principles as for the nonparametric approaches
above [7].

Parametric approach
Laaksonen et al. [8] proposed a parametric estimator
based on a proportional hazards model with piecewise
constant hazards (PCH). In this approach, follow-up
time is partitioned into J prespecified intervals (0 =
a0, a1] , (a1, a2] , . . . , (aj−1, aj] , . . . , (aJ−1, aJ ], and the sur-
vival function at time t is estimated assuming a con-
stant baseline hazard λ̂0j = exp(α̂j) in each j-th interval
(aj−1, aj], j = 1, 2, . . . , J as follows:

ŜPCH(t|Zi) = exp

⎧
⎨

⎩−
J∑

j=1
exp(α̂j + β̂TZi)δj(t)

⎫
⎬

⎭

where δj(t) defines the length of follow-up in the j-th
interval:

δj(t) =
⎧
⎨

⎩

0 if t ≤ aj−1,
t − aj−1 if aj−1 < t ≤ aj,
aj − aj−1 if t > aj.

The so-called population attributable fraction (PAF)
estimator [8] is then defined using the following paramet-
ric estimators:

Ŝ0(t) = 1
n

n∑

i=1
ŜPCH(t|Zi = 0) and

Ŝ(t) = 1
n

n∑

i=1
ŜPCH(t|Zi = zi).

The model parameter estimates α̂ = (α̂1, . . . , α̂J ) and
β̂ are obtained by maximum likelihood estimation. The
variance of Â(t) is estimated using the delta method [8].

Global approaches over the whole follow-up period
Alternatively to the definition of the AR as a function of
time, Spiegelman et al. [10] proposed to estimate a single
value in cohort studies:

AR =

K∑
k=0

qk(RRk − 1)

1 +
K∑

k=0
qk(RRk − 1)

where RRk and qk , k = 0, . . . ,K , are the relative risk and
prevalence in the target population for the kth combina-
tion of risk factors.
Upon using Cox’s proportional hazards model, the over-

all AR can be estimated using estimated hazard ratio (HR)
for relative risk and person-years for exposure prevalence
in the cohort. The asymptotic variance is estimated using
the multivariate delta method [10].
In the case of an unadjusted, binary exposure variable,

the formula by Spiegelman et al. [10] simplifies into

AR = q(RR − 1)
1 + q(RR − 1)

(3)

where q denotes the exposure prevalence and RR the
relative risk of exposed relative to nonexposed subjects.
This formula resembles the well-known formula used by
epidemiologists [1, 2] where q is estimated by the propor-
tion of exposed subjects at baseline (instead of exposed
person-years over the whole follow-up).

Simulations
In this work, we considered a single, binary covariate
Z representing exposure with Z = 0 and 1 for unex-
posed and exposed subjects respectively, simulated as a
Bernoulli random variable with probability of exposure
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(q) set to 0.25, 0.50 and 0.75. To compare the differ-
ent approaches for estimating AR, we considered either
proportional or nonproportional hazards between the
exposed and the unexposed.
For proportional hazards, we used instantaneous haz-

ard functions of the form λ(t|Z) = λ0(t) exp(βZ) where
β denotes the regression parameter set to ln(2) or 0, and
λ0(t) the baseline hazard function taken from a Weibull
distribution with shape parameter γ and scale parame-
ter θ : λ0(t) = γ θ−γ tγ−1, and generated event times from
(1/θ)

[− ln(U)/ exp(βZ)
]1/γ with U uniform on (0, 1).

We explored situations where the baseline hazard was
constant (γ = 1) or dependent on time, either increas-
ing (γ = 4/3) or decreasing (γ = 3/4) with time. The
scale parameter θ was chosen as a function of the shape
parameter γ so as to obtain median survival time equal to
15 years for unexposed subjects in all scenarios. We cal-
culated survival functions S0(.) and S(.) as exp {−(t/θ)γ }
and (1−q) exp [−(t/θ)γ ]+q exp

[−(t/θ)γ exp(β)
]
respec-

tively and derived theoretical values of AR as a function
of time from Eq. (2). For the global AR derived from
the simpler approach, theoretical values were obtained as
q[exp(β) − 1] /{1 + q[ exp(β) − 1] }.
For nonproportional hazards, we generated event times

from G−1[− ln(U)] /[ λ0 exp(βZ)] assuming a cumulative
hazard function of the form �(t|Z) = G

[
λ0t exp(βZ)

