Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients

Catherine Merck, Isabelle Corouge, Pierre-Yves Jonin, Béatrice Desgranges, Jean-Yves Gauvrit, Serge Belliard

To cite this version:

Catherine Merck, Isabelle Corouge, Pierre-Yves Jonin, Béatrice Desgranges, Jean-Yves Gauvrit, et al.. Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? Evidence from 19 semantic dementia patients. International Neuropsychological Society Mid-Year Meeting, Jul 2016, London, United Kingdom. 10.13140/RG.2.2.24681.70242 . inserm-01417028

HAL Id: inserm-01417028
https://inserm.hal.science/inserm-01417028

Submitted on 16 Dec 2016
Does the left posterior fusiform gyrus play a critical role in fruit and vegetables categorization? ◇Evidence from 19…

Poster · July 2016
DOI: 10.13140/RG.2.2.24681.70242

6 authors, including:

Catherine Merck
Centre Hospitalier Universitaire de Rennes
24 PUBLICATIONS 41 CITATIONS
SEE PROFILE

Isabelle Corouge
Université de Rennes 1
48 PUBLICATIONS 1,029 CITATIONS
SEE PROFILE

Pierre-Yves Jonin
Centre Hospitalier Universitaire de Rennes
21 PUBLICATIONS 30 CITATIONS
SEE PROFILE

Béatrice Desgranges
Unité Inserm U1077
445 PUBLICATIONS 10,769 CITATIONS
SEE PROFILE
Introduction

In our previous study [1], we reported a relative preservation of fruit and vegetables knowledge in a large cohort of 35 semantic dementia (SD) patients. This category effect was observed on a semantic sorting task, compared with three other categories: animals, tools and kitchenware.

Why fruit and vegetables seem to better resist the massive semantic disruption that occurs in SD?

1. This relative preservation of fruit and vegetables might be considered with regard to the importance of color knowledge in their discrimination [2] [3].
2. Color knowledge retrieval is known to depend on the left posterior fusiform gyrus [4] [5], that is relatively spared in SD [6] [7].

Methods

Population

• 19 SD patients :
 - performing the semantic sorting task
 - undergoing an MRI scan (anatomical 3D-T1w 1x1x1 mm3) within a period of 3 months

• 12 controls :
 - performing the semantic sorting task

Semantic sorting task: stimuli and procedure

64 stimuli

• Selected from the “Imagier du Père Castor” playing cards
• Divided into 4 categories
• Presented first as words, then as pictures
• Sorted at both superordinate and subordinate levels (see labels in Table)

Anatomical data (MRI): processing

1/ Pre-processing using Matlab/SPM8

Segmentation into grey matter (c1), white matter (c2) and cerebro-spinal fluid (c3)

2/ Spatial normalisation into the MNI space, with modulation

3/ ROIs analysis : computation of c1 volumes in the two sides of temporal lobes, for:
 - FG1 and FG2
 - 5 others areas from the AAL template [10]: Superior, middle and inferior temporal gyr, temporal pole, fusiform gyr minus (FG1 + FG2)

4/ Correction of the ROIs volumes by the intra cerebral volume (c1+c2+c3)

Discussion

We reported a specific relationship between the volume of a subregion within the left posterior fusiform gyrus and sorting performance for fruit & vegetables in SD.

This area was proved to be a core region underlying the ability to identify fruit and vegetables.

Recent studies [7] [11] pointed out the major contribution of fusiform gyrus to semantic performances in SD. Our results revealed that the left FG1 is more involved in semantic processing when concepts depend upon color knowledge. We further bring evidence for a functional specialization along the longitudinal axis of the fusiform gyrus that depends on the nature of concepts.

References

