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Preface

This proceedings book gathers methodological papers of segmentation methods
evaluated at the first MICCAI Challenge on Multiple Sclerosis Lesions Segmen-
tation Challenge Using a Data Management and Processing Infrastructure. This
challenge took place as part of an effort of the OFSEP1 (French registry on mul-
tiple sclerosis aiming at gathering, for research purposes, imaging data, clinical
data and biological samples from the French population of multiple sclerosis sub-
jects) and FLI2 (France Life Imaging, devoted to setup a national distributed
e-infrastructure to manage and process medical imaging data). These joint ef-
forts are directed towards automatic segmentation of MRI scans of MS patients
to help clinicians in their daily practice. This challenge took place at the MICCAI
2016 conference, on October 21st 2016.

More precisely, the goals of this challenge were multiple. It first aimed at
evaluating state-of-the-art and advanced segmentation methods from the par-
ticipants on a database following a standard protocol3. For this, both lesion
detection (how many lesions are detected) and lesion segmentation (how pre-
cise the lesions are delineated) were evaluated on a multi-centric database (38
patients from four different centers, imaged on 1.5 or 3T scanners, each patient
being manually annotated by seven experts from three different French centers,
located in Bordeaux, Lyon and Rennes).

This challenge was also the occasion to perform this advanced evaluation
on a common infrastructure, provided by FLI. As such, challengers were asked
to provide their pipeline as a Docker container image. After integration in the
VIP platform4, the challengers pipelines were then evaluated independently by
the challenge organization team, the testing data and evaluation results being
queried and stored in a Shanoir database5. This infrastructure enabled a fair
comparison of the algorithms in terms of running time comparison and ensuring
all algorithms were run with the same parameters for each patient (which is
required for a truly automatic segmentation). These proceedings do not include
results of the evaluation, rather the evaluated methods descriptions. Evaluation
results are available on the challenge website6 from the day of the challenge.

As a conclusion note, the organizers of the challenge are welcoming new
pipelines to be evaluated after the challenge itself. Interested teams may go on
the challenge website to register their new method and evaluate it on our data.
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Multiple Sclerosis lesion segmentation using an
automated multimodal Graph Cut

Jeremy Beaumont Olivier Commowick Christian Barillot

VisAGeS U746 INSERM / INRIA, IRISA UMR CNRS 6074, Rennes, France

Abstract. In this paper, we present an algorithm for Multiple Sclerosis
(MS) lesion segmentation. Our method is fully automated and includes
three main steps: 1. the computation of a rough total lesion load in order
to optimize the parameter set of the following step; 2. the detection of
lesions by graph cut initialized with a robust Expectation-Maximization
(EM) algorithm; 3. the application of rules to remove false positives and
to adjust the contour of the detected lesions. Our algorithm will be tested
on the FLI 2016 MSSEG challenge data.

Keywords: Graph Cut, Expectation-Maximization, Multiple sclerosis, Tissue
classification

1 Introduction

Multiple Sclerosis (MS) is a chronic demyelinating disease that a↵ects the cen-
tral nervous system. Brain lesions detection plays an important role in Multiple
Sclerosis (MS) studies, as it is used to evaluate patient disease and its future
evolution. Currently, lesions are detected by manual or semi-automatic segmen-
tation methods, which are very time consuming and which show a high inter
and intra-raters variability [8]. This issue can be solved with fully automated
MS lesion segmentation methods. Here, we present one, based on the combina-
tion of graph cut and robust EM tissues segmentation using multiple sequences
of Magnetic Resonance Imaging (MRI). Our process is applied to the FLI 2016
MSSEG challenge data.

2 Challenge data and evaluation criteria

2.1 Data and pre-processing

15 MS patients data sets are available to allow challengers to optimize their
segmentation algorithms. These data sets contain pre-processed and unprocessed
data, available for challengers who would rather do their own pre-processing on
the data, the ground truth and the seven manual segmentations used to compute
it.

The challenge data sets include T1-w, T1-w Gadolinium, T2-w, PD and
FLAIR sequences. It will not be described further in this paper, more details
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can be found on the challenge website1. The pre-processed data are denoised
with the NL-means algorithm [5], rigidly registered [3] towards the FLAIR im-
ages, brain extracted using the volBrain platform [10] and bias corrected using
the N4 algorithm [11]. As data are brain extracted, brain masks are provided in
the pre-processed data sets. We decided to use the pre-processed data. Therefore,
the method we described below will focus only on the MS lesions segmentation
itself.

2.2 Evaluation criteria for the MS-SEG challenge

The qualitative evaluation of the proposed segmentation algorithm is made
through two categories of evaluation metrics: lesion detection (are the lesions
well detected independently of the contour quality?) and segmentation precision
(are the lesion contours close to those of the ground truth?). For the MS-SEG
challenge, the di↵erent segmentation workflow results will be compared to a
ground truth for each MS patient using several evaluation metrics and will be
ranked using two of them2:

F1 score: A metric used to assess the capacity of an algorithm to detect le-
sions. The F1 score is a combination of the lesion sensitivity (SensL), i.e. the
proportion of detected lesions in the ground truth, and the lesion positive
predictive value (PPVL), i.e. the proportion of true positive lesions inside
the result of segmentation algorithms.

Dice score: A well known overlap metric used to assess the capacity of an
algorithm to be accurate in lesion delineation.

The ground truth is computed with the Logarithmic Opinion Pool Based
STAPLE (LOP STAPLE) method [1], using seven independent manual segmen-
tations for each patient.

3 MS lesions segmentation workflow

3.1 Lesions detection using graph cut

The segmentation algorithm relies on a graph cut approach previously presented
in [6] and [2]. 3 MR sequences and the brain mask are required for this algorithm.
We choose to use T1-w, T2-w and FLAIR sequences. We do not use PD as it
generally shows less MS lesion contrast than T2-w and FLAIR.

Graph cut principle: MS patient images are used to generate a graph which
will be exploited to segment in an optimal way MS lesions from both contour
and regional information. This graph is initialized in a manner that each of its

1
https://portal.fli-iam.irisa.fr/msseg-challenge/data

2 More details are provided on the challenge website: https://portal.fli-iam.

irisa.fr/msseg-challenge/evaluation

https://portal.fli-iam.irisa.fr/msseg-challenge/data
https://portal.fli-iam.irisa.fr/msseg-challenge/evaluation
https://portal.fli-iam.irisa.fr/msseg-challenge/evaluation
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nodes corresponds to a voxel and is connected to two others nodes representing
the object class for MS lesions and the background class for normal appearing
brain tissues (NABT). These two nodes are respectively called terminal source
and sink. The image nodes are connected with their spatial neighbors by n-links,
whose values are computed using a spectral gradient [6] and depend on the
similarity of the two considered voxels. The t-links connect nodes in the image
to their corresponding terminal source and sink nodes and represent how voxels
fit into given models of the object and background. The simplest way to estimate
object and background models is to use seeds chosen by a user. However, user
interactions are prohibited if we want to develop an automated algorithm. This
is why we compute the seeds in images with a 3-class multivariate Gaussian
Mixture Model (GMM), where each class is equivalent to a brain tissue: White
Matter (WM), Grey Matter (GM) and Cerebrospinal Fluid (CSF). MS lesions
are considered as the outliers of this model.

Seeds computation: To be robust to outliers, the 3-class multivariate GMM
is estimated using an Expectation Maximisation (EM) algorithm [7] which opti-
mizes a trimmed likelihood. This EM algorithm has a parameter, h, representing
the portion of voxels that are removed from the estimation. Its value needs to be
adjusted to reject MS lesions as well as other outliers like veins or skull stripping
errors from the estimation of the NABT model.