]

where G is the logarithmic transformation G(t) = ln(1 +
2t)/2 [7]. Setting λ0 = 0.1 yielded a median survival time
for unexposed subjects equal to 15 years as in the pro-
portional hazards case. Setting the regression coefficient
β to ln(2), the HR between the exposed and the unex-
posed decreased from 2 toward 1 over time.We calculated
survival functions S0(.) and S(.) as exp {− ln(1 + 2λ0t)/2}
and (1 − q) exp {− ln(1 + 2λ0t)/2} + q exp {− ln (1 + 2
λ0t exp(β)) /2} respectively and derived theoretical values
of AR as a function of time from Eq. (2).
We generated censoring times independent of the

covariate Z and event times T from a uniform distri-
bution on [ 0, τ ], with τ the maximal follow-up time of
the study set at 20 years. Depending on scenarios, we
obtained censoring percentages around 47-68% (ranges
across simulations from 42% to 73%).
We generated 1,000 data sets of n = 1,000 or 10,000

independent observations and calculated estimators Â(.)
of the AR as a function of time and their associated
variances using the four approaches: two non-parametric
approaches corresponding to the case where S0(.) and
S(.) are both estimated by the Kaplan-Meier method
(KM) and to the case where S0(.) and S(.) are estimated
by the Kaplan-Meier and the weighted Kaplan-Meier
methods, respectively (WKM) [7], one semiparametric
approach using Cox’s proportional hazards model (COX)
[7], and one parametric approach corresponding to the
case where survival functions are estimated assuming

piecewise constant hazards (PCH) [8] considering four
intervals of 5-year width. In the case where no event was
generated in any five-year interval, the simulated dataset
was discarded and replaced by a new one. We also consid-
ered the simpler approach based on Eq. (3) to estimate a
global AR.
Results of the time-dependent approaches are presented

at times t = τ/4, τ/2, 3τ/4 and τ (respectively, 5, 10, 15
and 20 years). For the nonparametric and semiparamet-
ric approaches, estimates were obtained at times actually
observed in the dataset so we considered values taken
at the closest preceding time point. While nonparamet-
ric estimations are based on data available until the time
of interest, semiparametric and parametric methods use
data available over the whole follow-up period. To allow
for a fairer comparison under the proportional hazards
assumption, we also computed semiparametric and para-
metric estimators after censoring observation times at
either τ/4 or τ/2. The parametric approach was then
based on one or two interval(s) of 5-year width respec-
tively.
For all five approaches, results displayed are the aver-

age absolute bias relative to the theoretical value A(.), the
Sampling Standard Deviation of Â(.) (SSD), the average
Standard Error Estimator of A(.) (SEE) and the coverage
probability (CP) of the 95% confidence interval (CI) of
A(.). Although authors [7, 8] have suggested to use the
complementary logarithmic transformation ln{1 − A(.)}
to improve coverage probabilities in case of small sample
size, this did not notably improve coverage probabilities in
our results (data not shown) so results presented are for
the untransformed A(.).
Simulations were performed using R release 3.0.1. We

coded the nonparametric methods using R software and
tested the validity of our code by comparing our simu-
lation results with those of the authors using the same
parameters [7]. For the semiparametric method [7], we
used the R package paf developed by Chen [17]. For the
parametric method [8], we used SAS release 9.3 and a
set of macros developed by Laaksonen et al. [18]. For the
global approach by Spiegelman et al. [10], we used the
%par SAS macro developed by the authors.

Results
Simulations
We first considered the case of proportional hazards
between the exposed and the unexposed with β = ln(2)
and probability of exposure equal to 0.50, starting with
a constant baseline hazard. With a sample size of 1,000
observations and for the four time-dependent approaches
(Table 1, left-hand side), there was more upward bias at
the end of follow-up τ , especially with the KM method
and the WKM method (to a lesser extent), but AR
estimators for all methods and time points were virtually
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Table 1 Simulation results for the estimation of attributable risk A(.) under proportional hazards, constant baseline hazard (γ = 1)
with regression parameter β = ln(2) and probability of exposure q = 0.5

Estimation method
n = 1, 000 n = 10, 000

Time A(t) Bias SEE SSD CP Bias SEE SSD CP

KM τ /4 0.284 0.001584 0.052440 0.052591 0.949 −0.000011 0.016622 0.016349 0.944

τ /2 0.240 0.001496 0.039210 0.039099 0.948 0.000235 0.012434 0.012420 0.944

3τ /4 0.200 0.001100 0.035666 0.035948 0.946 −0.000333 0.011353 0.011354 0.949

τ 0.166 0.004047 0.043238 0.053015 0.912 0.001025 0.017251 0.019598 0.943

WKM τ /4 0.284 0.001594 0.052516 0.052483 0.949 0.000003 0.016613 0.016357 0.946

τ /2 0.240 0.001541 0.039144 0.038926 0.950 0.000285 0.012401 0.012398 0.946

3τ /4 0.200 0.001093 0.035402 0.035479 0.953 −0.000286 0.011283 0.011297 0.952

τ 0.166 0.002922 0.040635 0.048602 0.902 0.000497 0.016646 0.018245 0.942

COX τ /4 0.284 0.000977 0.038843 0.038208 0.958 −0.000136 0.012292 0.012206 0.956

