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ABSTRACT   

The finite mixture model based on the Gaussian distribution is a flexible and powerful tool to address image 

segmentation. However, in the case of ultrasound images, the intensity distributions are non-symmetric whereas the 

Gaussian distribution is symmetric. In this study, a new finite bounded Rayleigh distribution is proposed. One advantage 

of the proposed model is that Rayleigh distribution is non-symmetric which has ability to fit the shape of medical 

ultrasound data. Another advantage is that each component of the proposed model is suitable for the ultrasound image 

segmentation. We also apply the bounded Rayleigh mixture model in order to improve the accuracy and to reduce the 

computational time. Experiments show that the proposed model outperforms the state-of-art methods on time 

consumption and accuracy. 
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1. INTRODUCTION  

Image segmentation is the key issue in computer version and machine learning. Many methods have been proposed 

for image segmentation. These methods divide into four categories: edge detection, threshold, clustering and region 

growing [1]. Clustering is a useful tool for image segmentation, which assigns the same label to pixels having the same 

characteristic. The outstanding method of clustering is finite mixture model (FMM). Image segmentation and 

classification based on FMM have been reported [2]. 

Gaussian Mixture Model (GMM) is the most commonly used case of FMM by assuming the intensity distributions 

follows Gaussian distributions. The main advantage of GMM is that it is easy to implement and it has only a few 

parameters to be estimated [3]. GMM has been applied in various applications, such as audio processing, video 

applications, and image segmentation. However, the case of ultrasound (US) image segmentation is more particular 

because of speckle pattern [4]. The intensity distributions of US images are non-symmetric whereas Gaussian 

distribution is symmetric. Several non-symmetric statistical distributions, including Rician [5], K- [6] or Nakagami [7], 

have been used to model the distribution of scatterers in US. Some authors proposed to adapt the FMM segmentation 

framework for US analysis by estimating a Rayleigh mixture model (RMM) [8]. It was shown that the Rayleigh 

distribution is more suitable to model the intensity distribution of US images. Moreover, the RMM has only one 

parameter to be estimated. 

In order to better fit different shapes of data, many models are introduced. Nguyen et al. exploited the bounded 

Student’s t Mixture Model (BSMM) [9] for Synthetic Aperture Radar (SAR) images segmentation since Student’s t 

distribution is suitable for SAR images. Since the case of ultrasound (US) image segmentation is more particular, 

Rayleigh distribution is more suitable to apply. Motivated by the previous research work, we propose a new finite 

bounded Rayleigh Mixture Model (BRMM) scheme for ultrasound image segmentation. In the proposed BRMM, each 

image component is viewed as a mixture of Rayleigh distribution. The expected advantages of the proposed method are: 

(1) Rayleigh distributions are well adapted to US images; (2) each component of the proposed model can be used to 

demonstrate the whole image; (3) segmentation accuracy is improved and the time consumption of our model is 

attractive for clinical application. 

The reminder of this paper is organized as follows. Section 2 presents the proposed model and elaborates the 

parameters’ estimation. Section 3 provides the experimental results, and concluding remarks are given in Section 4. 



 

 
 

 

 

2. PROPOSED METHOD 

The general FMM is briefly reviewed at first in this section. Under the independence assumption, RMM is defined as: 
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where j is the prior probability that xi belongs to class j, p(xi|j) is chosen as Rayleigh distribution corresponding to the 

class j is given by: 
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where j denotes the covariance of the Rayleigh probability distribution function (PDF). However, Rayleigh distribution 

p(xi|j) is unbounded with support range [0, ) . In the area of US images, each tissue is with different bounded support. 

To deal with this issue, BRMM is proposed thereof.  

Let j be the bounded support region, j denotes the jth class corresponding to the region in image. The indicator 

function is introduced as follows: 
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With the indicator function H(xi|j) in (3) and the distribution p(xi|j) in (2), a bounded Rayleigh distribution (xi|jk) 

is given by: 
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where ( | )
j

jkp x dx

  is the normalization constant, and it identifies the share of p(xi|jk) that belongs to the support 

region j. The idea to define (xi|jk) in (4) is because that each tissue in US images has bounded support. (xi|jk) is 

equal to p(xi|jk) inside the support region; and is zero, outside.  