The obtained parameters of the GMM are used to compute a Mahalanobis
distance [4] between each voxel of the images and each class of the NABT model.
From this distance, a p-value, used to represent the probability not to fit into
each of the 3 classes, can be computed. For each voxel i, we keep the lowest
p-value among the three classes, denoted p

i

. Sinks should have a high value
when their corresponding voxels are close to the NABT model. The sinks t-links
weights W

bi

are then computed as:

W
bi

= 1 � p
i

(1)

All voxels that do not fit in the NABT model have a high p-value, therefore,
we wish to di↵erentiate MS lesions from other outliers (vessels, skull stripping
errors . . . ) using a priori knowledge about lesion intensities. MS lesions are usu-
ally hyperintense compared to WM in T2-w and FLAIR images. A fuzzy logic
approach has been chosen to model this expert’s knowledge. Instead of defining a
binary threshold for hyper intensity, a fuzzy weight, computed for each sequence
from the two parameters slope begining S

b

and slope end S
e

, is characterized
(see [6] for more details). The final sources weights W

oi

are computed by taking
the minimum value between the p-value and the fuzzy weights W

T2

and W
flair

:

W
oi

= min(p
i

, W
T2

, W
flair

) (2)

Parameters definition: The presented algorithm works with three param-
eters: h, S

b

and S
e

. In order to obtain the best segmentation results, we optimize
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these parameters with the provided training data set. We note that the param-
eter h depends on the proportion of outliers in an image, and as such is directly
linked with the Total Lesion Load (TLL) of MS patients. Therefore, the al-
gorithm parameters have to be adapted to the MS patient TLL, which has to
be estimated before performing the segmentation. We define two parameter sets:
one for mild lesion load (TLL < 25 cm3), and the other one for severe lesion load
(TLL � 25 cm3). These sets are presented in Table 1. A rough TLL estimation
is automatically computed with the following steps:

1. Non-linear registration of an atlas on the T1-w image. This atlas contains
CSF, GM and WM probability maps plus a brain mask without the cerebel-
lum and the brainstem.

2. Masking the T2-w and FLAIR images to keep only the WM in the two
hemispheres (the amount of lesions is usually lower in the cerebellum and
the brainstem and can be removed of the rough TLL estimation), using the
atlas WM probability map and brain mask without the cerebellum and the
brainstem.

3. Segmentation of the T2-w and FLAIR masked images with the K-means
algorithm [9]. T2-w and FLAIR images are segmented respectively in 4 and
3 classes. This segmentation is performed to extract MS lesions, regrouped
in one class in each image, from WM.

4. Intersection of the T2-w and FLAIR MS lesions classes.
5. Computation of the volume from the resulting image, which corresponds to

an approximation of the TLL.

h Sb Se

Mild Lesion Load 0.1 2.0 4.0
Severe Lesion Load 0.4 3.0 4.0

Table 1: Values of our segmentation algorithm parameters, optimized on the
training data.

3.2 Post-processing

After the detection of candidate lesions, some false positives still remain. To
remove these artifacts, we add a post-process, made of the following steps:

1. lesions which have a size lower than 3 mm3 are removed
2. lesions touching the brain mask border are removed, as they are probably

false positives due to vessels or skull stripping errors
3. lesions not su�ciently located in WM are removed, as MS lesions are typi-

cally located there
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4. lesions which do not touch a mask computed from MS patient T2-w and
FLAIR sequences are removed. Lesions are considered as hyper intense in
these two modalities, so it is possible to build a mask of “probable lesions”,
i.e. regions where lesions may appear and out of which no lesion may be
seen. This mask is built by automatically thresholding the T2-w and FLAIR
images and intersecting those masks. Our segmentation method generates
several false positives in the brainstem, therefore, the mask used in this
post-processing step also excludes this region.

5. lesions delineations are improved using the mask of “probable lesions” com-
puted in the previous step

4 Results

4.1 Sample results

Table 2 presents an evaluation of the whole segmentation algorithm with a post-
processing step on the training data. An example of segmentation result is shown
in Figure 1.

Dice scores SensL PPVL F1 scores
Mild Lesion Load 0.4703 0.4124 0.5698 0.4441
Severe Lesion Load 0.7219 0.2775 0.4605 0.3061
Mean 0.5709 0.3584 0.5260 0.3889

Table 2: Evaluation of our segmentation algorithm on the training data

4.2 Implementation and Computation Times

The algorithm benefices of a multi-threaded implementation, based on ITK and
available in open-source software Anima3. The total computation time to process
each segmentation of the data set on a computer with an Intel(R) Xeon(R) CPU
E5-2660 v3 @ 2.60GHz (8 cores) is approximately 10 minutes.

5 Conclusion

A fully automated MS lesion segmentation method using a graph cut initialized
with a robust EM algorithm was presented. The results of the segmentation
depend on the algorithm input parameters, which are directly linked with the
MS patient TLL. The TLL is di�cult to estimate and an error could result in a
bad choice of these parameters, which may influence the segmentation workflow
leading to worse results. Consequently, the automation of the presented method

3
https://github.com/Inria-Visages/Anima-Public
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(a) FLAIR (b) T2

(c) Ground truth (d) Automatic segmentation

Fig. 1: Automatic segmentation of the data set 01016SACH

is a complicated task where the initialization of the parameters is very important
to reach satisfactory results. These results are improved with a post-processing
step in order to reduce the number of false positives to be as close as possible to
the ground truth.
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3. Commowick, O., Wiest-Daesslé, N., Prima, S.: Block-matching strategies for rigid
registration of multimodal medical images. In: 2012 9th IEEE International Sym-
posium on Biomedical Imaging (ISBI). pp. 700–703 (May 2012)

4. Commowick, O., Fillard, P., Clatz, O., Warfield, S.K.: Detection of DTI White
Matter Abnormalities in Multiple Sclerosis Patients. In: Metaxas, D., Axel, L.,
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Automatic Multiple Sclerosis lesion
segmentation from Intensity-Normalized

multi-channel MRI

Jeremy Beaumont Olivier Commowick Christian Barillot
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Abstract. In the context of the FLI MICCAI 2016 MSSEG challenge for
lesion segmentation, we present a fully automated algorithm for Multiple
Sclerosis (MS) lesion segmentation. Our method is composed of three
main steps. First, the MS patient images are registered and intensity
normalized. Then, the lesion segmentation is done using a voxel-wise
comparison of multi-channel Magnetic Resonance Images (MRI) against
a set of controls. Finally, the segmentation is refined by applying several
lesion appearance rules.

Keywords: Multiple Sclerosis, Intensity Normalization, Statistics, MRI

1 Introduction

Multiple Sclerosis (MS) is a auto-immune brain degenerative disease causing irre-
versible patient handicap and which is still not well understood. Lesion detection
is a major step to evaluate the patient disease status and its future evolution.
Manual and semi-automatic segmentation methods are very time consuming and
can show high inter and intra-rater variability [5]. To solve this issue, we present a
fully automated method for MS lesions segmentation based on the combination
of intensity standardization and voxel-wise comparison of multi-channel Mag-
netic Resonance Images (MRI) of the patient and control subjects. Our process
is applied to the FLI 2016 MSSEG challenge data.

2 Challenge data and evaluation criteria

2.1 Data and pre-processing

To allow challengers to optimize their segmentation algorithms, MS-SEG chal-
lenge organizers gave access to 15 MS patient data sets. Each data set contains
pre-processed and unprocessed data, available for challengers who wish to per-
form their own pre-processing on the data, along with the ground truth and the
seven manual segmentations used to compute it.
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The challenge data sets include T1-w, T1-w Gadolinium, T2-w, PD and
FLAIR sequences1. Pre-processed data are provided in order to reduce the de-
pendency of the segmentation results on pre-processing performance. The pre-
processed data are denoised with the NL-means algorithm [4], rigidly registered
[2] towards the FLAIR images, brain extracted using the volBrain platform [8]
and bias corrected using the N4 algorithm [12]. As brain extraction was per-
formed, brain masks are provided in the pre-processed data sets. We decided to
use the pre-processed data. For this reason, the method we describe below will
focus only on the MS lesions segmentation itself.

2.2 Evaluation criteria for the MS-SEG challenge

The quality of the proposed segmentation algorithm may be assessed through two
categories of evaluation metrics: lesion detection (are the lesions well detected
independently of the contour quality?) and segmentation precision (are the lesion
contours close to those of the ground truth?). For the MS-SEG challenge, the
organizers will compare the results of the di↵erent segmentation workflows to a
ground truth for each MS patient and will use several evaluation metrics, out of
which two will be used for the ranking of the challengers algorithms2:

F1 score: This metric is used to evaluate the quality of an algorithm in terms of
lesions detection. It corresponds to the combination of the lesion sensitivity
(SensL), i.e. the proportion of detected lesions in the ground truth, and the
lesion positive predictive value (PPVL), i.e. the proportion of true positive
lesions inside the result of segmentation algorithms.

Dice score: This well known overlap metric is used to evaluate the quality of
an algorithm in terms of segmentation precision.

The ground truth is computed with the Logarithmic Opinion Pool based
STAPLE (LOP STAPLE) method [1], using seven independent manual segmen-
tations for each patient.

