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Abstract

Purpose

This study aimed to investigate the variability of textural features (TF) as a function of acqui-

sition and reconstruction parameters within the context of multi-centric trials.

Methods

The robustness of 15 selected TFs were studied as a function of the number of iterations,

the post-filtering level, input data noise, the reconstruction algorithm and the matrix size. A

combination of several reconstruction and acquisition settings was devised to mimic multi-

centric conditions. We retrospectively studied data from 26 patients enrolled in a diagnostic

study that aimed to evaluate the performance of PET/CT 68Ga-DOTANOC in gastro-entero-

pancreatic neuroendocrine tumors. Forty-one tumors were extracted and served as the

database. The coefficient of variation (COV) or the absolute deviation (for the noise study)

was derived and compared statistically with SUVmax and SUVmean results.

Results

The majority of investigated TFs can be used in a multi-centric context when each parame-

ter is considered individually. The impact of voxel size and noise in the input data were pre-

dominant as only 4 TFs presented a high/intermediate robustness against SUV-based

metrics (Entropy, Homogeneity, RP and ZP). When combining several reconstruction set-

tings to mimic multi-centric conditions, most of the investigated TFs were robust enough

against SUVmax except Correlation, Contrast, LGRE, LGZE and LZLGE.

Conclusion

Considering previously published results on either reproducibility or sensitivity against delin-

eation approach and our findings, it is feasible to consider Homogeneity, Entropy, Dissimi-

larity, HGRE, HGZE and ZP as relevant for being used in multi-centric trials.
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Introduction
It is well known that tumors often exhibit a broad biological, cellular and tissue heterogeneity
[1]. The interactions of cancer cells with their microenvironment are not uniform in the
tumor. The conjunctiva-vascular pattern properties that constitute the cancer stroma and the
remodelling of the extracellular matrix vary depending on the region of the tumor. Further-
more, local variations in angiogenesis and hypoxia also lead to changes in glucose metabolism
[2]. These parameters also determine the aggressiveness of the tumor and its therapeutic resis-
tance. Thus, tumors with a high intrinsic heterogeneity may have a worse prognosis [3].

While 18F-FDG PET images suffer from poor spatial resolution (thus making it difficult to
resolve subtle biological process), it is advocated by many that the analysis of tumor heteroge-
neity by PET may provide useful information for personalized management of disease [4–10].
Based on these assumptions, an increasing number of studies have focused on using PET-
based textural features (TFs) as a surrogate biomarker for deriving prognostic and predictive
value.

In this context, TFs were first studied in solid cancer, including breast [11], esophageal
[12,13], head and neck [14,15], cervical [16] and lung cancers [13,17,18]. The robustness of tex-
tural indices was also investigated with respect to their reproducibility [19,20], the choice of
discretization value [12,13,21,22], the tumor delineation approach [21,23,24] and the sensitiv-
ity to partial volume effect [23]. Many studies have examined the inter-correlation of TFs, and
whether they can provide additional information when compared against the standardized
uptake value (SUV)-based metrics or volume [13,21,23,24]. The combination of these studies
suggests that only a few TFs may be robust enough to be used in a clinical setting. Despite this,
it is difficult to derive a set of interesting textural metrics considering the large number and het-
erogeneity of textural metrics used in each study and the mathematical definition that can be
slightly different from one study to another. Additionally, to our knowledge, only two studies
reported the robustness of textural indices with respect to acquisition mode and reconstruction
parameters [25,26]. Galavis and colleagues considered two iterative reconstruction algorithms
with a limited number of lesions, without time-of-flight (TOF) information, without noise con-
sideration and with limited information regarding the discretization value used for computing
each textural metric. Yan and colleagues recently published an updated insight based on a cur-
rent PET system with TOF capability. Indeed, there is a need to re-evaluate the robustness of
TFs with respect to reconstruction parameters and to consider the noise level which has not
been considered by the aforementioned studies, especially in the context of multi-centric stud-
ies which are often retrospective ancillary studies to clinical trials. Under these conditions, PET
acquisition and subsequent reconstructions are usually not well controlled although many rec-
ommendations have been recently published [27,28]. Additionally, it is well known that a large
sample size is required for reducing type-I error and allowing the possibility to separately con-
sider a test dataset for the exploratory analysis and a subsequent validation dataset. This can
often only be achieved through a multi-centric study [29].