τ /2 0.240 0.001108 0.033847 0.033524 0.951 0.000006 0.010700 0.010616 0.958

3τ /4 0.200 0.001031 0.029264 0.028893 0.958 −0.000081 0.009237 0.009253 0.954

τ 0.166 0.002577 0.027146 0.027753 0.946 0.000148 0.008965 0.009087 0.950

PCH τ /4 0.284 0.001356 0.038338 0.038248 0.952 −0.000086 0.012120 0.012209 0.953

τ /2 0.240 0.001372 0.033380 0.033529 0.948 0.000034 0.010543 0.010608 0.952

3τ /4 0.200 0.001113 0.028804 0.028870 0.957 −0.000081 0.009088 0.009263 0.952

τ 0.166 0.001564 0.025811 0.025420 0.961 −0.000154 0.008105 0.008153 0.952

Simpler – 0.333 0.000826 0.043356 0.043147 0.952 −0.000209 0.013715 0.013776 0.955

KM nonparametric approach based on Kaplan-Meier estimation for S(t),WKM nonparametric approach based on weighted Kaplan-Meier estimation for S(t), COX
semiparametric approach, PCH parametric approach using a piecewise constant hazards model, Simpler simpler approach based on proportion of exposed subjects, Bias
sampling mean of the difference between Â(t) and A(t), SEE sampling mean of standard error estimate of A(t), SSD sampling standard deviation of Â(t), CP coverage
probability of the 95% Wald confidence interval

unbiased (relative bias < 2.5%). Variance estimators accu-
rately reflected the true variation and the 95% CIs had
proper coverage probabilities, except in τ for the two
nonparametric methods, where the variance was some-
what underestimated, yielding lower than nominal cov-
erage. Parametric and semiparametric estimators were
more precise than nonparametric estimators, particularly
at times τ/4 and τ . Estimators of parameter β were unbi-
ased for the semiparametric and parametric approaches
(relative bias < 0.7%, data not shown).
When considering samples of size 10,000 (Table 1, right-

hand side), bias decreased in magnitude compared to a
sample size of 1,000 observations (relative bias < 0.7% for
AR in all methods and < 0.04% for β in the semiparamet-
ric and parametric approaches). As expected, precision
increased markedly for all methods, by a factor of about√
10. Moreover, SEEs and SSDs were in closer agree-

ment even at time τ with nonparametric methods and
all coverage probabilities fell within the 0.940 to 0.960
range.
Similar observations held when considering a

decreasing baseline hazard (Table 2). When γ = 3/4,
biases were close to those observed with γ = 1 except
for a moderate increase for the parametric approach

and both sample sizes (relative bias < 2.4%). Never-
theless coverage probabilities remained satisfactory for
this method and the others, except again at the end
of follow-up τ for the two nonparametric methods
and n = 1,000 (0.915 and 0.906 for KM and WKM
respectively).
Under an increasing baseline hazard (Table 3), cov-

erage probabilities at τ of the two nonparametric esti-
mators worsened with n = 1,000 (0.891 and 0.898
for KM and WKM approaches respectively) as a result
of increased biases compared to constant and decreas-
ing baseline hazards. Results were otherwise satisfactory
and biases for the parametric method were com-
parable with those obtained under constant baseline
hazard.
With a lower or greater prevalence of exposure (25% or

75% exposed), coverage probabilities in τ for the nonpara-
metric approaches improved but sometimes remained
lower than the nominal value despite a sample size
of 10,000 (Additional file 1: Table S1 and Additional
file 2: Table S2 for γ = 1 and β = ln(2)). The
same general picture held with other values of γ (data
not shown), except for the parametric approach which
showed slightly insufficient (93%) coverage at times <
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Table 2 Simulation results for the estimation of attributable risk A(.) under proportional hazards, decreasing baseline hazard (γ = 3/4)
with regression parameter β = ln(2) and probability of exposure q = 0.5

