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and B isoforms, IGF-IR, and IR/IGF-IR hybrid 
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Abstract 

Background: Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is a major contributor 
to the development of atherosclerotic process. In a previous work, we demonstrated that the insulin receptor isoform 
A (IRA) and its association with the insulin‑like growth factor‑I receptor (IGF‑IR) confer a proliferative advantage to 
VSMCs. However, the role of IR and IGF‑IR in VSMC migration remains poorly understood.

Methods: Wound healing assays were performed in VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR−/− VSMCs), 
expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs). To study the role of IR isoforms and IGF‑IR in experimental 
atherosclerosis, we used ApoE−/− mice at 8, 12, 18 and 24 weeks of age. Finally, we analyzed the mRNA expression of 
total IR, IRB isoform, IGF‑IR and IGFs by qRT‑PCR in the medial layer of human aortas.

Results: IGF‑I strongly induced migration of the four cell lines through IGF‑IR. In contrast, insulin and IGF‑II only 
caused a significant increase of IRA VSMC migration which might be favored by the formation of IRA/IGF‑IR receptors. 
Additionally, a specific IGF‑IR inhibitor, picropodophyllin, completely abolished insulin‑ and IGF‑II‑induced migration 
in IRB, but not in IRA VSMCs. A significant increase of IRA and IGF‑IR, and VSMC migration were observed in fibrous 
plaques from 24‑week‑old ApoE−/− mice. Finally, we observed a marked increase of IGF‑IR, IGF‑I and IGF‑II in media 
from fatty streaks as compared with both healthy aortas and fibrolipidic lesions, favoring the ability of medial VSMCs 
to migrate into the intima.

Conclusions: Our data suggest that overexpression of IGF‑IR or IRA isoform, as homodimers or as part of IRA/IGF‑IR 
hybrid receptors, confers a stronger migratory capability to VSMCs as might occur in early stages of atherosclerotic 
process.
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Background
Atherosclerosis is the leading cause of mortality world-
wide. The progression of vascular lesions from early fatty 

streaks to more advanced plaques is a complex process 
[1] where vascular smooth muscle cells (VSMCs) plays 
a main role. The presence of a large number of intimal 
VSMCs has been taken as evidence that VSMC migration 
from the media plays an important role in early stages of 
atherogenesis [2]. These VSMCs that migrated into the 
intima exhibit an abnormally increased proliferation and 
extracellular matrix production, leading to the formation 
of the fibrous cap in atherosclerotic lesions [3]. Growth 
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factors, including insulin-like growth factors (IGFs), have 
been implicated in the regulation of VSMC migration [4, 
5].

The insulin and IGFs (IGF-I and IGF-II) signaling 
is mediated by hormone interaction with the insulin 
receptor (IR) and the IGF-I receptor (IGF-IR) which are 
members of subclass II of the tyrosine kinase receptor 
super-family [6, 7]. Both receptors are expressed at the 
cellular surface as preformed disulfide-linked dimers in 
α2β2 configuration. The extracellular α subunit of each 
hemireceptor contains the ligand binding sites, while β 
subunits include a large cytoplasmic region with tyrosine 
kinase activity [8]. Because of the high degree of homol-
ogy of the two receptors, hybrid receptors formed by an 
IR αβ-hemireceptor and an IGF-IR αβ-hemireceptor are 
also found in cells co-expressing IR and IGF-IR [9–11].

Alternative splicing of the IR gene gives rise two iso-
forms, IRA and IRB [12], whereas there is only a single 
isoform of IGF-IR. Indeed, IRB differs from IRA by the 
inclusion of exon 11 which encodes a 12-amino acid 
sequence at the C-terminus of the IR α-subunit. The IR 
isoforms show different functional features. Although 
both isoforms have similar affinity for insulin, IRA exhib-
its a higher affinity for IGFs, especially for IGF-II [13], 
as well as a greater internalization and recycling rate 
than IRB [14]. Because of these differences, IRB is pref-
erentially associated with metabolic and differentiating 
signals. Conversely, IRA mainly favors cell growth, prolif-
eration, and survival. In 32D cells, IRA induces mitogenic 
and antiapoptotic signals in response to IGF-II, whereas 
IRB tends to send differentiation signals [15]. In mouse 
beta cell lines, IRA confers a stronger proliferative capac-
ity favoring the mitogenic effects of IGF-I and increasing 
glucose uptake [16], and it also might provide an explana-
tion for the beta cell hyperplasia induced by liver insulin 
resistance in iLIRKO mice [17]. Additionally, long-term 
AAV-mediated hepatic expression of IRA, but not IRB, 
improves glucose homeostasis in iLIRKO mice, preclud-
ing beta cell mass expansion and, therefore, avoiding the 
final beta cell failure [18]. IRA is also more efficient than 
IRB at increasing glycogen synthesis, glycogen synthase 
activity and glycogen storage in hepatocytes and in vivo 
in the liver [19]. Furthermore, IRA has been reported to 
be the predominant IR isoform expressed in cancer cells, 
such as in a variety of carcinomas or breast cancer cell 
lines [11, 13, 20].