In this study, our goal was to explore the robustness of few TFs that are clinically investi-
gated by examining their dependence on current reconstruction algorithm, reconstruction
parameters (including the number of iterations, the post-filtering properties and the voxel size)
and the noise in input data. This study was mainly focused within the framework of multi-cen-
tric studies. Hence, different combinations of reconstruction algorithms, related parameters
and time per bed position (as a surrogate of noise in input data) were investigated to mimic the
conditions encountered in multi-centric studies. Finally, we combined our findings against pre-
viously published results sought to study the reproducibility and impact of the delineation
approach.
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Materials and Methods

Population
We retrospectively included a sub-population of 26 patients with proven well differentiated
neuroendocrine tumors who were enrolled in a diagnostic multicenter study that aims to evalu-
ate the performance of 68Ga-DOTANOC PET/CT in gastro-entero-pancreatic neuroendocrine
tumors (https://clinicaltrials.gov/show/NCT01747096). All patients signed a written informed
consent form. The median age was 63 years (range, 37–75 y) with 15 men and 11 women.
From these 26 patients, 66 tumors confirmed by the gold-standard (all imaging modality and
histopathology) were extracted: liver metastases (n = 34), lymph nodes (n = 18), primary
lesions (pancreas n = 9; midgut n = 1), bone (n = 1) and carcinomatosis (n = 3).

PET/CT imaging and reconstruction
The PET/CT scan was performed for all patients using a 4-ring Siemens Biograph mCT system
with TOF capability. Patients were injected with 148 ± 16 MBq of 68Ga-DOTANOC and
scanned for 8 minutes in list mode, 2h after the injection, with one bed position centered on
the lesions. The list-mode data from each PET acquisition was truncated to reduce the scan
duration to respectively 1 min, 2 min, 3 min and 8 min.

All datasets were reconstructed using 4 different algorithms: 3D attenuation weighted
ordered subsets expectation maximization (AW), 3D ordinary Poisson-OSEM in conventional
mode (OP), and OP with point-spread function correction (PSF) and TOF mode (PSF-TOF).
The default matrix size was 200×200 (voxel size: 4×4×2 mm3). Data were also reconstructed
using 400×400 (voxel size: 2×2×2 mm3) and 256×256 (pixel size: 3.1×3.1×2 mm3) depending
on the effect studied. Note that reconstructions using a 256×256 matrix were done through an
interpolation of the results obtained with the 400×400 matrix. Therefore, reconstructions using
a 256×256 matrix were done through an interpolation of the results obtained with the 400×400
matrix.

For each reconstruction algorithm, three different numbers of iterations (2, 4 and 6) com-
bined with three possibilities of full width at half maximum (FWHM) Gaussian post-filtering
(all-pass, 2 mm and 5 mm FWHM) were investigated. For sake of clarity, the same number of
subsets was used for each algorithm and was set to 24. Hence, for each lesion, the theoretical
number of reconstructions was 540, albeit not always used, depending on the impact of acquisi-
tion/reconstruction settings on the studied textural features.

Segmentation and textural features
To minimize the impact of delineation approach on TFs resulting from different reconstruc-
tion settings, a unique volume of interest (VOI) for each lesion was delineated on the 200×200
matrix using the OP-OSEM3D+PSF+TOF algorithm based on the 8-min acquisition (default
parameters: 2 iterations and 2mm FWHM post-filtering). The VOIs were obtained using an
iterative method [30] that involved a calibration specific to the system used. When required,
these initial VOIs were interpolated (bi-cubic) to larger matrix size (256×256 or 400×400) with
the constraint that the interpolated volume must be within 1% of the initial volume. Finally, all
lesions larger than 2 cm3 (64 voxels) were included in the subsequent analysis [16,21]. This
narrowed the number of lesions studied to 41, with a volume of 17.4 ±34.1 cm3 (range: 2.2–
179.7 cm3).