Estimation method
n = 1,000 n = 10,000

Time A(t) Bias SEE SSD CP Bias SEE SSD CP

KM τ /4 0.269 0.001799 0.044659 0.045486 0.940 0.000129 0.014162 0.014200 0.946

τ /2 0.231 0.001217 0.036054 0.036037 0.943 0.000351 0.011437 0.011547 0.946

3τ /4 0.200 0.001164 0.034218 0.034637 0.948 −0.000204 0.010895 0.010746 0.956

τ 0.176 0.003532 0.041550 0.047835 0.915 0.000299 0.016351 0.019086 0.948

WKM τ /4 0.269 0.001832 0.044713 0.045359 0.942 0.000131 0.014153 0.014197 0.946

τ /2 0.231 0.001283 0.035999 0.035858 0.947 0.000368 0.011408 0.011509 0.947

3τ /4 0.200 0.001132 0.034004 0.034272 0.950 −0.000193 0.010838 0.010716 0.956

τ 0.176 0.002628 0.039647 0.045615 0.906 0.000116 0.015851 0.017720 0.947

COX τ /4 0.269 0.000957 0.036029 0.035611 0.955 0.000107 0.011401 0.011229 0.955

τ /2 0.231 0.001067 0.031741 0.031499 0.954 0.000129 0.010031 0.009949 0.953

3τ /4 0.200 0.000972 0.028300 0.028071 0.962 0.000060 0.008937 0.008899 0.949

τ 0.176 0.002177 0.026818 0.027274 0.955 0.000168 0.008790 0.008771 0.956

PCH τ /4 0.269 0.003717 0.035027 0.035896 0.940 0.002630 0.011076 0.011300 0.939

τ /2 0.231 0.002926 0.030819 0.031734 0.945 0.001853 0.009736 0.009995 0.936

3τ /4 0.200 0.002124 0.027440 0.028260 0.949 0.001247 0.008666 0.008949 0.940

τ 0.176 0.001883 0.025457 0.025679 0.958 0.000621 0.008014 0.008240 0.946

Simpler – 0.333 0.000814 0.041900 0.041749 0.952 0.000050 0.013257 0.013257 0.947

KM nonparametric approach based on Kaplan-Meier estimation for S(t),WKM nonparametric approach based on weighted Kaplan-Meier estimation for S(t), COX
semiparametric approach, PCH parametric approach using a piecewise constant hazards model, Simpler simpler approach based on proportion of exposed subjects, Bias
sampling mean of the difference between Â(t) and A(t), SEE sampling mean of standard error estimate of A(t), SSD sampling standard deviation of Â(t), CP coverage
probability of the 95% Wald confidence interval

τ for γ = 3/4 and both exposure probabilities 0.25
and 0.75.
Under the same parameters but β = 0 (Additional file 3:

Table S3 for γ = 1 and 50% exposed), results were similar
to those with β = ln(2) except for slightly improved cov-
erage probabilities in τ for the nonparametric approaches
and a sample size of 1,000.
Under all scenarios with proportional hazards (Tables 1,

2 and 3, Additional file 1: Table S1, Additional file 2:
Table S2 and Additional file 3: Table S3), estimators of
global AR from the simpler approach were virtually unbi-
ased with satisfactory coverage probabilities. The esti-
mated single values were generally greater than those of
time-dependent approaches at any point in time.
When follow-up was stopped at τ/4 or τ/2, under pro-

portional hazards (data not shown), estimates for the two
nonparametric methods were of course identical to those
obtained at the same time points with a complete follow-
up. SEEs for the semiparametric and parametric methods
increased, getting closer to those of nonparametric meth-
ods with censoring at τ/2 and even closer with censor-
ing at τ/4. Coverage probabilities remained satisfactory
except for the parametric method under decreasing base-
line hazard (γ = 3/4) where they tended to be lower

than the nominal value e.g., 0.935 and 0.918 at τ/4 for
censoring at τ/4, β = ln(2) and 50% exposed, and for
n = 1,000 and n = 10,000 respectively.
Finally, when considering nonproportional hazards

between the exposed and the unexposed (Table 4, for
β = ln(2) and 50% exposed), nonparametric meth-
ods yielded similar results to those under proportional
hazards. However, the semiparametric and parametric
approaches that both relied on the proportional haz-
ards assumption performed poorly. With a sample size
of 1,000 observations (Table 4, left-hand side), estimates
using the semiparametric approach were biased (relative
bias between 7.9 and 32.6%) with poor coverage proba-
bilities except at τ/2. The parametric approach resulted
in even more severe biases (relative bias between 14.6
and 81.6%) and poorer coverage probabilities. With n =
10,000, bias remained high and became similar with the
semiparametric and parametric approaches (between 7.1
and 31.2% and between 8.3 and 32% respectively), and
coverage deteriorated further as a result of tighter 95%
CIs (Table 4, right-hand side). With a lower or greater
prevalence of exposure, coverage probabilities with the
parametric approach improved at all times but generally
remained less than 93% (data not shown).
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Table 3 Simulation results for the estimation of attributable risk A(.) under proportional hazards, increasing baseline hazard (γ = 4/3)
with regression parameter β = ln(2) and probability of exposure q = 0.5