3 MS lesions segmentation workflow

3.1 Intensity Standardization

Our segmentation workflow is based on the voxel-wise comparison of MS patient
images against a set of controls. However, intensity profile of conventional MRI
has a high inter-subject and inter-scanner variability. To solve this issue, Karpate
et al. [7] proposed the estimation of a correction factor which is used to make
corresponding anatomical tissues take on the same intensity profile.

1 The challenge data sets will not be described further in this paper, more de-
tails can be found on the challenge website: https://portal.fli-iam.irisa.fr/
msseg-challenge/data

2 More details are provided on the challenge website: https://portal.fli-iam.

irisa.fr/msseg-challenge/evaluation

https://portal.fli-iam.irisa.fr/msseg-challenge/data
https://portal.fli-iam.irisa.fr/msseg-challenge/data
https://portal.fli-iam.irisa.fr/msseg-challenge/evaluation
https://portal.fli-iam.irisa.fr/msseg-challenge/evaluation
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Image intensities of a healthy brain can be modeled by a 3-class Gaussian
Mixture Model (GMM), where each Gaussian represents one of the brain tis-
sues: White Matter (WM), Gray Matter (GM) and Cerebrospinal Fluid (CSF).
MS lesions are considered as outliers of this model. Estimating the three classes
parameters is rendered di�cult because of MS lesion outlier intensities. We there-
fore estimate them with a modification of the Maximum Likelihood Estimator
(MLE) proposed by Notsu et al. [9], more robust to outliers. This estimation
is based on the �-loss function for the Normal distribution, used to maximize
the MLE in the form of � divergence, and is casted to yield an Expectation
Maximisation (EM) algorithm [7].

Once the parameters are estimated, we obtain the means and covariances
of tissues for the source and target images. These values are used to define a
linear correction function which can be solved by linear regression. The results
of the linear regression are then exploited to normalize the intensity profiles of
the images.

3.2 MS lesions detection

MRI registration and intensity normalization make lesion segmentation possible
through a comparison of vector of intensities between the patient and control
subjects. Patient images are registered on the set of controls using a linear reg-
istration method, based on the use of a block-matching algorithm as presented
in [2,10], and a non linear registration method, based on the estimation of a
dense non linear transformation between the images as presented in [11]. The
methodology used by Karpate et al. [6] to compare the multi-channel vectors
of intensities between MS patient and a group of controls is based on the com-
putation of statistical di↵erences through the Mahalanobis distance [3]. These
vectors of intensities are built from the available images and can therefore use
any combination of them, like FLAIR, or T2-w and FLAIR, or DP, T2-w and
FLAIR, making this a parameter of the algorithm.

3.3 Refinement of the segmentation

The intensities of pixels corresponding to brain tissues can vary in function of the
brain region where they are located. Indeed, pixels which belong to the white
matter brainstem and cerebellum are usually more intense than pixels which
belong to the white matter hemispheres. This phenomenon induces the detection
of several false positives in the brainstem and the cerebellum. Therefore, intensity
standardization and MS lesions detection are computed on one hand in the two
hemispheres and on the other hand in the brainstem and the cerebellum.

3.4 Post-processing

This comparison based segmentation algorithm may generate false positives for
several reasons (registration errors, presence of noise in the images . . . ). There-
fore, we add a post-processing step to our segmentation workflow in order to
reduce the number of false positives. The post-processing is made of four steps:
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1. lesions which have a size lower than 3 mm3 are removed
2. lesions touching the brain mask border are removed, as they are probably

false positives due to vessels or skull stripping errors
3. lesions not su�ciently located in WM are removed, as MS lesions are typi-

cally located there
4. lesions which do not touch a mask computed from MS patient T2-w and

FLAIR sequences are removed. Lesions are considered as hyper intense in
these two modalities, so it is possible to build a mask of “probable lesions”,
i.e. regions where lesions may appear and out of which no lesion may be
seen. This mask is built by automatically thresholding the T2-w and FLAIR
images and intersecting those masks. Our segmentation method generates
several false positives in the brainstem, therefore, the mask used in this
post-processing step also excludes this region.

5. lesions delineations are improved using the mask of “probable lesions” com-
puted in the previous step

4 Results

4.1 MRI sequences used for MS lesions detection

Our algorithm can work with only one MR sequence or with several modalities.
We have tested our segmentation workflow with T2-w and FLAIR sequences,
discarding T1-w and PD images, as they generally show less MS lesion contrast
than T2-w and FLAIR. Table 1 presents an evaluation of our segmentation
(without post-processing algorithm) on the 15 training data. We worked on two
possibilities to combine T2-w and FLAIR images for MS lesions segmentation:

Intersection: Here, we consider that the T2-w and FLAIR MS patient images
are registered and intensity normalized on a set of controls. Vector images
are created to combine T2-w and FLAIR sequences, on one hand, from MS
patient images, and on the other hand, from control subject images. These
vector images are then compared with the method described in section 3.2.
Intersection of T2-w and FLAIR is interesting as it generates theoretically
less false lesions detection as T2-w or FLAIR segmentation alone. However,
this way to combine images has a drawback: in some cases, it is possible
that a lesion intensity profile is close to the one of a tissue in a modality,
which may reduce the Mahalanobis distance and induce the non-detection
of a lesion even if its intensity profile is far from tissues intensity profiles in
the other modalities.

Union: Here, we consider that our algorithm has already been used to segment
MS patient lesions, first with T2-w sequences, and secondly with FLAIR
sequences. Then, both segmentations are added. This induces, in theory, that
more lesions are detected than in T2-w and in FLAIR segmentations alone.
Yet, this type of combination has an inconvenient: false lesions detections
from the both T2-w and FLAIR segmentations are kept, thereby adding
some noise in the final segmentation.
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Dice scores SensL PPVL F1 scores
T2-w 0.2610 0.3564 0.0305 0.0540
FLAIR 0.4231 0.5519 0.1021 0.1650
T2-w

S
FLAIR 0.2978 0.5554 0.0373 0.0685

T2-w
T

FLAIR 0.2476 0.5122 0.0205 0.0390

Table 1: Evaluation of our segmentation algorithm on the training data
without post-processing.

4.2 Sample results

Table 2 presents an evaluation of the whole segmentation algorithm with a post-
processing step on the training data. We choose to perform segmentation twice,
using di↵erent MRI sequences each time, in order to remove some false positives
and to improve lesions delineation. One process uses FLAIR image when the
other uses the intersection of T2-w and FLAIR images as theses modalities are
the ones which provide the best results. An example of segmentation result is
shown in Figure 1.

Dice scores SensL PPVL F1 scores
T2-w 0.4010 0.3771 0.1811 0.2102
FLAIR 0.5053 0.5309 0.1803 0.2552
T2-w

S
FLAIR 0.4244 0.4932 0.1530 0.2135

T2-w
T

FLAIR 0.4396 0.5270 0.1507 0.2166
FLAIR and
T2-w

T
FLAIR

0.5663 0.4560 0.2871 0.3290

Table 2: Evaluation of our segmentation algorithm with a post-processing step.

4.3 Implementation and Computation Times

The pipeline presented for the FLI2016 MICCAI MSSEG challenge used the
combination of FLAIR and T2

T
FLAIR modalities to perform the segmen-

tation as this process is the one which provides the best results (see Table 2).
The algorithm implementation is multi-threaded, based on ITK and available in
Anima3. The total computation time to process each segmentation of the data
set on a computer with an Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz (8
cores) is approximately 8 minutes.

5 Conclusion

We presented a fully automated MS lesion segmentation method based on in-
tensity normalization and voxel-wise comparison. MS lesion segmentation is a

3
https://github.com/Inria-Visages/Anima-Public
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(a) FLAIR (b) T2

(c) Ground truth (d) Automatic segmentation

Fig. 1: Automatic segmentation of the data set 01016SACH

complicated task as MS lesion definition is inter-expert dependent. There is a
high variability in the detection of lesions even between ground truth and man-
ual segmentations (dice scores and F1 scores for training data vary respectively
from 0.26 to 0.88 and 0.13 to 1). A few MR sequences also have a low initial res-
olution. This may influence the segmentation workflow and lead to worse results.
Consequently, the choice of the optimal modalities used to compute a segmen-
tation and the definition of e�cient post-processing steps can be a complicated
task.
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Abstract. P-LOCUS provides automatic quantitative neuroimaging bio-
marker extraction tools to aid diagnosis, prognosis and follow-up in mul-
tiple sclerosis studies. The software performs accurate and precise seg-
mentation of multiple sclerosis lesions in a multi-stage process. In the
first step, a weighted Gaussian tissue model is used to perform a ro-
bust segmentation. The algorithm avails of complementary information
from multiple MR sequences, and includes additional estimated weight
variables to account for the relative importance of each voxel. These esti-
mated weights are used to define candidate lesion voxels that are not well
described by a normal tissue model. In the second step, the candidate le-
sion regions are used to populate the weighted Gaussian model and guide
convergence to an optimal solution. The segmentation is unsupervised,
removing the need for a training dataset, and providing independence
from specific scanner type and MRI scanner protocol.