The TFs we chose to study are among the most widely used in recent publications. We
mainly focused on metrics where a test-retest reproducibility study had already been conducted
[19,20]. As such, 6 TFs were extracted from the grey level co-occurence matrix (GLCM), 3 TFs
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from the grey level run length matrix (GLRLM) and 6 from the grey level size zone matrix
(GLSZM). The GLCM and GLRLM were calculated from 13 directions with one-voxel dis-
placement. The final TF was computed by averaging TFs over the 13 directions. A list of all the
TFs studied along with the mathematical definition is provided in S1 Table. The SUV values
within each VOI were resampled using 64 discrete values [13]. Finally, two first-order parame-
ters were also derived from the VOI to be compared with TFs: SUVmax and SUVmean.

Study design
Each reconstruction setting was studied by making all other parameters constant in order to
correctly individualize the impact of each investigated parameter. The influence of matrix size
was studied for only one algorithm (PSF-TOF) using the default reconstruction parameters (2
iteration, post-filtering 2 mm FWHM). However, in order to fully decorrelate the impact of
matrix size from the noise in input data, the time for the largest matrix size (400×400) was
adapted to match noise properties found for the original matrix size (200×200). In this situa-
tion, a cylinder of 68Ge was acquired during 120 s and reconstructed using the default recon-
struction settings. The signal-to-noise ratio (SNR), defined as the standard deviation over the
mean measured in a uniform region was then derived. A second acquisition of the same phan-
tom was then acquired in list-mode and reconstructed with the same reconstruction settings
except the matrix size (400×400). The acquisition time that led to an identical SNR from the
one obtained from the 200×200 (120 s used) was 188 s. This duration was also set for recon-
structing data using a 256×256 matrix size as outlined above. Table 1 lists the different recon-
struction configurations used for studying the relative dependence of reconstruction
parameters on TFs.

Finally, a subset of reconstruction parameters that are very similar in terms of acquisition
time, number of iterations, post-filtering level and matrix size were examined, as they mimic
conditions found in an on-going multi-centric trial [24], and are applicable to multi-centric tri-
als. Obviously, it was not possible to use exactly the same algorithms as found in the multi-cen-
tric trial because different PET systems and attached reconstruction algorithms were used.
Hence, we tried to cover most of the parameters used in the multi-centric trial under the
assumption that the difference that can be found in the original data extracted from the multi-
centric trial can be “simulated” by selecting a subset of different parameters chosen among our
algorithms and attached parameters. This led for each lesion, to a total of 49 different recon-
structions whose configurations are listed in Fig 1.

Metrics
The coefficient of variation (COVL) was the metric used to analyze the dependence of TFs for
all investigated parameters except noise. COVL was also used when considering a combination

Table 1. List of the different reconstruction parameters used as a function of the parameters studied.

Parameters studied Range Constant parameters

Number of iterations 2, 4 and 6 Post-filtering (0 mm FWHM) and time (180 s)

Level of post-filtering (mm
FWHM)

0, 2 and 5 Number of iterations (2) and time (180 s)

Noise (acquisition time in s) 60, 120 and 180 Number of iterations (2) and post-filtering (2 mm FWHM)

Reconstruction algorithm AW, OP, PSF and
PSF-TOF

Number of iterations (2), post-filtering (0 mm FWHM) and time (180 s)

Matrix size 200×200, 256×256 and
400×400

PSF-TOF (2 iterations and 2 mm FWHM post-filtering) using 120 s (200×200) or 188 s
(256×256 and 400×400)

doi:10.1371/journal.pone.0159984.t001
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of different reconstruction settings (detailed hereafter) to mimic multi-centric conditions. The
COVL calculated for each lesion L was defined by:

COVL ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
k¼1

ðmL
k � �mLÞ2

s

�mL
ð1Þ

wheremL
k is the measurement of TFs (including SUVmax and SUVmean) for lesion L related

to the metrics analyzed and �mL is the mean value of lesion L over the Nmeasurement. By defi-
nition, N = 3 for the study related to the impact of the number of iterations, post-filtering level
or matrix size, N = 4 for the study related to the impact of reconstruction algorithm and N = 49
when combining a different set of reconstruction parameters for the multi-centric-like study.

The impact of noise in the input data was investigated by computing the percentage devia-
tion DL of the TF for each lesion L related with the 8-min acquisition defined as the gold stan-
dard, using:

DL ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
k¼1

ðtLk � �tLÞ2
s

�tL
ð2Þ

where

tLk ¼ 100�mL
k �mL

480

mL
480

ð3Þ

mL
k is the measurement of TFs for lesion L and for a time k expressed in seconds (k�[60;120;180]),

mL
480 is the TF value for the acquisition time of 480 s and�tL is the mean value of lesion L over the

Nmeasurement.
Finally, as SUVmax and, to a lesser extent, SUVmean are the most used quantitative param-

eters in multi-centric trials, the robustness of each TF was ranked against them relatively
(Table 2) as also suggested by Buvat and colleagues [31]. For this purpose, each TF was com-
pared to both SUVmax and SUVmean using a one-way ANOVA for repeated measures with
the Tukey HSD test. A Bonferroni correction was applied for multiple comparison testing.

Fig 1. Acquisition and reconstruction settings. List of each acquisition setting (defined by the time
considered) with the reconstruction algorithm and attached parameters for mimicking conditions encountered
in multi-centric trials. “i” represents the number of iterations, “mm” the FWHMGaussian post-filtering and
200×200 or 256×256 the matrix size used.

doi:10.1371/journal.pone.0159984.g001

Robustness of PET Textural Features

PLOS ONE | DOI:10.1371/journal.pone.0159984 July 28, 2016 5 / 16



Results

Impact of number of iterations, level of post-filtering, reconstruction
algorithm and noise in input data
Fig 2 gives an example of the impact of several acquisition/reconstruction settings on the final
image for a heterogeneous lesion (volume: 124.6 cm3). This example highlights the difference
in the heterogeneity pattern that can be met when considering several sets of reconstruction
parameters.

The complete results describing the impact of the number of iterations, the level of post-fil-
tering and the noise in the input data are presented in S1–S3 Figs. The impact of the recon-
struction algorithm is shown in Fig 3, while a summary of these results is presented in Table 3
relative to the results of SUV-based metrics as explained in Table 2. To clarify, Table 3 shows
only the results for the PSF-TOF algorithm (except when considering the impact of reconstruc-
tion algorithm wherein the four algorithms were used) given that results were generally found
to be similar for the 3 other algorithms.

Among the TF studied in this work, 4 (Entropy, Energy, RP and ZP) were found to be
robust enough against the number of iterations, the post-filtering level, the noise in input data
and the reconstruction algorithm with respect to results related to SUVmax and SUVmean.
Homogeneity and Dissimilarity presented very similar properties apart from their robustness
against noise which was found to be intermediate. In contrast, 3 TFs displayed the poorest per-
formance (Correlation, LGZE and LZLGE) among all investigated parameters (except the post-
filtering level for Correlation). HGRE, ZLNU, HGZE and SZHGE yielded intermediate robust-
ness except for the noise in input data where HGRE, HGZE and SZHGE were found to be

Table 2. Classification of the TF robustness with respect to SUV-based robustness.

