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Abstract. P-LOCUS provides automatic quantitative neuroimaging bio-
marker extraction tools to aid diagnosis, prognosis and follow-up in mul-
tiple sclerosis studies. The software performs accurate and precise seg-
mentation of multiple sclerosis lesions in a multi-stage process. In the
first step, a weighted Gaussian tissue model is used to perform a ro-
bust segmentation. The algorithm avails of complementary information
from multiple MR sequences, and includes additional estimated weight
variables to account for the relative importance of each voxel. These esti-
mated weights are used to define candidate lesion voxels that are not well
described by a normal tissue model. In the second step, the candidate le-
sion regions are used to populate the weighted Gaussian model and guide
convergence to an optimal solution. The segmentation is unsupervised,
removing the need for a training dataset, and providing independence
from specific scanner type and MRI scanner protocol.

1 Introduction

MS brain lesion segmentation is important for diagnosis, prognosis, and patient
follow-up. Typically, this task is performed manually by a medical expert, how-
ever automatic methods are sought to alleviate the tedious, time consuming and
subjective nature of manual delineation. Automatic methods are motivated by
the demand for large-scale multi-center clinical research studies that require pre-
cise, repeatable and cost-e�cient analysis. Automatic brain image segmentation
remains a challenging task for a number of reasons, including the presence of
artefacts, and the heterogeneity of MRI scanner protocol.

Automated or semi-automated MS brain lesion detection methods can be
classified according to their use of multiple sequences, a priori knowledge about
the structure of normal brain, and the specific tissue segmentation model. In
most approaches, normal brain tissue prior probability maps are used to help
identify lesion as an outlier.

Existing methods frequently avail of complementary information from multi-
ple sequences. For example, lesion voxels may appear hyperintense in one modal-
ity and normal in another. This is implicitly used by neurologists when examining
data. In an statistical framework, complementary information from di↵erent se-
quences can help to better discriminate data generated by di↵erent probabilistic
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distributions in a multi-dimensional space. Intensity distributions are commonly
modeled as multi-dimensional Gaussian distributions. This provides a way to
combine the multiple sequences in a single segmentation task but with all the
sequences having equal importance. Given that the information content and dis-
criminative power to detect lesions varies between di↵erent MR sequences, we
adopt a weighted data model, originally proposed by Forbes et al [4], that allows
for the identification of atypical lesion voxels and the subsequent inclusion of the
lesion class as an additional model component.

2 Weighted Model

We consider a finite set V of N voxels on a regular 3D grid. The intensities ob-
served at each voxel are denoted by y = {y
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, . . . ,y
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} . Each y
i

= {y
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, . . . , y
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}
is itself a vector of M intensity values corresponding to M di↵erent MR se-
quences. The goal is to assign each voxel i to one of K classes considering the
observed features data y. For brain tissue segmentation, we consider in general 3
tissues plus some possible additional classes to account for lesions in pathological
data. We denote the hidden classes by z = {z

1

, . . . , z
N

}, and the set in which
z takes its values by Z. Typically, the z

i

’s take their values in {1 . . . K}. We
consider non-negative weights ! = {!

i

, i 2 V } in a state space denoted by W
and with !

i

= {!
i1

, . . . ,!
iM

}. In our general setting the weights are sequence
and voxel-specific.

The segmentation task is recast into a missing data framework in which y are
observations and z are missing variables. Their joint distribution p(y, z|!; ) is
governed by the weights ! 2 W and parameters  2  , which are both unknown
and need to be estimated. A prior distribution p(!) is defined on the weights,
considered additional missing variables. Denoting the parameters by  = {�,�},
we assume that the joint distribution p(y, z,!; ) is a MRF with the following
energy function:

H(y, z,!; ) = HZ(z;�) + HW (!) +
X

i2V

log g(yi|zi,!i;�)

where the energy term HW (!) involving only ! does not depend on  and
the g(yi|zi,!i;�)s are probability density functions of y

i

.
For the data term

P
i2V log g(yi|zi,!i;�) in (1), we consider M-dimensional

Gaussian distributions with diagonal covariance matrices. For each class k, t(µk1, . . . , µkM )

is the mean vector and {sk1, . . . , skM} the covariance matrix components. When
z

i

= k, then G(yim; µzim, szim) represents the Gaussian distribution with mean
µ

km

and variance s
km

. The whole set of Gaussian parameters is denoted by
� = {µkm, skm, k = 1 . . . K, m = 1 . . . M}. Our data term is then defined by setting

g(yi|zi,!i;�) =
MY

m=1

G(yim; µzim,
szim

!im
) ,
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which is proportional to
MQ

m=1

G(y
im

; µzim, szim)!im . Intuitively, the impact of a

larger !
im

is to give more importance to the intensity value y
im

in the model.
A weight of one recovers the standard multivariate Gaussian case.