A further understanding of the molecular mechanisms 
involved in early atherosclerosis is critical for identifying 
strategies to limit disease progression before it leads to 
clinical consequences. In this regard, we previously dem-
onstrated that IRA, but not IRB, confers a proliferative 
advantage to VSMCs in response to several proathero-
genic stimuli. Additionally, we found that IRA might 

associate with IGF-IR favoring atherogenic actions of 
IGF-II [21]. However, the specific role of each IR isoform 
in VSMC migration remains unknown. We therefore ana-
lyzed, in the current study, the effect of insulin or IGFs on 
the migration of murine aortic VSMC lines, as well as the 
contribution to this process of IR isoforms, IGF-IR and 
hybrid receptors (IRA/IGF-IR and IRB/IGF-IR). Subse-
quently, we wondered whether some of the mechanisms 
studied in vitro could be of any in vivo relevance. For this 
purpose, we firstly analyzed IRA, IRB and IGF-IR mRNA 
expression by qRT-PCR in aorta from ApoE−/− mice at 
8, 12, 18 and 24 weeks of age. Then, we studied compara-
tively IR, IGF-IR and α-smooth muscle actin (α-SMA) 
expression in aortic roots from 8- and 24-week-old 
ApoE−/− mice. Finally, we analyzed the mRNA expres-
sion of total IR, specifically IRB isoform, IGF-IR and IGFs 
in the medial layer of human aortic segments. Our results 
strongly suggest that the overexpression of IGF-IR or IRA 
isoform, as homodimers or as part of IRA/IGF-IR hybrid 
receptors, confers a migratory advantage to VSMCs that 
might be of relevance in early stages of atherosclerotic 
process.

Methods
Tissue samples
Twenty-eight human infradiaphragmatic aortic seg-
ments (medial layers of 8 healthy, 9 fatty streaks and 
11 fibrolipidic lesions) each harvested from a different 
donor after organ transplantation with the authorization 
of the French Biomedicine Agency (authorization num-
ber PFS09-007), were included in this study. There were 
no significant differences in terms of age and gender. The 
investigation conforms to the principles outlined in the 
Declaration of Helsinki.

Experimental model
Male mice were maintained in the Animal Care Facility 
under the standard conditions of temperature and 12  h 
light/dark cycle. All animals used are under C57BL/6 
genetic background. Six week-old male ApoE−/− knock-
out mice and their control (C57BL/6 mice) were fed a 
Western type diet (A04+ 21% kcal from fat) for 2, 6, 12 
or 18  weeks respectively. All animal experimentation 
described in this manuscript was conducted accord-
ing with accepted standards of human animal care, as 
approved by the corresponding institutional committee. 
The investigation also conforms to the Guide for the Care 
and Use of Laboratory Animals published by the National 
Institutes of Health (NIH Publication No. 85–23, revised 
1996) and in accordance with The ARRIVE Guideline for 
Reporting Animal research.

Plasma levels of insulin were analyzed using ELISA kits 
(Millipore). Cholesterol and triglycerides were tested in 
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plasma samples from fasted mice (Spinreact, Barcelona, 
Spain). Blood glucose level was determined in fasted ani-
mals using an automatic monitor (Roche Molecular Bio-
chemicals GmbH, Mannheim, Germany).

Cell cultures
Generation of immortalized IRLoxP+/+, IR−/−, IRA and 
IRB VSMC lines was previously described [17]. Briefly, 
primary VSMCs were obtained from thoracic aorta arter-
ies of 3 male 8-week-old IRLoxP+/+ mice. Anesthetized 
mice (Avertin, 250  mg/kg, ip) were saline perfused and 
thoracic aorta arteries were submitted to collagenase 
dispersion and primary culture. Then, primary culture 
of IRLoxP+/+ VSMCs were immortalized by transfection 
with pBabe retroviral vector encoding SV40 Large T anti-
gen and selected with 1  μg/mL puromycin for 3  weeks. 
Immortalized IRLoxP+/+ VSMCs were infected with 
adenoviruses encoding Cre recombinase to obtain IR−/− 
VSMCs. Finally, IR−/− VSMCs were transfected with 
pBABE retroviral vector encoding the individual spliced 
isoforms of the human IR, IRA or IRB, and selected with 
200 μg/mL hygromycin for 2 weeks to obtain IRA or IRB 
VSMCs respectively.

Four cell lines were cultured to subconfluence (70–
80%) with 10% (fetal bovine serum) FBS-DMEM for 
signaling studies and were serum and glucose starved 
for 4–5  h and then stimulated with insulin (10 or 
100  nmol/L, Sigma-Aldrich Corp.), IGF-I (10  nmol/L, 
Millipore) or IGF-II (10 nmol/L, Millipore).