Estimation method
n = 1,000 n = 10,000

Time A(t) Bias SEE SSD CP Bias SEE SSD CP

KM τ /4 0.299 0.000814 0.064311 0.064377 0.947 −0.000024 0.020388 0.020204 0.956

τ /2 0.250 0.002020 0.043388 0.043169 0.952 0.000210 0.013761 0.013651 0.944

3τ /4 0.200 0.001174 0.037152 0.037027 0.955 −0.000469 0.011824 0.011798 0.960

τ 0.153 0.007382 0.043968 0.054032 0.891 0.000554 0.018140 0.021081 0.939

WKM τ /4 0.299 0.000805 0.064427 0.064296 0.950 −0.000010 0.020380 0.020196 0.954

τ /2 0.250 0.002055 0.043322 0.042973 0.949 0.000272 0.013722 0.013643 0.947

3τ /4 0.200 0.001193 0.036838 0.036463 0.962 −0.000410 0.011739 0.011741 0.958

τ 0.153 0.005596 0.040652 0.048586 0.898 0.000055 0.017280 0.019095 0.935

COX τ /4 0.299 0.001207 0.041863 0.040891 0.960 −0.000209 0.013250 0.013076 0.962

τ /2 0.250 0.001321 0.036377 0.035580 0.954 −0.000062 0.011499 0.011341 0.958

3τ /4 0.200 0.001300 0.030350 0.029672 0.956 −0.000121 0.009572 0.009502 0.965

τ 0.153 0.002791 0.027165 0.028199 0.945 −0.000309 0.009206 0.010402 0.945

PCH τ /4 0.299 −0.000084 0.041594 0.040674 0.961 −0.001831 0.013151 0.013022 0.957

τ /2 0.250 0.000876 0.036176 0.035464 0.956 −0.000759 0.011424 0.011313 0.958

3τ /4 0.200 0.001462 0.030163 0.029655 0.959 −0.000051 0.009509 0.009485 0.961

τ 0.153 0.002572 0.025716 0.024704 0.961 0.000622 0.008058 0.007962 0.945

Simpler – 0.333 0.001129 0.044983 0.044481 0.955 −0.000242 0.014226 0.014195 0.957

KM nonparametric approach based on Kaplan-Meier estimation for S(t),WKM nonparametric approach based on weighted Kaplan-Meier estimation for S(t), COX
semiparametric approach, PCH parametric approach using a piecewise constant hazards model, Simpler simpler approach based on proportion of exposed subjects, Bias
sampling mean of the difference between Â(t) and A(t), SEE sampling mean of standard error estimate of A(t), SSD sampling standard deviation of Â(t), CP coverage
probability of the 95% Wald confidence interval

Data example
As in our simulations, we used time-on-study rather
than attained age as the time-scale after checking that
both yielded similar results. Fitting a Weibull distri-
bution to the observed survival data and considering
incident invasive breast cancer as the event of inter-
est (i.e., considering time to breast cancer occurrence),
the shape (γ ) and scale (θ ) parameters were estimated
as 1.2 and 178.2 respectively and the corresponding
estimated Weibull survival function almost coincided
with nonparametric Kaplan-Meier estimate (data not
shown). The assumption of proportional hazards between
women ever-exposed and those never-exposed to any
MHT at baseline seemed appropriate (Schoenfeld resid-
ual test, p = 0.7), with an estimated HR at 1.22
(95% CI, 1.13 to 1.33) for MHT exposure from the
Cox model.
The AR estimates from nonparametric approaches KM

and WKM were almost identical (Fig. 1). They tended
to increase until 12 years of follow-up (e.g., for the KM
approach, from 5.5% (95% CI, −2.7 to 13.6%) after four
years to 12.0% (95% CI, 7.8 to 16.2%) after 12 years of
follow-up), then to decrease and converge to semipara-
metric and parametric estimates at the end of follow-up

with an estimated 9.2% AR (95% CI, 5.4 to 13.0%) after 16
years. In comparison, estimates using the semiparametric
and parametric approaches slightly decreased monotoni-
cally over time from 9.0% (95% CI, 5.3 to 12.8%) to 8.8%
(95% CI, 5.1 to 12.4%) and from 8.9% (95% CI, 5.2 to
12.6%) to 8.7% (95% CI, 5.0 to 12.3%) respectively. Thus,
after 16 years of follow-up, the proportion of invasive
breast cancer cases attributable to MHT exposure was
close to 9% whatever the method used. Estimates using
nonparametric approaches were far less precise at ear-
lier times and displayed wider 95% CIs (even including
0 at time 4 years) than semiparametric and parametric
approaches in the first half of the follow-up: e.g., at time
8 years, AR was estimated as 8.9% (95% CI, 3.5 to 14.4%)
and 9.0% (95% CI, 5.2 to 12.7%) from the KM and Cox
approaches, respectively. Adjusting for age at baseline,
either as a continuous covariate in the semiparametric
approach or as a dichotomous covariate in all approaches,
hardly modified these estimates (data not shown).
Finally, using the method proposed by Spiegelman et al.