1 Introduction

MS brain lesion segmentation is important for diagnosis, prognosis, and patient
follow-up. Typically, this task is performed manually by a medical expert, how-
ever automatic methods are sought to alleviate the tedious, time consuming and
subjective nature of manual delineation. Automatic methods are motivated by
the demand for large-scale multi-center clinical research studies that require pre-
cise, repeatable and cost-e�cient analysis. Automatic brain image segmentation
remains a challenging task for a number of reasons, including the presence of
artefacts, and the heterogeneity of MRI scanner protocol.

Automated or semi-automated MS brain lesion detection methods can be
classified according to their use of multiple sequences, a priori knowledge about
the structure of normal brain, and the specific tissue segmentation model. In
most approaches, normal brain tissue prior probability maps are used to help
identify lesion as an outlier.

Existing methods frequently avail of complementary information from multi-
ple sequences. For example, lesion voxels may appear hyperintense in one modal-
ity and normal in another. This is implicitly used by neurologists when examining
data. In an statistical framework, complementary information from di↵erent se-
quences can help to better discriminate data generated by di↵erent probabilistic
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distributions in a multi-dimensional space. Intensity distributions are commonly
modeled as multi-dimensional Gaussian distributions. This provides a way to
combine the multiple sequences in a single segmentation task but with all the
sequences having equal importance. Given that the information content and dis-
criminative power to detect lesions varies between di↵erent MR sequences, we
adopt a weighted data model, originally proposed by Forbes et al [4], that allows
for the identification of atypical lesion voxels and the subsequent inclusion of the
lesion class as an additional model component.

2 Weighted Model

We consider a finite set V of N voxels on a regular 3D grid. The intensities ob-
served at each voxel are denoted by y = {y

1

, . . . ,y
N

} . Each y
i

= {y
i1

, . . . , y
iM

}
is itself a vector of M intensity values corresponding to M di↵erent MR se-
quences. The goal is to assign each voxel i to one of K classes considering the
observed features data y. For brain tissue segmentation, we consider in general 3
tissues plus some possible additional classes to account for lesions in pathological
data. We denote the hidden classes by z = {z

1

, . . . , z
N

}, and the set in which
z takes its values by Z. Typically, the z

i

’s take their values in {1 . . . K}. We
consider non-negative weights ! = {!

i

, i 2 V } in a state space denoted by W
and with !

i

= {!
i1

, . . . ,!
iM

}. In our general setting the weights are sequence
and voxel-specific.

The segmentation task is recast into a missing data framework in which y are
observations and z are missing variables. Their joint distribution p(y, z|!; ) is
governed by the weights ! 2 W and parameters  2  , which are both unknown
and need to be estimated. A prior distribution p(!) is defined on the weights,
considered additional missing variables. Denoting the parameters by  = {�,�},
we assume that the joint distribution p(y, z,!; ) is a MRF with the following
energy function:

H(y, z,!; ) = HZ(z;�) + HW (!) +
X

i2V

log g(yi|zi,!i;�)

where the energy term HW (!) involving only ! does not depend on  and
the g(yi|zi,!i;�)s are probability density functions of y

i

.
For the data term

P
i2V log g(yi|zi,!i;�) in (1), we consider M-dimensional

Gaussian distributions with diagonal covariance matrices. For each class k, t(µk1, . . . , µkM )

is the mean vector and {sk1, . . . , skM} the covariance matrix components. When
z

i

= k, then G(yim; µzim, szim) represents the Gaussian distribution with mean
µ

km

and variance s
km

. The whole set of Gaussian parameters is denoted by
� = {µkm, skm, k = 1 . . . K, m = 1 . . . M}. Our data term is then defined by setting

g(yi|zi,!i;�) =
MY

m=1

G(yim; µzim,
szim

!im
) ,
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which is proportional to
MQ

m=1

G(y
im

; µzim, szim)!im . Intuitively, the impact of a

larger !
im

is to give more importance to the intensity value y
im

in the model.
A weight of one recovers the standard multivariate Gaussian case.

The missing data term HZ(z;�) in (1) is set to a standard Potts model, with
external field ⇠ and spatial interaction parameter ⌘, and whose energy is

HZ(z;�) =
X

i2V

(⇠izi +
X

j2N (i)

⌘ hzi, zji),

where N (i) denotes the voxels neighboring i and hz
i

, z
j

i is 1 when z
i

= z
j

and 0 otherwise. Parameter � = {⇠, ⌘} with ⇠ = {t(⇠
i1

. . . ⇠
iK

), i 2 V } being a
set of real-valued K-dimensional vectors and ⌘ a real positive value.

The weights are assumed independent from parameters  and independent
across modalities. The simplest choice is to define a prior p(!) =

Q
M

m=1

Q
i2V

p(!
im

)
where each p(!

im

) is a Gamma distribution with hyperparameters ↵
im

(shape)
and �

im

(inverse scale). Thus

HW (!) =
MX

m=1

X

i2V

((↵im � 1) log!im � �im !im).

In practice, the set of hyperparameters is fixed so that the modes of each prior
p(!

im

) are located at some expert weights {!exp

im

, m = 1 . . . M, i 2 V } accounting
for some external knowledge, if available. Formally, we set ↵

im

= �
im

!exp

im

+1 to
achieve this. The expert weights can be chosen according to the specific task. For
example, when voxels with typical lesion intensities are not numerous enough to
attract a model component, increasing the expert weight for some of them will
help in biasing the model toward the identification of a lesion class.

A solution to the model is found using the Expectation-Maximization (EM)
framework [2] combined with a variational approximation for tractability in the
presence of Markov dependencies. In particular, the mean field principle provides
a deterministic way to deal with intractable MRF models[1].

3 Method

Of the four possible input sequences available, the method uses only the un-
processed T1-weighted and Flair. The images are masked, co-registered and cor-
rected for inhomogeneities using the N4 algorithm.

The segmentation process consists of two stages, as detailed in [3]. In the
first step, we set K = 3, considering only the three normal tissue classes (with
all !exp

im

and �
im

set to 1). The ⇠ parameters in the MRF prior are set to ⇠
ik

=
log f

ik

where f
ik

is the normalized value given by a normal tissue atlas. The
interaction parameter ⌘ is estimated using a stochastic gradient descent method
as specified in [1]. The estimated weights for the Flair sequence are thresholded
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at a value of one to identify outlier regions corresponding to candidate lesion
regions. This candidate region is refined using additional intensity, location and
size constraints, as in [7, 5, 6]. Retained lesions are hyperintense in Flair, confined
to white matter and greater than 5mm3.

In the second step, the candidate region is used to specify the parameters of
the weight distribution in a K = 4 segmentation setting. We set �

im

according
to: �

im

= �L for all i 2 L and �
im

= �
¯L for all i 62 L, where �L and �

¯L are
values to be specified. We set �

¯L = 1000 to express our a priori trust in the
estimation of the normal brain tissue classes from the preliminary first step, and
set �L = 10 to allow some flexibility in the weight estimation.

The expert weight is fixed to !L = 2 and !
¯L = 1. Large values of !L make the

lesion class more representative and handle the possibility of very small lesions,
while a small !

¯L ensures that the weighting of a large candidate lesion region
does not a↵ect the estimation of other classes. A post-processing step removes
artefacts based on spatial location.