Western blot analysis
Western blot analyses were performed on protein 
extracts from VSMCs as previously described [17]. The 
antibodies used were anti-IRβ and anti-IGF-IRβ from 
Santa Cruz Biotechnology (Dallas, TX, USA); anti-β-
actin from Sigma-Aldrich Corp. (St. Louis, MO); anti-
phospho-Akt (Thr308), anti-phospho-p70 S6 Kinase 
(Ser389) and anti-phospho-p44/42 MAPK (Thr202/
Tyr204) from Cell Signaling (Danvers, MA, USA).

Wound healing assays
Cells were cultured to confluence in 10% FBS-DMEM 
and serum deprived for 18 h. Then, the confluent mon-
olayer was scratched with a sterile pipette tip and cells 
were washed twice with PBS and fresh medium was 
added. Cells were stimulated with insulin (10  nmol/L), 
IGF-I (10 nmol/L) or IGF-II (10 nmol/L) and maintained 
for 24 h at 37 °C and 5% CO2. Migration was followed by 
phase-contrast microscopy (Eclipse TE300 Nikon micro-
scope coupled to a digital sight DS-U2 camera) at differ-
ent time points (0, 6, 12 and 24 h) up to wound healing 
closure. Photographs were taken to quantify (using 

TScratch program) the percentage of wound healing clo-
sure at the different time points in relation to time 0.

RNA extraction and real‑time quantitative polymerase 
chain reaction
Total RNA was isolated from tissue samples using TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA) and quanti-
fied by absorbance at 260  nm. One microgram of RNA 
was used to perform the reverse transcription with a High 
Capacity cDNA Archive kit (Applied Biosystems, Foster 
City, CA, USA). Real-time quantitative PCR (qRT-PCR) 
was performed on an ABI Prism 7500 sequence detection 
PCR system (Applied Biosystems) according to the manu-
facturer’s protocol, using the ΔΔCt method as previously 
described [17]. Quantification of IGF-IR, and IRA and IRB 
isoform mRNA levels in aorta from experimental model 
were performed by amplification of cDNA with TaqMan 
probes. The quantification of human IR, IRB isoform, IGF-
IR, IGF-I and IGF-II mRNA levels was performed by ampli-
fication of cDNA using SYBR® Premix Ex Taq™ (Takara 
Bio Inc., Otsu, Japan). The mRNA levels of target genes 
were normalized to 18S mRNA content. Thus, the amount 
of target, normalized to 18S and relative to the control, is 
given by real-time quantitative (RQ) =  2−ΔΔCt; ΔCt (cycle 
threshold) = Ct (target gene) − Ct (18S); ΔΔCt = ΔCt for 
any sample − ΔCt for the control. Sequences of primers are 
the following: IR: forward primer: 5´-CGAGAAGACCA 
TCGACTCGG-3´ and reverse primer 5´-GACACCA-
GAGCGTAGGATCG-3´; IRB: forward primer: 5´-GAGG 
ATTACCTGCACAACGTG-3´ and reverse primer 5´-TAG 
GGTCCTCGGCACCAG-3´; IGF-IR: forward primer: 
5´-ATGCGGTGTCCAATAACTAC-3´ and reverse primer 
5´-TTGTTGATGGTGGTCTTCTC-3´; IGF-I: forward 
primer: 5´-TTTCAACAAGCCCACAGGGT-3´ and reverse 
primer 5´-TTGAGGGGTGCGCAATACAT-3´;IGF-II: for-
ward primer: 5´-GTCATGGCAGACGCCACATT-3´ and 
reverse primer 5´-CGAAGGCTCTGCCCTTCTTA-3´; and 
Housekeeping gene as 18S: forward primer: 5´-CCGTCG-
TAGTTCCGACCATAA-3´ and reverse primer 
5´-CAGCTTTGCAACCATACTCCC-3´.

Histological analysis
Aortic roots were OCT-embedded and sections of 7 μm 
interval were Oil-Red-O/hematoxylin stained to meas-
ure lipid depot. The lesion size on aortic root was meas-
ured as described [21]. IR and IGF-IR were detected by 
immunoperoxidase with rabbit anti-IRβ (sc-711) and 
anti-IGF-IRβ (sc-713) polyclonal antibodies. We also 
measured α-SMA with Anti-Actin, α-Smooth Muscle-
Cy3™ antibody, mouse monoclonal (C6198, Sigma-
Aldrich) to localize smooth muscle cells in aortic roots 
and check whether such cells had migrated from media 
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to intima. To localize smooth muscle cells with positive 
staining for IR or IGF-IR, we performed immunofluores-
cence against IR or IGF-IR using anti-rabbit FITC (green 
staining) followed by immunofluorescence against Anti-
Actin, α-Smooth Muscle-Cy3™ antibody (red staining) 
and finally, incubation with DAPI to stain nuclei (blue 
staining).