Rule Robustness

1.MTF not statistically different fromMSUVmean

2.MTF statistically different fromMSUVmax withMTF <MSUVmax

High

MTF not statistically different fromMSUVmax Intermediate

MTF statistically different fromMSUVmax withMTF >MSUVmax Low

M stands for the metrics used (COV or D).

doi:10.1371/journal.pone.0159984.t002

Fig 2. Tumor illustration. Illustration of a tumor (axial slice) reconstructed using different reconstruction
settings. Two different images are presented for each reconstruction algorithm studied (AW, OP, PSF and
PSF-TOF) corresponding to the minimum and maximum value of the parameters investigated (number of
iterations, level of post-filtering and acquisition time). Upper row: variation of the number of iterations (2 and 6
iterations). Middle row: variation of the post-filtering level (0 mm or 5 mm FWHM). Bottom row: variation of the
acquisition time for a surrogate of noise in the input data (60 s or 180 s). The grey scale level is identical for
each image.

doi:10.1371/journal.pone.0159984.g002
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more sensitive to noise than SUVmax. Finally, Contrast and LGRE performed equally with a
low robustness with respect to noise and reconstruction algorithm and an intermediate robust-
ness when considering respectively the number of iterations and the post-filtering level.

The results derived from the PSF-TOF algorithm (except when considering the impact of
reconstruction algorithm) remained valid for the three other algorithms except for the impact
of the number of iterations with the AW algorithm. In this particular case, most of the TFs,
that exhibited high robustness using either OP, PSF of PSF-TOF, showed an intermediate

Fig 3. Impact of the reconstruction algorithm. Impact of the reconstruction algorithm on each TF using the default settings outlined in Table 1.

doi:10.1371/journal.pone.0159984.g003
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robustness (except Entropy and RP which performed equally). Similarly, a low robustness was
found for those that previously reached an intermediate robustness.

Impact of matrix size
Fig 4 illustrates the differences observed when reconstructing with a voxel size of 4×4×2 mm3

(matrix size: 200×200) or 2×2×2 mm3 (matrix size: 400×400).
Fig 5 shows the variation of the COV for each TF and SUV-based metrics while Table 4

summarizes the TF robustness with respect to SUV-based results. The voxel size has a strong
impact on the robustness of TFs as only 4 of them exhibited a small variability (equivalent or
less than SUVmean). All other studied metrics showed an intermediate (Homogeneity, HGRE,
HGZE, SZHGE, ZP) or large variation (Correlation, Energy, Contrast, Dissimilarity, LGRE,
ZLNU, LGZE, LZLGE) with respect to SUV.

Combination of multiple reconstruction algorithms
Fig 6 illustrates the COV variability of each metric while Table 5 summarizes the final robust-
ness with respect to SUV-based metrics.

Seven TFs appeared to be robust enough in this context (Homogeneity, Entropy, RP and
ZP) while 5 others are not advisable for use within multi-centric trials. Energy, Dissimilarity,
HGRE, HGZE, ZLNU and SZHGE presented intermediate results.

Table 3. Robustness of each TF with respect to the robustness of SUV-basedmetrics.

Robustness High Intermediate Low

Number of iterations Homogeneity, Entropy, Energy,
Dissimilarity, RP, ZP

Contrast, HGRE, HGZE, ZLNU,
SZHGE

Correlation, LGRE, LGZE, LZLGE

Post-filtering level Homogeneity, Entropy, Energy, Contrast,
Dissimilarity, RP, ZP

Correlation, HGRE, LGRE, HGZE,
ZLNU, SZHGE, LGZE

LZLGE

Noise Entropy, Energy, RP, ZP Homogeneity, Dissimilarity, ZLNU Correlation, Contrast, HGRE, LGRE, HGZE,
SZHGE, LGZE, LZLGE

Reconstruction
algorithm

Homogeneity, Entropy, Energy,
Dissimilarity, RP, ZP

HGRE, HGZE, ZLNU, SZHGE Correlation, Contrast, LGRE, LGZE, LZLGE

The impact of the number of iterations, the post-filtering level and the noise in input data were for the PSF-TOF algorithm. The impact of the reconstruction

algorithm was derived using the 4 algorithms available (AW, OP, PSF and PSF-TOF).