4 Conclusion

The adaptive weighting model facilitates accurate and robust MS lesion segmen-
tation from T1-weighted and Flair sequences. The advantage of this approach
is that the weights, and therefore the ’outliers’ are obtained in a multi-sequence
framework that provides a more robust estimation of normal tissue parameters.
The method is independent of MRI scanner, and does not require training data.
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Abstract. There have been many e↵orts to automate segmentation of
MS lesions in brain MRI, since human delineation is time consuming
and error prone. However, most existing methods require multiple coreg-
istered MR sequences, tissue priors or parametric models, and are rarely
validated on multi-scanner image databases. In this work, a fast, FLAIR-
only lesion segmentation algorithm is proposed, that does not use tissue
priors or parametric models. The method uses an edge-based model of
partial volume averaging to estimate fuzzy membership profiles of tissue
classes. Results are further refined using an upstream image standard-
ization pipeline, and downstream post processing. Lesion segmentation
performance is measured on 15 volumes from three di↵erent scanners,
demonstrating the robustness of the approach.

1 Introduction

Multiple Sclerosis (MS) is a demyelinating autoimmune disease a↵ecting the cen-
tral nervous system. MR imaging of MS lesions plays an integral role in disease
diagnosis, monitoring, and research [1]. Since manual segmentation of MS lesions
is subjective, unreliable, and time consuming, there has been significant interest
in automating this task [2]. Existing approaches have performed classification
based on voxel values from multiple coregistered MR sequences, neighborhood
voxel values, normalized coordinates, and tissue prior images [2].

Despite the large number of proposed methods, very few have been validated
on images from di↵erent scanners, which reflects the challenging variability in
clinical images [2]. For instance, the works by Souplet et al. [3], Garcia-Lorenzo et
al. [4], and Wang et al. [5] fit parametric models to the graylevel distributions of
each tissue class, and use images from a single scanner for validation. However, it
has been shown that graylevel distributions are highly specific to the acquiring
scanner [6]. Similarly, in the works by Wu et al. [7], Steenwijk et al. [8], and
Samaille et al. [9], K-Nearest Neighbour classification is used with features from
multiple MR sequences; yet without normalization of graylevels across scanners,
these approaches are unlikely to generalize. There are also additional challenges
associated with using multiple MRI modalities or tissue priors, including the
need for accurate registration, additional scan time, limited retrospective image
availability, and increased segmentation model complexity.
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Here we present an edge-based segmentation method, based on previous work
[6, 10] and apply it to MS lesion segmentation. Our method overcomes many of
the challenges outlined above, since it does not rely on parametric graylevel dis-
tribution models, it employs only the most lesion-discriminative MRI sequence,
Fluid Attenuation Inversion Recover (FLAIR), and it does not require registra-
tion to any additional templates or tissue priors. We also demonstrate reliability
of the method on images from three di↵erent MR scanners.

2 Methods

2.1 Image Data & Manual Segmentations

This work uses the 15 raw FLAIR images provided in the unprocessed training
dataset of the MICCAI 2016 MSSEG Challenge; the brain is isolated in each
image, however, using the brain masks provided in the pre-processed dataset.
The binary consensus segmentations also provided, being the fusion of 7 expert
manual tracings using the LOP-STAPLE method [11], are used as the ground
truth for performance evaluation.

2.2 Edge-Based Lesion Segmentation

The proposed image processing pipeline is summarized in Fig. 1. The method
takes a single FLAIR image, denoted Y (x) in 3D space, x = {x

1

, x
2

, x
3

} 2 Z3.
The pipeline consists of image preprocessing, an edge-based fuzzy classification
model, thresholding, and post processing. Output lesion masks are then com-
pared to the consensus segmentations using quantitative performance measures.

Fig. 1. Image processing pipeine

Preprocessing Preprocessing is employed to correct intensity inhomogeneity
and reduce random noise in the source FLAIR images. First, intensity inhomo-
geneity (bias field) is corrected using the Segment feature in the SPM12 toolbox
[12]. While this tool also produces tissue probability images, these are not needed
for lesion segmentation and are discarded. A 3D Gaussian low pass filter, with
� = 0.5 mm, is then used to minimize image noise; it was found that this filter
outperformed median, anisotropic di↵usion, and bilateral filters.

Fuzzy Classification Next, we perform fuzzy classification using an edge-based
model [6, 10]. This model assumes that the graylevels of each tissue class (CSF,
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Brain, Lesion) are distributed along a unique range, and that graylevels in be-
tween these ranges represent voxels subject to partial volume averaging (PVA, a
mixture of two tissue types). For a PVA-a↵ected voxel, comprising a mixture of
classes c

j

and c
k

, with graylevels y
j

and y
k

, respectively, and where ↵
jk

indicates
the mixing proportion of class c

j

, the graylevel y
jk

(x) is modelled as [13],

y
jk

(x) = ↵
jk

(x)⇥ y
j

(x) + (1� ↵
jk

(x))⇥ y
k

(x)

We take the gradient of this equation to solve for ↵
jk

(x), in order to quantify
the exact amount of each tissue present in each voxel. However, we observe that
the solution in the spatial domain is intractable, since the integration bounds x

0

and x
N

are undefined [10],

↵0
jk

(x) =
y0

jk

(x)

y
j

� y
k

! ↵
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(x) =
1

y
j

� y
k

Z
xN

x0

y0
jk

(x)dx

To circumvent this, all voxels in the image volume are considered simultane-
ously in the graylevel (global) domain: ↵0(x) ! ↵0(y), where the integration
becomes feasible. The global estimate of ↵0(y) is computed using the conditional
expectation operator, given an initial spatial estimate of edge strength, which is
proportional to ↵0(x).

First, the gradient magnitude image, G(x), is computed using the centered
di↵erence kernel, D = [�1, 0, +1], applied in all three dimensions.

G(x) = |r
x

Y (x)|

=
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dx
1

◆
2

+

✓
dY (x)

dx
2

◆
2

+

✓
dY (x)

dx
3

◆
2

# 1
2

For a robust estimate of the spatial domain edge strength, histogram equalization
is performed to ensure that edge magnitudes are distributed consistently and
without outliers, yielding ↵0(x),

↵0(x) = CDF
G

(G(x))

Next, the distribution of edge strength in the graylevel domain, ↵0(y), is esti-
mated as the expected value of edge in the image for each graylevel. The expec-
tation is computed robustly using a 2-bin Gaussian kernel density estimate with
bins p(↵0(x) = 1 | y) and p(↵0(x) = 0 | y), and � = 1/6 (see [10] for derivation),

↵0(y) = E{↵0(x) | y}

=
X

a20,1

a · p(↵0(x) = a | y)

= p(↵0(x) = 1 | y)

Postprocessing of ↵0(y) consists of smoothing, and trimming to remove the top
0.02% of brain voxels. This reliably yields a distribution like that shown in Fig.
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2, top, dark purple, in which local minima (black diamonds) represent graylevels
corresponding to pure tissue classes minimal edge information and maxima
(red diamonds) represent class transitions edgy regions. Before integration to
solve for ↵(y), we refine: ↵0(y)! ↵̃0(y) to yield a more robust estimate of pure
tissue and PVA ranges: extrema are identified using peak detection, and locally
normalized to {0,1}, and the magnitude is squared, as shown in Fig. 2, top,
light purple. This ↵̃0(y) is then used to find the partial volume fraction ↵(y)

Fig. 2. Graylevel distributions for one FLAIR volume; top - histogram, edge distri-
bution, and extrema; middle - partial volume fraction from piecewise integration of
the edge distribution; bottom - distributions of lesion: initial fuzzy estimate, post-
processed, and manual estimate.

for each pair of adjacent tissue classes, since the desired integration can now be
performed between pure tissue graylevels y

j

, y
k

(local minima),

↵
jk

(y) =

P
y

yk
↵̃0(y)dy

P
yi

yk
↵̃0(y)dy

, y 2 [y
k

, y
i

]

Finally, the partial volume fraction profiles for each pair of adjacent tissue classes,
↵

jk

(y) (Fig. 2, middle) are combined in smooth piecewise segments to give the
fuzzy membership function for each tissue class, ⇠(c

k

| y) (e.g. Fig. 2, bottom),
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This smooth characterization of ⇠(c
k

| y) di↵ers from previous works [6, 10],
where graylevel ranges corresponding to pure tissues and PVA were estimated us-
ing piecewise linear functions. This new formulation ensures that graylevels with
minimum edge correspond to pure classes, and that maximum fuzzy membership
slope (class transition) occurs at the maximum edge content ↵(y) between pure
tissue classes, reflecting the edge-based estimate of PVA distribution.