Next, in order to fit different shapes of US data such as non-symmetric and bounded support data, the proposed 

distribution p(xi|j) is defined as: 
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where Kj is the number of the bounded Rayleigh distributions that are used to model the label j. jk is the weighting 

factor that satisfies the following constraints: 
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It is worth mentioning that p(xi|j) always satisfies the condition of the probability density [1]: 
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We need parameters set { , , }j jk jk    in order to maximize the likelihood function. The method will be elaborate in 

this section. The complete – data log likelihood can be written as: 
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Since the logarithm is a monotonically increasing function, it is more convenient to consider the negative logarithm 



 

 
 

 

of the likelihood function [9], as an error function. Maximizing the likelihood L(Θ) in (8) is equivalent to minimizing 

J(Θ) in (9). 
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In order to minimize J(Θ), we define two variables zij
(t) and yijk

(t). The variables zij
(t) and yijk

(t) are defined as: 
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Since zij
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Minimizing J(Θ) in Eq. (9) is equivalent to minimizing the error function E(Θ): 
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So that, the parameters set { , , }j jk jk    estimated by minimize E(Θ) in Eq. (12). At the (t+1) iteration step, we 

consider the derivation of E(Θ) with τjk at first. Then, update πj and ηjk.   
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3. EXPERIMENTS 

In this section, we experimentally BRMM in a set of images. We also evaluate GMM, BGMM and RMM for 

comparison. The experiments have been developed in MATLAB R2013a, and are executed on an Intel i5 Core 2.8GHz 

CPU with 12.0GB RAM. 

Firstly, we evaluate the performance of GMM, BGMM, RMM, and BRMM for synthetic US images that simulated 

from CT images [10]. For this experiment, we set Kj=2, and L=2. The segmentation results shown in Fig. 1. The first 

column shows original images and the second column shows ground truth. To demonstrate these segment results, red 

color denotes the target class and green color denotes the background. The third column denotes GMM with unbounded 

range ( , )
j     while the fourth column denotes RMM with support range [0, )

j   . The fifth column denotes 

BGMM with support range [0,120]
j   while the last column denotes BRMM is with bounded range [0,120]

j  . As 

shown in Fig. 1, a visual inspection of the result of BRMM indicates that it yields better results than other methods. 



 

 
 

 

 

 

Figure 1. Mixture models for segmentation. (From left to right: original images, ground truth, GMM, BGMM, RMM and BRMM. 

Ground truth: white denotes target; gray denotes background. Segmentation: red denotes target; green denotes background. ) 

 

Table 1. Dice scores (DSC) indicating the segmentation accuracy using several mixture models 

Model/DSC Elliptical Image Abdomen Image 

GMM 0.3551 0.7405 

BGMM 0.3782 0.7986 

RMM 0.3813 0.7930 

BRMM 0.4264 0.8670 

 

We also evaluate the accuracy and computation efficiency of different models. Table 1 presents the Dice score (DSC) 

[11] between the segmentation results and the ground truth obtained on the simulated images. DSC takes values between 

0 and 1, with values closer to 0 indicating an inferior segmentation result and values closer to 1 indicating better result. 

We can observe that BRMM yields the best segmentation results with the highest DSC values. For the elliptical image, 

the difference between GMM, BGMM, RMM and BRMM in terms of DSC value is 20.1%, 12.7% and 11.8%, 

respectively.  For the abdomen image, the difference is 17.1%, 8.5% and 9.3%, respectively. We also evaluate the 

computation time for all methods. It is noted that BRMM is much faster than other methods. The computation time of 

BRMM is 1.516 s. GMM is the slowest method that takes 301.58s while BGMM takes 180.65s. RMM takes 6.947s. 

Then, we evaluate our model on real US images obtained by High-Intensity Focused Ultrasound (HIFU). HIFU 

ablation is a safe, feasible and cost-effective alternative for the treatment of many diseases. Since HIFU is a noninvasive 

therapeutic procedure, it applied for women patients with symptomatic uterine fibroids. Before the treatment, the focal 

areas of diseases could be accurately located in order to decrease the complexity during the operation. Fig. 2 presents the 

segmentation results. The first row of Fig. 2 shows uterine HIFU images. The boundary of uterine is blur and the region 

of uterine is inhomogeneous in original images. The second row shows segmentation results achieved by BRMM. These 

images show clearer boundary and homogeneous region of uterine. Homogeneous region of focal improves the treatment 

accuracy of HIFU. The computation time of BRMM are 1.0s, 0.7s, 0.8s, respectively, which make it more attractive for 

clinical application. 

 

4. CONCLUSION 

In this paper, we proposed a new finite bounded Rayleigh mixture model (BRMM) for medical US images 

segmentation. Rayleigh distribution is non-symmetric which has ability to fit the shape of medical ultrasound data. Each 

component of the proposed model is suitable for the ultrasound image segmentation. The BRMM also can improve 

accuracy and reduce computation time so that it is attractive to clinical application. Numerical experiments showed that 

the proposed model outperforms the state-of-art models in terms of time consumption and accuracy. 

Ground truth GMM BGMM RMM BRMM US image 



 

 
 

 

 
Figure 2. Results on uterine HIFU images. (The first row shows uterine US images; the second row shows segmentation results 

based on BRMM: red denotes uterine.). 
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