doi:10.1371/journal.pone.0159984.t003

Fig 4. Impact of the matrix size. Impact of the matrix size used for reconstruction (PSF-TOF with 2 iterations and 2 mm FWHMGaussian post-filtering). Left:
200×200 (voxel size: 4×4×2 mm3), middle: 256×256 (voxel size: 3.1×3.1×2 mm3), right: 400×400 (voxel size: 2×2×2 mm3). The grey scale level is identical
for each image.

doi:10.1371/journal.pone.0159984.g004

Robustness of PET Textural Features

PLOS ONE | DOI:10.1371/journal.pone.0159984 July 28, 2016 8 / 16



Fig 5. Impact of the matrix size using PSF-TOF.

doi:10.1371/journal.pone.0159984.g005

Table 4. Robustness of the matrix size. Robustness of each TF with respect to the robustness of SUV-based metrics as a function of the matrix size for
the PSF-TOF algorithm.

Robustness High Intermediate Low

Matrix size Entropy, RP Homogeneity, HGRE, HGZE, SZHGE, ZP Correlation, Energy, Contrast, Dissimilarity, LGRE, ZLNU, LGZE, LZLGE

doi:10.1371/journal.pone.0159984.t004
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Fig 6. Robustness for multi-centric conditions. Variation of the COV for each TF when pooling different reconstructions detailed in Table 1 in order to
mimic multi-centric conditions.

doi:10.1371/journal.pone.0159984.g006

Table 5. Robustness with combination of multiple parameters. Robustness of each TF with respect to the robustness of SUV-based metrics when com-
bining multiple parameters (see details in Fig 1)

Robustness High Intermediate Low

Combination of multiple
parameters

Homogeneity, Entropy, RP,
ZP

Energy, Dissimilarity, HGRE, HGZE, ZLNU,
SZHGE

Correlation, Contrast, LGRE, LGZE,
LZLGE

doi:10.1371/journal.pone.0159984.t005
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Discussion
Since the first application of heterogeneity analysis derived from PET images by El Naqa [32],
the assessment of TF as a prognostic bio-marker has gained increasing interest mainly in the
context of solid tumors [11–16,18,23] and marginally for haemopathies [33,34]. However,
there is still a need for validating the potential interest of TF with large prospective cohorts in
order to minimize type-I error using a validation dataset [29]. This requirement can be ade-
quately fulfilled within the framework of multi-centric studies. In this situation, it is well
known that different PET systems and associated reconstruction settings may lead to different
textured noise, contrast and resolution [28,35] which may impair in turn the robustness of TF
analysis. The variability of several TF as a function of reconstruction algorithm (iterative algo-
rithm without PSF correction nor TOF information) and acquisition mode (2D or 3D) was
devised [25] and reported interesting results which are still used in several studies to select the
best TF metrics. However, we did not attempt to compare our results with those of Galavis and
colleagues [25] for several reasons. Briefly, no information could be found about the resam-
pling strategy that is known to impact the final results [21,22,26]. Also, the definition of each
TF metric was not reported although this is now established that a same name is not synonym
of an identical mathematical definition and hence could led very different results [31]. Finally,
there were no details about the lesion volumes (and mostly the number of voxels included)
which makes difficult a robust comparison with our results. These initial results were recently
updated with the use of reconstruction algorithms that take advantage of PSF corrections com-
bined (or not) with TOF information [26].