Gelatin zymography
To determine MMP-2 and MMP-9 activities, 80% con-
fluent cells were serum-deprived for 12–24  h and the 
culture medium of different experimental conditions 
was used for an electrophoresis in 10% SDS–polyacryla-
mide gels polymerized in the presence of 0.1% gelatin 
(Sigma-Aldrich) under non-reducing conditions. Gels 
were washed with 2.5% Triton X-100 for 30  min to 
remove SDS, rinsed with substrate buffer (0.2  M  NaCl, 
5 mM CaCl2, 1% Triton X-100, 0.02% NaN3, 50 mM Tris 
pH 7.5) and incubated in this buffer at 37 °C overnight to 
allow protein renaturation and MMP activation. To visu-
alize gelatin degradation, gels were stained with Coomas-
sie Brilliant Blue R-250 (Bio-Rad) for 60 min. MMP-2 and 
MMP-9 activities were quantified by Image J Program.

Statistical analysis
All values are expressed as mean  ±  SEM. Differences 
between two groups were assessed using unpaired two-
tailed t-tests. Data involving more than two groups were 
analyzed using a one-way ANOVA followed by a Bonfer-
roni test if differences were noted (GraphPad Prism). The 
null hypothesis was rejected when p < 0.05.

Results
Differential insulin and IGFs signaling by IRA or IRB 
isoforms in VSMCs
To study the role of IR isoforms in the migration of vas-
cular smooth muscle cells four murine aortic VSMC lines 
were used: bearing IR (IRLoxP+/+ VSMCs), lacking IR 
(IR−/− VSMCs), specifically expressing IRA isoform (IRA 
VSMCs) or alternatively expressing IRB isoform (IRB 
VSMCs). Western blot analysis of IRβ confirmed deletion 
in IR−/− VSMCs and expression of IR in reconstituted 
IRA and IRB VSMC lines (Additional file 1: Figure S1A). 
Regarding IGF-IR, a significantly higher expression 
was found in IR−/− and IRB VSMCs compared to 
IRLoxP+/+ VSMCs, while cells exclusively expressing IRA 
showed lower level of IGF-IR protein (Additional file  1: 
Figure S1A).

We studied the signaling pathways induced by insulin 
or IGFs. Cells were stimulated with 10  nmol/L insulin, 
IGF-I or IGF-II for 10 min and phosphorylation of Akt, 
p70S6 K and p44/42 MAPK was analyzed. As expected, 

IR−/− VSMCs responded to IGFs, but did not to insu-
lin, in regards to Akt activation. However, a significant 
increase of p-Akt, p-p70S6  K, and p-p44/42 MAPK 
was induced by the three stimuli in IRLoxP+/+ VSMCs 
(Additional file  1: Figure  S1B). More importantly, IRA 
VSMCs showed a significantly higher activation of Akt, 
p70S6  K and p44/42 MAPK in response to insulin, 
IGF-I or IGF-II, than in IRB VSMCs (Additional file  1: 
Figure S1B).

Differential contribution of IRA, IRB and IGF‑IR to VSMC 
migration in response to insulin or IGFs
Proliferation and migration of VSMCs contribute to 
atherosclerotic process. In this regard, we previously 
demonstrated that IRA isoform confers a proliferative 
advantage to those cells [17]. Then, we hypothesized 
that a differential role of IR isoforms might also occur 
in the migration of VSMCs. To address this issue, we 
measured the migration rate of four VSMC cell lines at 
6, 12 and 24 h by wound healing assays. Maximal migra-
tion was observed in IRLoxP+/+ VSMCs as compared 
with IR−/− and IRB VSMCs. IRA VSMCs showed a sig-
nificantly higher migration than IRB VSMCs (Fig.  1a). 
Moreover, we assessed the effect of insulin or IGFs stimu-
lation on VSMC migration. Firstly, we found a significant 
increase of insulin-induced migration in IRA VSMCs at 
12 and 24 h after wounding. IRLoxP+/+ and IRB VSMCs 
exhibited a slightly response to insulin and no effect 
was observed in IR−/− VSMCs (Fig.  1b). IGF-I strongly 
induced migration of all cell lines studied with significant 
increases in the percentage of wound closure at 12 and 
24 h (Fig. 2a). Given the fact that IGF-I enhanced migra-
tion of cells lacking IR, the effect exerted by IGF-I might 
be mediated through IGF-IR. In contrast, IGF-II showed 
a discrete effect on VSMC migration. However, IGF-II 
induced IRA VSMC migration significantly faster than 
IRB VSMCs at 12 h (Fig. 2b). These results suggest a dif-
ferential contribution of IR and IGF-IR to VSMC migra-
tion, the latter being the main mediator of IGF-I-induced 
migration. Conversely, insulin and IGF-II seem to require 
IR, and more specifically IRA isoform, to induce migra-
tion of VSMCs. 