The missing data term HZ(z;�) in (1) is set to a standard Potts model, with
external field ⇠ and spatial interaction parameter ⌘, and whose energy is

HZ(z;�) =
X

i2V

(⇠izi +
X

j2N (i)

⌘ hzi, zji),

where N (i) denotes the voxels neighboring i and hz
i

, z
j

i is 1 when z
i

= z
j

and 0 otherwise. Parameter � = {⇠, ⌘} with ⇠ = {t(⇠
i1

. . . ⇠
iK

), i 2 V } being a
set of real-valued K-dimensional vectors and ⌘ a real positive value.

The weights are assumed independent from parameters  and independent
across modalities. The simplest choice is to define a prior p(!) =

Q
M

m=1

Q
i2V

p(!
im

)
where each p(!

im

) is a Gamma distribution with hyperparameters ↵
im

(shape)
and �

im

(inverse scale). Thus

HW (!) =
MX

m=1

X

i2V

((↵im � 1) log!im � �im !im).

In practice, the set of hyperparameters is fixed so that the modes of each prior
p(!

im

) are located at some expert weights {!exp

im

, m = 1 . . . M, i 2 V } accounting
for some external knowledge, if available. Formally, we set ↵

im

= �
im

!exp

im

+1 to
achieve this. The expert weights can be chosen according to the specific task. For
example, when voxels with typical lesion intensities are not numerous enough to
attract a model component, increasing the expert weight for some of them will
help in biasing the model toward the identification of a lesion class.

A solution to the model is found using the Expectation-Maximization (EM)
framework [2] combined with a variational approximation for tractability in the
presence of Markov dependencies. In particular, the mean field principle provides
a deterministic way to deal with intractable MRF models[1].

3 Method

Of the four possible input sequences available, the method uses only the un-
processed T1-weighted and Flair. The images are masked, co-registered and cor-
rected for inhomogeneities using the N4 algorithm.

The segmentation process consists of two stages, as detailed in [3]. In the
first step, we set K = 3, considering only the three normal tissue classes (with
all !exp

im

and �
im

set to 1). The ⇠ parameters in the MRF prior are set to ⇠
ik

=
log f

ik

where f
ik

is the normalized value given by a normal tissue atlas. The
interaction parameter ⌘ is estimated using a stochastic gradient descent method
as specified in [1]. The estimated weights for the Flair sequence are thresholded
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at a value of one to identify outlier regions corresponding to candidate lesion
regions. This candidate region is refined using additional intensity, location and
size constraints, as in [7, 5, 6]. Retained lesions are hyperintense in Flair, confined
to white matter and greater than 5mm3.

In the second step, the candidate region is used to specify the parameters of
the weight distribution in a K = 4 segmentation setting. We set �

im

according
to: �

im

= �L for all i 2 L and �
im

= �
¯L for all i 62 L, where �L and �

¯L are
values to be specified. We set �

¯L = 1000 to express our a priori trust in the
estimation of the normal brain tissue classes from the preliminary first step, and
set �L = 10 to allow some flexibility in the weight estimation.

The expert weight is fixed to !L = 2 and !
¯L = 1. Large values of !L make the

lesion class more representative and handle the possibility of very small lesions,
while a small !

¯L ensures that the weighting of a large candidate lesion region
does not a↵ect the estimation of other classes. A post-processing step removes
artefacts based on spatial location.

4 Conclusion

The adaptive weighting model facilitates accurate and robust MS lesion segmen-
tation from T1-weighted and Flair sequences. The advantage of this approach
is that the weights, and therefore the ’outliers’ are obtained in a multi-sequence
framework that provides a more robust estimation of normal tissue parameters.
The method is independent of MRI scanner, and does not require training data.
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4. Florence Forbes, Senan Doyle, Daniel Garćıa-Lorenzo, Christian Barillot, and Michel

Dojat. Adaptive weighted fusion of multiple mr sequences for brain lesion segmen-
tation. In ISBI, pages 69–72. IEEE, 2010.

5. O. Freifeld, H. Greenspan, and J. Goldberger. Lesion detection in noisy MR brain
images using constrained GMM and active contours. In IEEE ISBI, pages 596–599,
2007.

6. D. Garcia-Lorenzo, L. Lecoeur, D.L. Arnold, D. L. Collins, and C. Barillot. Mul-
tiple Sclerosis lesion segmentation using an automatic multimodal graph cuts. In
MICCAI, pages 584–591, 2009.

7. K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens. Auto-
mated segmentation of multiple sclerosis lesions by model outlier detection. IEEE

trans. Med. Ima., 20(8):677–688, 2001.