In this study, we focused on the variability of TF using different settings of current recon-
struction algorithms within the framework of multi-centric trials. In this respect, our study dif-
fered from the work of Yan & colleagues for several reasons. The impact of noise in input data
was carefully investigated. This may be particularly interesting given that the sensitivity of dif-
ferent PET systems may differ and obviously the acquisition time per bed position is rarely the
same between centers. The variability of each TF was also investigated against the reconstruc-
tion algorithm used. For this purpose, we considered an algorithm (AW) that yielded a textural
pattern very different from the ordinary Poisson based algorithm (see Fig 2) which could
account for the use of older PET systems and associated reconstruction algorithms. The robust-
ness of each TF was also assessed against SUV-based metrics with a combination of multiple
reconstruction settings (Fig 1) that may represent the variability met when several centers are
part of a large clinical study. The choice of the different reconstruction settings was inspired by
the conditions found in an on-going multi-centric trial on mantle cell lymphoma [24,32].
Additionally, we included two times more lesions than the two other previously published
studies on this topic [25,26]. The number of TF considered in this current study was limited to
those that were previously studied against reproducibility [19,20] as this property is essential
when assessing new quantitative metrics. We also investigated the impact of matrix size
through the use of three different voxel sizes with the aim of de-correlating the impact of noise
from the impact of voxel size. These two correlated effects (matrix size and noise) were not pre-
viously accounted for in an independent manner. Finally, each TF was ranked against SUVmax
and SUVmean using the whole variability of the COV and not only the mean or the minimum
and maximum values.

In this study, we showed that among the investigated TF only a few of them appeared robust
enough with respect to the number of iterations, the post-filtering level, the noise in input data
and the reconstruction algorithm used: Entropy, Energy, RP and ZP. In contrast, Correlation
and LZLGE were found to be very sensitive to the aforementioned parameters and should be
discarded when considering their use in a multi-centric context. The remaining TFs investigated
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were divided between those with a high/intermediate robustness (Homogeneity, Dissimilarity
and ZLNU) and an intermediate/low robustness (HGRE, LGRE, HGZE, LGZE and SZHGE).
Among this last category, HGRE, HGZE and SZHGE presented an intermediate variability
(equivalent to SUVmax) for the number of iterations, the post-filtering level and the reconstruc-
tion algorithm. Thus, based solely on those individual results, in the sense of not being com-
bined, most of the investigated TFs can be used in a multi-centric context except Correlation,
Contrast, LGRE, LGZE and LZLGE. These results were approximately in line with those found
by Yan & colleagues with, however, noticeable differences for LGRE and LGZE (high vs low
COV with respect to the number of iterations for respectively, our study and their results) and
ZP (low vs high COV with respect to the number of iterations and the post-filtering level for
respectively, our study and their results). Whilst no mathematical definitions were provided in
the work of Yan and colleagues, we first hypothesized that these discrepancies were likely due to
a difference of number of voxels taken into account in the computation. For this purpose, we
attempted to select tumors with a number of voxels similar with values reported in the work of
Yan & colleagues. We ended up with 15 tumors (781 ± 809 voxels; range: 271–3289) that can be
seen as roughly identical to the number of voxels used by Yan et al (737 ± 860 voxels; range:
102–3133). The impact of the number of iterations was re-assessed, but our results did not
change for LGRE, LGZE and ZP although we hypothesize that the same reconstruction parame-
ters were used (no details provided in the work of Yan et al when reporting individual results
related to each reconstruction parameters). It is thus very difficult to derive a plausible explana-
tion without making assumptions that mathematical definitions and implementations were
different.

The voxel size used for reconstructing PET images had a large detrimental impact for Corre-
lation, Energy, Contrast, Dissimilarity, LGRE, ZLNU, LGZE and LZLGE. Only, Entropy and
RP presented a variability equal to or less than that of SUVmean. The remaining TFs displayed
an intermediate robustness. Our results were very different from those found by Yan & col-
leagues for all TF except Entropy. For example, they found LGRE, HGRE and LGZE very
robust (COV<5%) whilst the robustness of these parameters was low in our study (COV larger
than the COV of SUVmax and COV>17%). In contrast, the robustness of RP was low in their
study and high in ours. The mean COV of LZLGE was between 10% and 20% for Yan & col-
leagues and more than 49% in our work. These marked differences may be partly explained by
the fact that we considered two times more lesions, three voxel sizes rather than two (from 8
mm3 to 32 mm3 for our present study vs 48 mm3 and 192 mm3) and we de-correlated the
impact of noise by adapting the statistical property of the largest matrix size to the smallest
one. Indeed, the impact of noise in the input data for LGRE, HGRE and LGZE was found to be
significant in our study (S3 Fig) and can also partly explain the difference with previously pub-
lished results if noise was not taken into account when deriving the impact of matrix size.