One of the mechanisms that may also partially explain 
the differential migration between IRA and IRB VSMCs 
is a differential activation of certain matrix metallopro-
teinases (MMPs), specifically the gelatinases such as 
MMP-2 and MMP-9, which have been involved in VSMC 
migration [22–24]. Thus, we observed by gelatin zymog-
raphy that MMP-2 activity was much higher in IRA than 
IRB VSMCs under basal conditions or upon stimulation 
with insulin, IGF-I or IGF-II for 12 and 24 h (Additional 
file 2: Figure S2).
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Inhibition of IGF‑IR strongly reduces VSMC migration
To further investigate the role of IGF-IR in VSMC migra-
tion, we utilized a highly specific inhibitor of IGF-IR 
tyrosine phosphorylation, picropodophyllin (PPP), with-
out affecting IR. A PPP dose–response curve revealed 
a complete inhibition of IGF-IR phosphorylation at 5 
and 10  µmol/L in IRLoxP+/+ VSMCs upon stimulation 
with IGF-I. Similarly, 5  µmol/L PPP completely avoided 
IGF-IR tyrosine phosphorylation in all others cell lines 
(Fig. 3a). Therefore, cells were treated with 5 µmol/L PPP 
for 12  h to address migration experiments. We found a 
notable and significant decrease of VSMC migration 
induced by PPP treatment, reaching roughly 50% of inhi-
bition in all the four cell lines migration (Fig. 3b). These 
data indicate that IGF-IR mostly contributes to VSMC 
migration under basal conditions.

A step further, we studied the effect of IGF-IR inhibi-
tion on the VSMC migration stimulated by insulin or 
IGFs. Interestingly, PPP treatment completely abolished 
insulin-induced migration in IRB VSMCs, whereas 

migration of IRLoxP+/+ or IRA VSMCs was partially 
inhibited (Fig.  4a), suggesting that IRB, but not IRA, 
requires the presence of IGF-IR to induce migration in 
response to insulin. Regarding IGF-I-mediated migra-
tion, a reduction of approximately one half was the result 
of IGF-IR inhibition in all cell lines analyzed and no sig-
nificant differences were noted between IRA and IRB 
VSMCs (Fig. 4b). Finally, PPP caused a much higher inhi-
bition of IGF-II-induced migration in IRB VSMCs than 
that observed in IRLoxP+/+ or IRA VSMCs (Fig. 4c).

Insulin and IGF‑II induces the formation of IRA/IGF‑IR 
hybrid receptors in VSMCs
To address the issue of hybrid receptor formation, lysates 
from IRLoxP+/+, or IRA, or IRB VSMCs, were immuno-
precipitated with anti-IRβ antibody followed by Western 
blot against IGF-IR. All cell lines showed a basal associa-
tion between IR and IGF-IR. Nevertheless, expression of 
IRA/IGF-IR hybrid receptors was significantly increased 
only in IRA VSMCs upon stimulation with insulin or 
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IGF-II, but not with IGF-I, for 12 h (Fig. 4d). In addition, 
expression of both IR and IGF-IR was measured in total 
protein extracts and detected an increase of IRA isoform, 
with an equal expression of IGF-IR, in response to insulin 
or IGF-II (Additional file 3: Figure S3). These findings are 
consistent with the greater migration observed in IRA 
VSMCs upon stimulation with insulin or IGF-II for 12 h 
(Figs. 1b, 2b).

Role of IR isoforms and IGF‑IR in VSMC migration in an 
experimental model of atherosclerosis
To assess the role of IR isoforms and IGF-IR in experi-
mental atherosclerosis, we used ApoE−/− mice at 8, 12, 
18 and 24  weeks of age. This model showed hypercho-
lesterolemia and hypertriglyceridemia at all weeks of age 
without alterations in body weight, glucose or insulin 
plasma levels (see Table 1).

Firstly, we studied the mRNA expression of IR isoforms 
and IGF-IR by qRT-PCR in aorta. A significant increase 
of IRA and IGF-IR mRNA was noted in 24-week-old 

ApoE−/− mice. However, IRB was diminished in aorta 
from ApoE−/− mice at all weeks of age (Fig.  5a). After 
that, we studied the lesion area and lipid deposits 
together with IR and IGF-IR protein levels only in aortic 
roots from 8- and 24-week-old ApoE−/− mice and their 
respective controls, because it was previously described 
that at 15–20  weeks of age, ApoE−/− mice might have 
fibrous plaques in which the presence of a fibrous cap 
containing VSMCs would indicate their migration from 
the media [25]. A progression of atherosclerosis was 
observed by OilRedO staining as a progressive increase 
of lesion area, stenosis and lipid deposits in aortic roots 
from 24-week-old ApoE−/− vs. 8-week-old ApoE−/− 
mice (Fig.  5b). By immunohistochemistry against total 
IR, we found a significant decrease of IR in aortic roots 
from 8-week-old ApoE−/− mice (Fig. 5b), consistent with 
the decreased mRNA expression of both IRA and IRB 
isoforms in aorta from ApoE−/− mice at 8 weeks of age 
(Fig. 5a). In aortic roots from 24-week-old ApoE−/− mice, 
protein levels of total IR were similar to their controls 
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(Fig.  5b), and this can be correlated with the increased 
expression of IRA at mRNA level, together with the 
decreased expression of IRB mRNA (Fig.  5a). In addi-
tion to the increased IGF-IR mRNA levels, a significant 
increase of IGF-IR protein was observed in aortic roots 
from ApoE−/− mice at 24 weeks of age (Fig. 5a, b). How-
ever, besides VSMCs, many inflammatory cells can be 
present in those plaques and they might also express IR 
or IGF-IR.