Post Processing The initial fuzzy classification is thresholded at a level ⌧ 2
{0, 1} to give a binary segmentation image, denoted A. Three false positive
reduction (FPR) strategies are then appended to the pipeline to refine A based
on prior knowledge. The FPR exclusion criteria include:

– Minimum lesion volume (using 6-connectedness, MLV, mm3)
– Minimum distance from the brain edge (3D, DBE, mm)
– Minimum distance from the brain midline (2D, DBM, mm)

False negatives are also reduced using region growing (RG), in an attempt to
mimic the experts’ inclusion of marginally hyperintense white matter (also called
dirty-appearing white matter) which surrounds lesion cores. During each of N

RG

region growing iterations, each neighboring voxel at location x is added to the
segmentation A if the graylevel is acceptably close to an adaptive threshold: the
qth quantile of the graylevels in the original segmentation:

if :
��y(x⇤)�Q

Y (x2A)

(q)
�� <  , then : A A [ x⇤

The fuzzy threshold ⌧ , FPR constraints, and RG parameters were all optimized
using a semi-guided simplex gradient ascent with respect to group DSC.

2.3 Performance Analysis

Performance of the algorithm for lesion segmentation is evaluated using the over-
lap metrics recommended by the MSSEG Challenge. These compare automated
segmentation image A(x) to the ground truth segmentation image T (x):

– Dice Similarity Coe�cient: 2 A\T

A+T

– Positive Predictive Value: A\T

A

– True Positive Rate: A\T

T

Additionally, volume agreement with expert lesion load (LL) is illustrated using
a Bland-Altman plot, and analysis of covariance (ANCOVA) is used to test for
significant impacts of scanner and LL on DSC.



26 Jesse Knight, April Khademi

3 Results

This section presents segmentation performance data, following initial fuzzy seg-
mentation, and postprocessing using the optimized parameters, as well as factors
influencing performance Performance. The mean DSC for all 15 training cases
was 0.60 (Table 1), but for the 10 cases with LL < 5 ml, it increased to 0.70.
Accordingly, analysis of covariance revealed that DSC was significantly corre-
lated with LL, independent of scanner (p = 0.013), while performance was not
significantly impacted by scanner when controlling for LL (p = 0.354).

Table 1. Performance metrics by case

LL (ml) Case # DSC PPV TPR
72 1 0.81 0.80 0.82
49 7 0.78 0.84 0.74
43 3 0.78 0.82 0.75
39 13 0.61 0.83 0.49
30 5 0.66 0.68 0.66
29 15 0.71 0.85 0.62
22 2 0.63 0.72 0.56
13 10 0.64 0.99 0.48
12 11 0.69 0.88 0.57
6 14 0.68 0.92 0.54
5 9 0.26 1.00 0.15
4 8 0.40 0.92 0.26
2 12 0.32 0.25 0.44
2 6 0.34 0.98 0.21

Mean 0.60 0.80 0.53
Mean (LL>5) 0.70 0.83 0.62

Fig. 3. Sample segmentation; green: true
positives, blue: false negatives, red: false
positives

An example segmentation is shown in Fig. 3, where it can be seen that false pos-
itives arise mostly along the lesion borders, while false negatives are attributable
to small, ambiguous lesions near the gray matter. The Bland Altman plots (Fig.
4), demonstrate a potential bias of the method towards underestimation of LL
(mean di↵er-ence of 3.6 ml), and a small positive correlation between LL and
undersegmentation (slope of 0.97). This result is corroborated by higher mean
PPV (0.80) than TPR (0.53), over all cases, indicating higher specificity than
sensitivity.

4 Discussion

The edge-based segmentation algorithm performs well on the training data pro-
vided, given the large intensity inhomogeneity and low resolution in the MRI vol-
umes. We observed that the ground truth distribution of lesion versus graylevel,
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Fig. 4. Bland-Altman plots showing volume agreement with expert segmentations

p(L | y) (Fig. 2, bottom), using the binary consensus segmentations, rarely
reaches a value of 1, and has long, gradual slopes towards the maximum. This
likely arises from the ambiguous segmentation of so-called dirty appearing white
matter, and it means that even optimal thresholding results would incur signif-
icant false positive and false negative fractions. Pre- and post-processing tech-
niques both help to reduce these e↵ects, and it is worth noting that our prepro-
cessing pipeline resulted in better separability of classes by graylevel than the
preprocessed images provided for the competition.

As with most MS lesion segmentation algorithms, the proposed method is
challenged by small lesion loads. However, performance was not impacted by
scanner or the associated voxel resolution, demonstrating the robustness of this
e�cient nonparametric approach to modeling FLAIR image variability. Many of
the false positives occur either in the gray matter (due to bias field) or as CSF
pulsation artifacts, so future works could investigate the use of tissue priors,
improved inhomogeneity correction, or multiscale estimation of edge content.
However, in hoping to avoid expensive and error-prone image registrations in
our approach, we are investigating primarily multiscale or context-based edge
characterization, and an iterative bias-field correction with lesion masking.

5 Conclusion

In conclusion, we present a fast, robust segmentation algorithm capable of delin-
eating MS lesions in FLAIR MRI alone. The method achieves good performance
(DSC = 0.60) on a challenging database of 15 images from 3 di↵erent scan-
ners, and even better performance (DSC = 0.70) on lesion loads greater than 5
ml. Unlike many segmentation tools, the algorithm does not rely on parametric
models of tissue class graylevel distributions, and consequently demonstrates no
change in performance with di↵erent scanners. Additionally, the method requires
only one MRI sequence, FLAIR, and no additional tissue priors or training data,
thereby avoiding additional MR scan time, limited image availability, and the
need for expensive and imperfect registration.
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Abstract. Multiple sclerosis (MS) is a demyelinating disease which could
cause severe motor and cognitive deterioration. Segmenting MS lesions
could be highly beneficial for diagnosing, evaluating and monitoring the
disease progression. To do so, manual segmentation, performed by ex-
perts, is often performed in hospitals and clinical environments. Although
manual segmentation is accurate, it is time consuming, expensive and
might not be reliable.
The aim of this work was to propose an automatic method for MS le-
sion segmentation and evaluate it using brain images available within
the MICCAI MS segmentation challenge.
The proposed method employs supervised artificial neural network based
algorithm, exploiting intensity-based and spatial-based features as the
input of the network. This method achieved relatively accurate results
with acceptable training and testing time for training datasets.

Keywords: Multiple Sclerosis Segmentation, Artificial Neural networks,
Machine Learning, MRI

1 Introduction

Multiple Sclerosis (MS) lesion is a demyelinating disease which appears in white
matter (WM) region of the brain and causes various motor and cognitive impair-
ments [1]. One of the most accurate imaging tools for diagnosing MS is magnetic
resonance imaging (MRI), which provides not only qualitative but also quanti-
tative evidences for assessing disease development and treatment e�cacy.

Segmentation of MS lesions in MR scans is a crucial step of quantitative dis-
ease analysis. The most common method for that is manual segmentation which
is also regarded as the “gold standard” method for distinguishing lesions and
other brain tissues. Although this method is accurate, it is a tedious and com-
plex procedure that is not practical for analyzing large amount of MRI datasets
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in clinical practice. Moreover the manual approach also su↵ers from bad repro-
ducibility due to large intra- and inter-observer variation [2,3].

Di�culties with manual segmentation led to development of various segmen-
tation methods with di↵erent level of accuracy and complexity [1]. Among these
methods, machine learning-based segmentation algorithms are popular choices
for MS lesion segmentation and in recent MS segmentation studies, they have
been proved to be superior to other conventional methods [1,4].

Recently, a machine learning method for brain segmentation using shape con-
text [5] has been developed and evaluated within the MRBrainS13 challenge [6],
providing rather accurate results with relatively short training time. The aim of
this paper is to test a similar segmentation framework for MS lesion segmen-
tation. The proposed algorithm is based on artificial neural networks (ANN)
which exploits conventional spatial-based and intensity-based features. The im-
plemented method is applied on the MICCAI MS segmentation challenge [7] and
the results are compared to the segmentation performed by clinical experts.

2 Method

The goal of MS lesion segmentation is to divide the image into two meaningful,
homogeneous and non overlapping regions which represent the lesion and its
background. The proposed segmentation method for this paper consists of several
parts which are shown in Fig. 1. While the main structure of the algorithm is
similar to [5] , it slightly di↵ers regarding the classifier and feature extraction
parts. In the following, the details of di↵erent parts of the algorithm are discussed
in detail.