Finally, we combined multiple reconstruction and acquisition settings so that conditions
met in multi-centric trial may be simulated. The conclusions drawn when considering each
parameter individually were not changed for the majority of the TF studied. In this respect,
Homogeneity, Entropy, RP and ZP presented a variability equivalent to or lower than that of
SUVmean. Hence, these metrics seem to be suitable for use in a multi-centric context. Dissimi-
larity and Energy were very sensitive to the matrix size and were subsequently ranked as inter-
mediate whereas they were found to be robust when considering the other parameters (except
noise for Dissimilarity). In the same category (intermediate), HGRE, HGZE, ZLNU and
SZHGE showed variability similar to SUVmax. These metrics can also be good candidates
within a multi-centric context given the same variability of the most used quantitative metrics
(SUVmax). In contrast, Correlation, Contrast, LGRE, LGZE and LZLGE should be avoided for
their high variability with respect to SUVmax. This last conclusion contradicts the findings of
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Yan & colleagues for at least LGRE and LGZE. The same holds true for ZP which was previ-
ously found to be less robust than SUVmax whilst this metric presented a high robustness
given our findings. As stated earlier, this discrepancy cannot be easily explained for LGRE,
LGZE and ZP. However, an additional analysis was also conducted to address the issue of
dependence of TF with respect to volume. Two sub-populations were chosen (<10 cm3 and
>10 cm3) [13] keeping only data reconstructed with the 200×200 matrix size. No significant
differences were found (data not shown) between the two sub-populations (except for ZLNU
and Correlation) suggesting that the conclusions remain valid regardless of tumor volume for a
same voxel size.

This work has several limitations. We evaluated the robustness of each TF using reconstruc-
tion algorithms developed by only one manufacturer. However, we believe that the algorithms
investigated in this study presented enough difference to be considered as a valid alternative to
assess the TFs variability with different implementation of reconstruction algorithms. We also
used data obtained from patients enrolled in a clinical trial that aimed to assess the potential of
PET/CT 68Ga-DOTANOC in the exploration of well-differentiated gastro-enteropancreatic
neuroendocrine tumors. The positron range of 68Ga is larger than 18F which may potentially
impair the translation of those conclusions to 18F-FDG. However, given the voxel size currently
used in clinical conditions, we assumed that this effect had a limited effect on textured pattern.

Finally, it is possible to link the conclusions reported in this study with those drawn by oth-
ers that were focused on reproducibility [19,20] and sensitivity to the segmentation approaches
[21,23,24]. Combining these different results lead to 6 potentially interesting TFs: Homogene-
ity, Entropy, Dissimilarity, HGRE, HGZE and ZP. These identified metrics will be assessed pro-
spectively in an on-going multi-centric trial on mantle cell lymphoma [24,33]. It is worth
noting that the correlation between these TFs must be considered as many of them can provide
the same information [13,24].

Conclusions
In this study, we estimated the robustness of textural features within the framework of multi-
centric trials. We analyzed the dependence using various reconstruction settings and by com-
bining several of them. We showed that only a few of them, including Homogeneity, Entropy,
Dissimilarity, HGRE, HGZE and ZP, presented a variability similar to or less than SUVmax.
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S1 Fig. Impact of the number of iterations. Impact of the number of iterations on TF for the
4 reconstruction algorithms considered (AW, OP, PSF and PSF-TOF).
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S2 Fig. Impact of the post-filtering level. Impact of the post-filtering level on TF for the 4
reconstruction algorithms considered (AW, OP, PSF and PSF-TOF).
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