In order to localize VSMCs in aortic roots, we checked 
by immunofluorescence the expression of α-SMA, a 
well-known marker of smooth muscle cells. Very simi-
lar levels of α-SMA were found in aortic roots from 
ApoE−/− mice at 8 and 24 weeks of age in relation to their 
respective controls (Fig.  6a). We also observed medial 
VSMCs migrated into the intima of fibrous plaques from 
24-week-old ApoE−/− mice (see white arrows of Fig. 6a). 
Moreover, by double immunofluorescence against IR or 

IGF-IR and α-SMA (Fig. 6b), we found that those VSMCs 
present in fibrous plaques from 24-week-old ApoE−/− 
mice expressed IR or IGF-IR (see arrows and merged of 
Fig. 6b).

mRNA expression of IGF‑IR and IGFs in human aortic 
medial layers
Based in our in  vitro and in  vivo results and those pre-
viously published in ApoE−/− or BATIRKO mice, two 
models showing vascular damage [21], we hypothesized 
that IR and its isoforms and IGF-IR could play a differ-
ential role in human early atherosclerosis. For this pur-
pose, we analyzed the mRNA expression of total IR, 
specifically IRB isoform, IGF-IR and IGFs by qRT-PCR 
in the medial layer of human aortas (Additional file  4: 
Figure S4). Among 28 aortic samples, 8 were devoid 
of grossly visible signs of lesions and were classified as 
healthy, whereas all other samples showed macroscopic 
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Table 1 Characterization of an experimental model of atherosclerosis

Male ApoE−/− mice were fed with Western type diet since 6 week of age for 2 weeks (control and ApoE−/− at 8 weeks of age), 6 weeks (control and ApoE−/− at 
12 weeks of age), 12 weeks (control and ApoE−/− at 18 weeks of age) or 18 weeks (control and ApoE−/− at 24 weeks of age). We measured the body weight, BAT (mg)/
BW (g), WAT (mg)/BW (g), glucose, insulin, cholesterol and triglycerides plasma levels the same day of sacrifice in fasted mice. ApoE−/− mice at all weeks of age showed 
hypercholesterolemia and hypertriglyceridemia and the other parameters with no significant differences in relation to each their controls

BW body weight, BAT brown adipose tissue, WAT white adipose tissue, TG triglycerides

* p < 0.05, ** p < 0.005 vs. each control

8 weeks 12 weeks 18 weeks 24 weeks

Control 
(n = 5)

ApoE−/− 
(n = 5)

Control 
(n = 8)

ApoE−/− 
(n = 8)

Control 
(n = 8)

ApoE−/− 
(n = 8)

Control 
(n = 8)

ApoE−/− 
(n = 8)

Body weight 
(g)

20.4 ± 0.1 21.3 ± 0.6 24.7 ± 0.5 24.3 ± 0.5 27.7 ± 1 26.5 ± 0.3 28.3 ± 1 30.5 ± 1

BAT (mg)/BW 
(g)

3.9 ± 0.02 2.8 ± 0.6 4.3 ± 0.4 3.7 ± 0.4 4.1 ± 0.7 3.0 ± 0.1 4.7 ± 0.5 3.4 ± 0.5

WAT (mg)/BW 
(g)

10.5 ± 0.8 11 ± 0.6 12.2 ± 2.7 17 ± 0.2 14.7 ± 2 17.5 ± 1 22 ± 4 27 ± 1

Glucose (mg/
dL)

80.5 ± 6.5 79 ± 13 83 ± 4 104 ± 15 110.9 ± 12 106 ± 4 117 ± 1 101 ± 11

Insulin (ng/mL) 0.24 ± 0.003 0.3 ± 0.1 0.25 ± 0.02 0.32 ± 0.02 0.26 ± 0.02 0.35 ± 0.04 0.24 ± 0.02 0.3 ± 0.01

Cholesterol 
(mg/dL)

79.1 ± 13 461 ± 39* 109.4 ± 8.4* 565.3 ± 48.8* 122.05 ± 12* 569.8 ± 18* 120 ± 5* 603.9 ± 31**

TG (mg/dL) 43.4 ± 1.6 53.9 ± 25* 36.6 ± 5 56.9 ± 8* 62.3 ± 12 73.2 ± 5* 57.2 ± 8 110 ± 12**



Page 9 of 14Beneit et al. Cardiovasc Diabetol  (2016) 15:161 

features of early atheromatous lesions, including 9 fatty 
streaks and 11 fibrolipidic lesions. We found that total IR 
mRNA expression was significantly lower in media from 
fibrolipidic lesion-bearing aortas as compared to healthy 
aortas. However, no significant changes were observed 
when we analyzed specifically IRB mRNA level. More 
importantly, a marked and significant increase in gene 
expression of IGF-I and IGF-IR was observed in medial 
layer from aortas bearing fatty streaks when compared 
with healthy aortas and fibrolipidic lesions. Furthermore, 
IGF-II mRNA expression was notably higher in fatty 
streaks than in healthy aortas and fibrolipidic lesions. 
These results strongly suggest that increased expression 
of IGF-IR and IGFs in tunica media, mainly composed of 
VSMCs, might contribute to migration of those cells into 
the intima.