[10], we found that 9.2% (95% CI, 5.4 to 13.0%) of cases
who developed invasive breast cancer at various times
in the cohort follow-up were attributable to MHT expo-
sure. Using the simpler approach with the proportion of



Gassama et al. BMCMedical ResearchMethodology  (2017) 17:10 Page 8 of 11

Table 4 Simulation results for the estimation of attributable risk A(.) under nonproportional hazards with regression parameter
β = ln(2) and probability of exposure q = 0.5

Estimation method
n = 1,000 n = 10,000

Time A(t) Bias SEE SSD CP Bias SEE SSD CP

KM τ /4 0.181 0.001124 0.045053 0.045787 0.954 0.000289 0.014277 0.014126 0.949

τ /2 0.133 0.001330 0.037581 0.037647 0.953 −0.000029 0.011915 0.012154 0.935

3τ /4 0.109 0.001211 0.036543 0.036593 0.953 −0.000301 0.011618 0.011608 0.952

τ 0.093 0.002743 0.043713 0.051764 0.933 −0.000888 0.016362 0.019957 0.950

WKM τ /4 0.181 0.001138 0.045090 0.045739 0.954 0.000291 0.014274 0.014130 0.949

τ /2 0.133 0.001347 0.037587 0.037593 0.956 −0.000024 0.011911 0.012151 0.938

3τ /4 0.109 0.001165 0.036511 0.036518 0.952 −0.000293 0.011612 0.011607 0.956

τ 0.093 0.001685 0.042617 0.049261 0.920 −0.000708 0.016157 0.019107 0.946

COX τ /4 0.181 −0.018761 0.037521 0.037543 0.933 −0.019843 0.011869 0.011939 0.621

τ /2 0.133 0.010548 0.033500 0.033580 0.941 0.009504 0.010588 0.010676 0.847

3τ /4 0.109 0.023376 0.030960 0.031017 0.879 0.022314 0.009775 0.009879 0.368

τ 0.093 0.030360 0.029427 0.029588 0.830 0.029168 0.009323 0.009456 0.127

PCH τ /4 0.181 0.026479 0.048525 0.049191 0.908 −0.017516 0.011688 0.012080 0.672

τ /2 0.133 0.057418 0.044915 0.045594 0.738 0.011082 0.010391 0.010768 0.806

3τ /4 0.109 0.070045 0.042342 0.043042 0.607 0.023478 0.009571 0.009936 0.313

τ 0.093 0.075924 0.040403 0.041050 0.525 0.029848 0.009011 0.009360 0.098

KM nonparametric approach based on Kaplan-Meier estimation for S(t),WKM nonparametric approach based on weighted Kaplan-Meier estimation for S(t), COX
semiparametric approach, PCH parametric approach using a piecewise constant hazards model, Bias sampling mean of the difference between Â(t) and A(t), SEE sampling
mean of standard error estimate of A(t), SSD sampling standard deviation of Â(t), CP coverage probability of the 95% Wald confidence interval

Fig. 1 Estimation of the risk of invasive breast cancer attributable to
ever use of menopausal hormone therapy at baseline as a time
function, E3N cohort, 1992-2008. The dark solid and dark dashed
curves pertain to the point estimates by KM and COX, respectively,
the dark circles to the point estimates by the 4-year interval PCH; the
light solid and light dashed curves, as well as the light circles, show the
corresponding 95% confidence intervals. The WKM curves are not
displayed because they almost coincided with the KM curves at the
chosen scale

exposed subjects at inclusion, we obtained a close, slightly
smaller estimate at 9.1% (95% CI, 5.3 to 12.8%).

Discussion
Comparing different methods of AR estimation when
disease incidence is interpreted as a CDF [7, 8], we
observed that AR estimators were essentially unbiased
for all approaches when we generated event times from
a proportional hazards model. Empirical and estimated
variances were close, with proper coverage probabilities
except at the end of follow-up for the nonparametric
methods and a smaller sample size. When considering a
non-constant baseline hazard, estimates using the para-
metric approach were robust despite misspecification
of the baseline hazard. For nonparametric approaches,
biases tended to increase at the end of follow-up (time τ )
when the baseline hazard increased with time. With
the simpler approach, results were satisfactory. However,
under nonproportional hazards, estimates using the semi-
parametric and parametric approaches were biased with
poor coverage probabilities.
To our knowledge, this is the first simulation study