2.1 Image Data and Ground Truth

In this project, data from the MICCAI challenge for MS segmentation [7] were
used which contained totally 53 datasets from 4 di↵erent sites and 4 di↵erent
MRI scanners (GE Discovery 3T, Philips Ingenia 3T, Siemens Aera 1.5T and
Siemens Verio 3T), in total 15 1.5T and 38 3T MR brain exams. Each exam
consisted of 4 series of MRI images which are 3D FLAIR, 3D T1-weighted, 3D
T1-weighted GADO an 2D PD-/T2-weighted scans. Both preprocessed and un-
processed datasets were provided by the challenge organizer. Preprocessed scans
were denoised, registered, brain extracted and bias field corrected with state-of-
the-art preprocessing algorithms. The Philips Ingenia, Siemens Aera and Siemens
Verio MRI volume contains 144⇥512⇥512, 128⇥224⇥256, 261⇥336⇥336 voxels
respectively. From all datasets, 15 cases were provided with manual segmenta-
tion (ground truth) for training purpose.The raw and segmented images for the
remaining 38 datasets were kept away from the participant for evaluating the
performance of each proposed methods and also testing on infrastructure which
was provided by organizer. It also provided fair comparison between di↵erent
participants in terms of running time and consistent parameters for all datasets.
For each dataset, 7 manual segmented scans, performed by di↵erent experts and
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Fig. 1: Generic flow chart of proposed method for MS lesion segmentation.

also consensus manual segmentation were provided which contained two classes
(lesion and background). However, only consensus manual segmented scans were
used as ground truth in this paper.

2.2 Preprocessing

The aim of preprocessing is to prepare the data in suitable way to be fed to
the classifier. Since datasets were already preprocessed, only a few preprocessing
steps were applied on each volume which are described in the following.

• Histogram matching: In this step the histograms of each group of datasets
(from di↵erent scanners) were matched to the first dataset in that group.
This step is important for preventing the network from being confused by
di↵erent histogram shapes. Histogram matching was performed using the
Insight Segmentation and Registration Toolkit (ITK) [8].

• Bias field correction: Intensity inhomogeneity artifact was removed using
ITK [8] . However, this step is not of high importance for the datasets used
in this project since they were already corrected.

• Removing extremely low intensity values from training and testing
dataset: Outlier intensity might have an adverse impact on the segmentation
results. Therefore, the 4th percentile of each dataset was calculated as the
lower boundary, and all voxels below this calculated value were clipped o↵
and mapped to the derived boundary.
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• Normalizing data : Since intensities from di↵erent channels within a pa-
tient and also intensities of the same channel for di↵erent patients could
have large variability, normalization is a critical step to be applied on data.
Therefore, in this work all images were normalized with zero mean and stan-
dard deviation of one.

2.3 Feature Extraction

As the input of networks, spatial-based and intensity-based features were ex-
tracted. These features are based on [9] and are described as follows:

• Intensity of 3D FLAIR channel
• The intensity after convolution with Gaussian kernels with � = 1, 2, 3 mm2

• The gradient magnitude of the intensity after convolution with Gaussian
kernels with � = 1, 2, 3 mm2

• The Laplacian of the intensity after convolution with Gaussian kernels with
� = 1, 2, 3 mm2

• Spatial information of all voxels (x, y, z) which were divided by the length,
width, and height of the brain respectively.

2.4 Classification

Artificial Neural Networks were uses as the main learning algorithm of the pro-
posed algorithm. While Support Vector Machine (SVM), Self Orginizing Map
(SOM) and multi layer perceptron (MLP) were implemented in the frame of
this work, the testing results on training datasets from MLP were more accurate
with acceptable training time. Thus, this network was chosen as the main ANN
classifier in this paper.

The proposed network consisted of one hidden layer with 100 hidden nodes.
The learning rule for updating weights was the generalized delta rule which calcu-
lated the weight updates from output to input layer (error back-propagation)[10].
In the training phase, 50000 voxels were randomly selected from training datasets.
Out of all training samples, around 90 % of samples were randomly selected
within the brain region and the resting samples from MS lesions. The training
label includes 2 classes, namely MS lesions and background. The ANN training
was set to stop after 1000 iterations.

The output of the network contained the information of the voxel classes
which was used for final segmentation as described in the next section.

2.5 Image Segmentation and Post-processing

For segmenting the test dataset, all voxels are passed into the ANN, which in
turn outputs the probabilities of the voxel belonging to the 2 classes. The voxel is
assigned to the class that gives the highest probability. The only post-processing
step that was applied on classifier results was setting everything outside the
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brain mask as background since the brain masks were provided for all datasets
by the organizer. However, using other conventional post-processing methods
such as using morphological filters and using prior knowledge that MS lesions
could be only located in WM could be beneficial to increase the accuracy of the
results [3].

2.6 Accuracy Analysis

Several similarity indexes could be used in order to validate the results. In this
paper, segmentation results were compared to the ground truth based on Dice
similarity index, which indicates how well the two masks overlap with each other.
The Dice coe�cient can be calculated as:

DI% =
2|A

i

T
B

i

|
|A

i

| + |B
i

| (1)

where i stand for tissue types (e.g. MS-lesion, background), A stands for manual
segmentation (ground truth) and B for MRI segmentation algorithm. It has the
range from 0 (the worst result) to 100 (the best result if A and B are completely
identical).

3 Results

Fig. 2 shows the results after segmentation with proposed algorithms for two
sample slices from the first datasets for visual inspection. The first column shows
sample raw images which were used for feature extraction as input of the net-
work while second column shows the results of proposed segmentation method
and the last column shows the misclassified voxels.

The primitive evaluation results according to Dice score are listed in Table 1
for the training datasets which were provided by manual segmentation.
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Fig. 2: Examples of segmentation results for two sample slices (312, 337) of first
dataset. First column shows the raw 3D FLAIR scans, second column shows
the segmentation result from proposed method and the last column shows the
misclassified voxels

Table 1: Primitive evaluation based on Dice score.

Test dataset
Magnetic

Field
Strength (T)

Total Number
of lesion voxels

Dice Score(%)

1 3 253175 84.01
2 3 142052 79.07
3 3 79772 61.94
4 3 3344 19.50
5 3 106697 64.34
6 1.5 1348 10.20
7 1.5 35433 67.59
8 1.5 2229 29.42
9 1.5 3491 30.66
10 1.5 9166 63.24
11 3 26680 37.34
12 3 3673 20.45
13 3 96861 70.80
14 3 14219 47.84
15 3 68247 66.60
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All experiments were performed on a desktop computer with NVIDIA GTX
980 4GB, 32 GB installed memory and an Intel Xeon E5-2630 2.40 GHz CPU.
The main implementation of the algorithm was done with MATLAB (version
2016a).

4 Discussion

The main di↵erence between the proposed method and our previous work for
brain segmentation [5] is that the shape context features were eliminated in the
current pipeline. In our preliminary test, adding these features improves the
segmentation accuracy slightly for the majority of cases (Dice coe�cient goes
up by 3.5 % on average). However, due to the long processing time for creating
these features (20 minutes per case) and di�culty to integrate this part to the
evaluation platform, these features were removed from the pipeline. Except this
part, the proposed framework is almost identical to the one proposed in [5].

As can be seen from Fig. 2, for two sample slices most of the segmentation
errors within the brain occurred in the border of MS lesion and the background,
where inter-observer variation of the manual delineation could also be high.

As shown in Table. 1, the accuracy for the 3T scans are better compared
to the 1.5T scans, in general. This may be due to lower resolution and tissue
contrast of the 1.5T scans which make the segmentation task more challenging
in particular at the border of lesion areas. Moreover, the level of accuracy also
depends on the size of the lesions. For the datasets with large amount of MS
lesions, the accuracy is considerably better compared to the datasets with small
MS lesions. This is expected as the numbers of voxels a↵ected by partial volume
e↵ects are relative smaller in the cases where the lesions are large.

From our experiment, the network has a tendency to produce relative higher
amount of false positive errors than false negative errors. In order to minimize
this e↵ect, 90 percent of the training samples were selected from the background
and only 10 percent were selected from the lesion area. Boot-strapping is an
alternative solution to deal with this problem and could possibly lead to better
performance.