Discussion
Vascular injury results in changes in the vascular smooth 
muscle cell environment, including increases in growth 
factor availability and cell alterations, leading to pro-
liferation and migration of VSMCs and thereby to an 
organized atherosclerotic plaque [26]. Consequently, 
elucidating the underlying regulators of these processes 
could provide a novel therapeutic strategy targeting 
VSMCs to prevent atherosclerotic progression and its 
clinical consequences. In the present paper, we addressed 
the issue of a better understanding of molecular mecha-
nisms involved in VSMC migration, specifically the part 
played by IR isoforms and IGF-IR in this process. We 
used four aortic VSMC lines: IRLoxP+/+ VSMCs (bear-
ing IR), IR−/− VSMCs (lacking IR), IRA VSMCs (express-
ing IRA isoform) and IRB VSMCs (expressing IRB 
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isoform) and we firstly studied the activation of PI3  K/
Akt or MAPK, the major signaling pathways by which 
insulin and IGFs exert their effects on cellular metabo-
lism, growth and survival [27]. We previously described 
that insulin induced a more sustained signaling in IRA 
compared with IRB neonatal pancreatic beta cell lines 
[28] and a higher stimulation of Akt or MAPK pathways 
in IRA than IRB VSMCs [21]. Now, we show that IRA 
isoform in VSMCs mediates a greater activation of Akt, 
p70S6K and p44/42 MAPK than IRB in response not only 
to insulin, but also to IGFs. Furthermore, phosphoryla-
tion of those kinases was highly pronounced when IRA 
VSMCs were stimulated with IGFs, especially with IGF-
II. In this regard, IRA has been reported to exhibit high 
affinity for insulin, intermediate affinity for IGF-II and 
low affinity for IGF-I, whereas IRB is a highly specific 
receptor for insulin [13]. Moreover, in mouse fibroblast 
expressing only IRA and not IGF-IR, despite producing 

a lower IRA autophosphorylation than insulin, IGF-II 
induced a higher p70S6K/Akt activation ratio compared 
with insulin. IGF-I elicited a similar signaling pattern 
than IGF-II, although it binds IRA with much lower affin-
ity than IGF-II [29].

Type 2 diabetes and the metabolic syndrome are well 
known risk factors for atherosclerosis in part due to insu-
lin resistance and/or hyperinsulinemia [30, 31]. Addition-
ally, accelerated atherosclerosis in diabetic patients has 
been associated with the fact that diabetic VSMCs exhibit 
significantly increased rates of proliferation, adhesion and 
migration [32]. In this sense, several authors have exam-
ined the effect of insulin on VSMC migration, but the 
results are controversial. Yang and Kahn reported that 
physiological concentrations of insulin did not affect the 
migration of cultured rat VSMC, but increased it when 
cells were also stimulated with Ang II or inhibited it in 
the presence of NO [33]. Furthermore, in bovine aortic 
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VSMCs 10  nmol/L insulin moderately stimulated migra-
tion mainly through the MAPK pathway, whereas insulin 
maintained VSMC quiescence and differentiation via PI3K-
dependent signaling [34]. In others studies, a high dose of 
insulin (100  nmol/L) was found to induce migration and 
proliferation of both human and rat VSMCs [35, 36]. Nev-
ertheless, this supraphysiological concentration of insulin 
can stimulate IGF-IR, which is known to mediate VSMC 
migration [4]. In our work, migration studies showed that 
insulin stimulation led to a higher increased migration in 
IRA than IRB VSMCs and had no effect on IR−/− VSMCs, 
indicating that insulin exerts its effect on VSMC migra-
tion by binding IR, mainly IRA isoform. IGF-I, by contrast, 
strongly promoted the migration of VSMCs and this effect 
appears to be mediated mainly through IGF-IR, since a sig-
nificant increase in migration was observed in cells lacking 
IR. Consistent with this, it is well established that IGF-I is a 
potent stimulator of VSMC proliferation and migration as a 
result of binding its own receptor [4, 37, 38]. IGF-II has also 
been found to induce migration in VSMCs through IGF-IR, 
but it was sixfold less potent than IGF-I [4]. Because IGF-
II stimulated migration only in IRA VSMCs, our findings 
indicate that IGF-II requires the presence of IRA isoform, 
as homodimers or as part of IRA/IGF-IR hybrid receptors, 
to induce the migration of VSMCs.