comparing nonparametric, semiparametric and paramet-
ric methods of AR estimation as a function of time as well
as a simpler, global approach for a diversity of scenarios
(proportional or nonproportional hazards, constant or
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nonconstant baseline hazard, varying exposure probabil-
ities, strengths of association and sample sizes) in the
survival analysis context. Chen et al. [7] reported simu-
lations for the Kaplan-Meier, weighted Kaplan-Meier and
transformation models when event times were generated
from proportional or nonproportional hazards models
with regression parameter β = 1, 40% probability of
exposure and a sample size of 1,000 observations. Like
them, we found that, under the assumption of indepen-
dent censoring, results with KM and WKM approaches
were very close. Differences between the two nonpara-
metric approaches were apparent when censoring was
dependent on covariates [7], which we did not evaluate in
this study.
Also in line with Chen et al. [7], when we gener-

ated event times from a proportional hazards model, we
found that nonparametric and semiparametric estimates
were all unbiased, nonparametric estimates had larger
variances than semiparametric estimates and estimated
variances accurately reflected the true variance except in
τ for the nonparametric approaches and a sample size
of 1,000 observations. Nonparametric approaches tended
to perform better (respectively worse) when exposure
prevalence was lower (respectively higher) which could
be expected from the possibly unstable and inefficient
Kaplan-Meier estimator of survival among the unexposed
when the proportion of those is small [7]. This general
picture held in our simulations whether event times were
generated with constant, decreasing or increasing base-
line hazard. We note, however, that, when we considered
a larger sample size, the discrepancies between estimated
and empirical variances tended to diminish, with most
often satisfactory coverage probabilities in τ .
For nonproportional hazards, we generated event times

using a transformation model considered by Chen et al.
[7] and found consistent results for the nonparametric
approaches, similar to those in the case of proportional
hazards. However, while Chen et al. [7] applied the same
nonproportional hazards model for both data genera-
tion and analysis (AR estimation), we generated data
under nonproportional hazards and estimated AR from
(misspecified) Cox’s proportional hazards model. This
explains the impaired performance we observed when
the proportional hazards assumption was violated in con-
trast with the satisfactory results obtained by Chen et al.
[7]. Sjölander and Vansteelandt [9] recently proposed an
alternative semiparametric estimator of AR also based on
Cox’s proportional hazards model that proved robust to
various model misspecifications. However these authors
did not evaluate deviations from the proportional hazards
assumption.
Like Chen et al. [7] in their simulation and example

analysis, we observed greater imprecision of the nonpara-
metric estimators at the start of follow-up, which could

explain possible early negative AR values. This impre-
cision could be expected because the estimation of the
survival function relies upon the information available
until the time of interest and not many events have yet
occurred by then. This differs from the semiparametric
and parametric methods which take advantage of the esti-
mation of parameter β being performed over the entire
follow-up. Consistently, we found larger variances for the
semiparametric and parametric approaches with shorter
lengths of follow-up.
Another novelty of this work was the evaluation of

the parametric approach to AR estimation proposed by
Laaksonen et al. [8] using simulations and its compari-
son with nonparametric and semiparametric approaches.
Generally under proportional hazards, we found close
agreement between the semiparametric and parametric
approaches, in our simulations as well as in the example.
Of note, the parametric approach seemed robust despite
misspecification of baseline hazard, i.e., when we consid-
ered decreasing or increasing (instead of constant) base-
line hazard and proportional hazards. However, like the
semiparametric approach based on Cox’s model, the para-
metric approach was sensitive to the proportional haz-
ards assumption and performed poorly in our simulations
when this assumption was violated. We also evaluated the
simpler, global approach and our results were satisfactory
under proportional hazards.
As noted by several authors [4, 7], simpler approaches

based on Eq. (1) or equivalent formulas [1, 2] are gener-
ally defined for binary outcomes with time-independent
risk factors. Consequently, they prove to be inadequate for
cohort studies with censored time-to-event outcomes and
possibly time-dependent covariates. In contrast, the non-
parametric, semiparametric and parametric approaches
we considered here have been specifically developped for
censored time-to-event outcomes and produce AR esti-
mate as a function of time, thus allowing the AR to be
time-varying. A major limitation of the simpler approach
in the context of cohort studies is that it only takes account
of the proportion of exposed subjects at the beginning
of follow-up. The proportion of exposed subjects indeed
decreases as follow-up time increases (because exposed
subjects fail earlier than nonexposed subjects) [6]. This
explains why our AR estimates from the simpler approach
were generally greater than those from time-dependent
approaches and further underlines why approaches esti-
mating AR as a function of time are an improvement on
the simpler approach in the context of survival analysis.
In our study, we used the definition of AR based on