Migration assays in the presence of PPP, a highly spe-
cific inhibitor of IGF-IR, demonstrated the implication of 
this receptor in VSMC migration. PPP specifically blocks 
phosphorylation of tyrosine 1136 in the IGF-IR activa-
tion loop, which is necessary for autophosphorylation 
of others tyrosine residues of the β subunit, but do not 
interfere with IR activity [39, 40]. We found that IGF-IR 
inhibition abolished insulin- and IGF-II-induced migra-
tion in IRB VSMCs, whereas migration of IRA VSMCs 
was partially inhibited. However, IGF-I-stimulated migra-
tion was inhibited by PPP at a similar level in both IRA 
and IRB cell lines. Taking into account that IR/IGF-IR 
hybrid receptor autophosphorylation occurs by an intra-
molecular transreaction in which both β subunits transfer 
phosphate to each other [41], it might be considered that 
signal transduction through hybrid receptors, like IGF-IR 
homodimers, is prevented with PPP treatment. Therefore, 
remaining migration when IGF-IR phosphorylation was 
inhibited appears to be mediated by IRA, but not by IRB 
homodimers, upon stimulation with insulin or IGF-II.

Other authors have described the presence of IR/IGF-IR 
hybrid receptors in human or rat VSMCs [42, 43], and we 
have previously demonstrated that both IRA/IGF-IR and 
IRB/IGF-IR hybrid receptors are expressed in our VSMC 
lines [21]. Insulin and IGFs are able to stimulate IRA/
IGF-IR hybrid receptors, although insulin is less effective. 
Regarding IRB/IGF-IR activation, insulin and IGF-II are 
much less effective than IGF-I [44]. We currently describe 

that IRA expression and thereby IRA/IGF-IR hybrid 
receptor formation, are increased by insulin or IGF-II, 
and this might favor the migration of VSMCs.

Human atherosclerotic disease has been histologically 
classified by the AHA into eight types of lesions, from 
early lesions, including initial and fatty streak lesions, to 
advanced atherosclerotic lesions [45]. In early athero-
sclerotic lesions, IGF-IR might contribute to atheroscle-
rotic progression by mediating proatherogenic actions of 
IGFs. Other studies have described an increased level of 
IGF-IR expression in VSMCs of atherosclerotic plaques 
of rabbit aortas [46], as we have observed in both aorta 
and aortic roots from ApoE−/− mice at 24 weeks of age. 
Moreover, increased IGF-IR and IGF-I mRNA tran-
scripts were observed in asymptomatic than in sympto-
matic plaque VSMCs [47]. In contrast, IGF-IR and IGF-I 
are decreased in advanced atherosclerotic plaques and 
this is consistent with the increased apoptotic rates of 
VSMCs, potentially leading to plaque weakening, plaque 
rupture and acute coronary events [48, 49]. In the same 
way, a recent study showed that a monocyte/macrophage 
specific IGF-IR knockout mice on ApoE−/− background 
significantly increased atherosclerotic lesion formation 
and changed plaque composition to a less stable pheno-
type [50]. Regarding IGF-II, it has been described as a 
pivotal promoter of growth of the atherosclerotic lesion 
in ApoE−/− mice and local overexpression of IGF-II can 
induce the appearance of aortic focal intimal masses 
[51]. In this sense, we describe that IRA isoform expres-
sion is significantly increased in aorta from 24-week-
old ApoE−/− mice, which it might favor proatherogenic 
actions of IGF-II. Consistently, we show for the first 
time that gene expression of IGF-I, IGF-II and IGF-IR is 
notably increased in the medial layer, mainly composed 
of VSMCs, of human aortas bearing early atheroscle-
rotic lesions. Additionally, in ApoE−/− mice we observed 
that VSMCs migrated into the intima of fibrous plaques 
showed positive staining for IR and IGF-IR. Over-
all, increased expression of IRA and IGF-IR would be 
required to support the migration of medial VSMCs into 
the intima.

Conclusions
In conclusion, our in  vitro results strongly suggest that 
IGF-I is a potent inducer of VSMC migration mainly 
through IGF-IR, and to a lesser extent through IR. Insu-
lin and IGF-II are less potent and require the presence 
of IRA isoform to induce migration, by binding IRA 
homodimers or IRA/IGF-IR hybrid receptors. Therefore, 
overexpression of IGF-IR or IRA isoform might occur in 
early stages of atherosclerosis favoring the migration and 
proliferation of VSMCs and thereby atherosclerotic pro-
gression of relevance in experimental mouse models and 
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in humans (Fig.  7). Whether IRA/IGF-IR hybrid recep-
tors play a direct role at the early stage of atherogenesis 
in humans remains to be established.
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α‑SMA: α‑smooth muscle actin; Akt: protein kinase B; ApoE−/−: apolipoprotein 
E knockout; BATIRKO: brown adipose tissue‑specific insulin receptor knockout; 
IGF‑IR: insulin‑like growth factor‑I receptor; IGFs: insulin‑like growth factors; IR: 
insulin receptor; MMPs: matrix metalloproteinases; qRT‑PCR: real‑time quanti‑
tative PCR; VSMCs: vascular smooth muscle cells.
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