CDFs because it is a natural extension of the standard
AR definition (Eq. (1)) for time-to-event outcomes [6–9]
and it is equivalent to the standard definition when time
t is the end of follow-up in cohort studies [4]. In addi-
tion several estimation methods have been proposed for



Gassama et al. BMCMedical ResearchMethodology  (2017) 17:10 Page 10 of 11

the CDF-based AR definition in cohort studies and the
survival analysis context in contrast to the alternative def-
inition based on instantaneous hazard functions [4, 5]
for which only one method of estimation based on Cox’s
proportional hazards model has been published [4].
In cohort studies where exposed individuals are over-

sampled relative to the exposure prevalence in the popula-
tion, ARwill correctly reflect the impact of exposure in the
cohort, but the impact at the population level will be over-
estimated. The marginal survival function S(t) should be
corrected in order to alleviate this upward bias on AR esti-
mates. The AR (and its estimates) being a function of time,
various representations of AR estimates can be used. We
used a graphical representation of the whole time function
in our example and produced estimates at four equally
spaced times in our simulations. Alternatively, a single
overall estimate could be obtained by averaging out the
time function of AR estimates or by using the alternative
approach by Spiegelman et al. [10] as in our example.
We chose our simulation parameters to resemble real

epidemiologic cohorts. These often include a few thou-
sands participants followed for several years. For a smaller
sample size (n = 500), whether we used the logarith-
mic transformation or not, we observed findings generally
similar to those presented with a sample size of 1,000
observations. This was true with the notable exception of
the less than nominal coverage probability for the semi-
parametric approach at time τ for constant (γ = 1) and
decreasing (γ = 3/4) baseline hazards, and at times τ/4
and τ for increasing (γ = 4/3) baseline hazard (data not
shown).
In our application, the proportional hazards assumption

seemed appropriate, as well as a Weibull distribution for
event times with an increasing baseline hazard and shape
parameter halfway between the values γ = 1 and 4/3 con-
sidered in our simulation study. Exposure frequency was
also close to our simulated 0.5 probability of exposure.
However, as inmany epidemiologic cohorts, the censoring
rate was much greater in our example (94.2%) than in our
simulations. The resulting imprecision may explain the
nonparametric AR estimates apparently increasing until
three quarters of total follow-up but compatible with the
more expected decreasing trend. Chen et al. [7] observed
the same finding in their application on a shorter length of
follow-up.
Using the approach described by Spiegelman et al. [10],

the overall AR estimate for ever use of MHT at baseline
was 9.2% in the E3N cohort. This estimate was close to
those obtained at the end of follow-up with the nonpara-
metric methods and at the start of follow-up with the
parametric and semiparametric approaches. In a recent
publication, Dartois et al. [12] reported a higher AR esti-
mate of 14.5% (95% CI, 9.2 to 19.6%) for recent MHT use
and postmenopausal invasive breast cancer from the E3N

cohort data, using the approach proposed by Spiegelman
et al. [10] and a more refined, adjusted analysis with MHT
exposure as a time-dependent covariate.
This study has some limitations. First, we did not eval-

uate AR estimates adjusted for covariates. Adjustment for
multiple variables is common practice in epidemiology,
especially age which can also be used as the underlying
time-variable [19]. In our example, using analyses unad-
justed or parametrically adjusted for age, there was a
statistically significant association between baselineMHT
ever use and breast cancer risk, in line with findings
from more complex models with age as the timescale and
adjustment for other covariates in the original study [11].
Although adjustment for covariates is available in pack-
ages for semiparametric and parametric approaches [7, 8],
there are constraints in nonparametric approaches as the
number of covariates must be limited and adjustment
for continuous variables is not possible. Moreover, avail-
able packages for estimating the AR would need to be
adapted to allow left truncation resulting from using age
as the timescale. Second, in our example, we only con-
sidered women who had ever received MHT at baseline
as exposed whereas exposure can vary during follow-up.
Other methodological studies are needed to take into
account the exposure time dependency for estimating AR
as a function of time [9]. Finally, we have ignored the com-
peting risk of death and cancers of other sites (11.2% of our
94.2% censored observations) which might also bias our
estimate of breast cancer risk attributable to MHT [20].

Conclusions
The AR estimators from the four time-dependent meth-
ods had satisfactory performance under the proportional
hazards assumption. Estimators using semiparametric
and parametric approaches were not robust in case of
nonproportional hazards. Lack of precision could be an
issue for nonparametric methods at the beginning of
the follow-up time in cohorts of relatively low sample
size. In practice, if the proportional hazards assump-
tion seems appropriate, the semiparametric or parametric
approaches should be used.
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