5 Conclusion

In this paper, a fully automatic method for MS lesion segmentation has been
proposed. The proposed method incorporates the spatial-based and intensity-
based features in the machine learning framework to segment the images to
the lesion and background. Results of the segmentation are relatively accurate
with relative short training and testing time. Further investigation is needed for
developing the current method to improve the accuracy.
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Abstract. Biomedical image segmentation requires both voxel-level infor-
mation and global context. We present a deep convolutional architecture
which combines a fully-convolutional network for local features and an
encoder-decoder network in which convolutional layers and maxpooling
compute high-level features, which are then upsampled to the resoultion
of the initial image using further convolutional layers and tied unpooling.
We apply the method to segmenting multiple sclerosis lesions.

Introduction

Medical image segmentation is a fundamental problem in biomedical image
computing. Manual segmentation of medical images is both time-consuming and
prone to substantial inter-rater error: automated techniques o�er the potential
for robust, repeatable and fast image segmentation.

In the past few years, neural networks have returned to the fore as the most
promising technique for supervised machine learning.(LeCun, Bengio, and Hinton
2015) In particular, convolutional neural networks have dominated the field of
image recognition. More recently, techniques for image recognition have been
reworked to object location and segmentation. One recurring theme is that
segmentation requires a combination of low-level and high-level features, with
several techniques and architectures having been suggested for upscaling and
incorporating high-level with low-level features. (Hariharan et al. 2015; Long,
Shelhamer, and Darrell 2015; Ronneberger, Fischer, and Brox 2015; Brosch et al.
2016)

In this paper, we introduce an architecture, called nabla nets, for image segmen-
tation, with application in the medical image segmentation domain. Nabla net
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is a dag-like deep neural network architecture, combining a fully-convolutional
pathway learning low-level features and an encoder-decoder network learning
high-level features. We describe the general features of nabla-net, its application
to the segmentation of multiple sclerosis lesions.

Method

Summary

The fundamental basis of nabla net is a deep encoder/decoder network. Such a
network comprises a series of encoder layers, each of which reduces feature maps
with higher spatial dimensions to feature maps with lower spatial dimension,
followed by a series of decoder layers, which expand features with low spatial
dimensions to features with high spatial dimensions. Concretely, for the problem
of segmenting MS lesions, the encoder-decoder pathway of the nabla net applied
to a 256 * 256 image would compute in the first encoder layer 64 256*256 feature
maps, which are then reduced to 64 128*128 feature maps by maxpooling. This
is repeated in encoder layer two, yielding 64 64*64 feature maps, and then one
further time, yielding 64 32*32 feature maps.

These feature maps are then upscaled by decoder layers, yielding subsequently
64 64*64 feature maps, 64 256*256 feature maps, and finally 64 256*256 feature
maps. The upscaling is performed by using “tied unpooling”, as described below.

Such an encoder-decoder network can be trained to reconstruct the input image:
in this case, the network would be called a “convolutional autoencoder”. Such
networks have been popular in the past as a method of unsupervised pre-training
for image classification, but have largely fallen out of favour, as better methods
of assigning network weights have emerged. In this case, we instead train the
network to reproduce the MS lesion segmentation: results of training a pure
encoder-decoder network on MS lesion data is shown in Figure 1.

The output of the pure encoder-decoder network provides a good localisation of
the lesions, but is unable to provide crisp boundaries: for that reason, the final
prediction of a nabla net is produced by combining the 64*256*256 layer arising
from the first layer encoder layer with the 64*256*256 output of the final decoder
layer. These 128 feature maps are then processed by a final fully convolutional
layer, before the final prediction of the lesion map is made. This ensures that a
combination of low-level and high-level features are available for the prediction.

Techniques used

To produce feature maps, we make use of maxpooling (Jarrett et al. 2009), with
non-overlapping pool size 2, in which the feature map is scaled by a factor of two
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Fig. 1. Example raw output of the pure encoder-decoder network, showing good locali-
sation of the lesions but poor delineation

Fig. 2. Example raw output of Nabla net trained on axial FLAIR slices, showing
improved lesion outline detection
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in both dimensions, by replacing 2 by 2 patches with the maximum intensity
in that patch. To scale up the feature maps, we use “tied unpooling” (Zeiler,
Taylor, and Fergus 2011; Badrinarayanan, Kendall, and Cipolla 2015), in which
feature maps are upscaled by filling only the positions of the maximums of the
corresponding maxpooling layer. We use make use of batch normalization (Io�e
and Szegedy 2015) to accelerate the learning process. The architecture of the
nabla net makes no use of fully-connected layers, and as such it can be applied to
any image with dimensions divisible by eight, this being enforced by the number
of maxpooling steps.

The Nabla net Architecture

As stated above, the nabla net is built from encode and decode layers. Each
encode layer has the following structure:

Layer Name Dimension of output
1 Input (p, q, r)
2 Zero padding (64, q+2, r+2)
3 3 by 3 convolutional (64, q, r)
4 Batch Normalization (64, q, r)
5 ReLu (64, q,r)
6 Zero padding (64, q+2, r+2)
7 3 by 3 convolutional (64, q, r)
8 Batch Normalization (64, q, r)
9 ReLu (64, q,r)

Each decode layer has the following structure

Layer Name Dimension of output
1 Input (p, q, r)
2 Zero padding (64, q+2, r+2)
3 3 by 3 convolutional (64, q, r)
4 Batch Normalization (64, q, r)
5 Zero padding (64, q+2, r+2)
6 3 by 3 convolutional (64, q, r)
7 Batch Normalization (64, q, r)

The whole network has the following structure

Layer Name Dimension of output Comments
1 Input (5, n*8, m*8) Five slices,
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Layer Name Dimension of output Comments
dimensions (n*8, m*8)

2 Encode 1 (64, n*8, m*8)
3 Maxpool 1 (64, n*4, m*4)
4 Encode 2 (64, n*4, m*4)
5 Maxpool 2 (64, n*2, m*2)
6 Encode 3 (64, n*2, m*2)
7 Maxpool 3 (64, n, m)
8 Encode 4 (64,n,m)
9 Decode 4 (64,n,m)
10 Unpool 3 (64, n*2, m*2) Tied to Maxpool 3
11 Decode 3 (64, n*2, m*2)
12 Unpool 2 (64, n*4, m*4) Tied to Maxpool 2
13 Decode 2 (64, n*4, m*4)
14 Unpool 1 (64, n*8, m*8) Tied to Maxpool 1
15 Merge (128 , n*8, m*8) Concatenate the outputs

of layers 2 and 14
16 Encode Final (64, n*8, m*8)
17 1*1 Convolutional (1,n*8, m*8)
18 Sigmoid (1, n*8, m*8) Loss = binary crossentropy

The network was built using the Keras framework (https://github.com/fchollet/keras),
and trained using Theano (http://deeplearning.net/software/theano) as a
backend, using an Adadelta optimizer.

A version of Nabla net, trained on skull-stripped FLAIR images from the Insel-
spital, was applied to the MSSEG training cases, and achieved a mean Dice score
of 0.67, and a standard deviation of 0.11. For the challenge, as requested by the
organisers, we retrained the system from scratch using only the MSSEG training
data, as described below.

Nabla nets for the MSSEG challenge

We trained three copies of nabla net, one for each of the three directions { axial,
saggital, coronal }. The networks were trained on the unproicessed FLAIR data,
resampled to isotropic 1mm voxel spacing. Each training case comprised the data
from five consecutive { axial, saggital, coronal } slices, with such a set of slices
being included as training data if the middle slice contained voxels within the
brain mask. Ground truth for such a set of slices was given by the lesion mask
of the central slice: thus, the lesion mask of a slice was predicted from the slice
itself and the four slices surrounding it.

There was a substantial data imbalance between lesion and non-lesion pixels
in the training data, owing not only to the size of the lesions, but also to the
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presence of pixels outside of the brain mask in the image. Since sampling the
training data was not an option (as nabla net operates on whole slices), instead
the individual voxels were weighted according to their importance to the model.
Rather than simply weighting all lesion voxels (which typically has the e�ect
of moving the optimal decision boundary, but not improving the classifier) we
instead calculated, for each case, the 25th percentile of the scaled intensity within
the lesion mask, and weighted the loss function from voxels above that intensity
ten times more than other voxels.

Training the models

The MSSEG training data is derived from multicentric, multi-scanner data, with
data from three di�erent scanner types being available. For each of the three
models trained, one example from each scanner type was randomly selected, and
the data from those cases used as validation data, to monitor for overfitting.

The models were trained with the Adadelta method. Models were trained until
no improvement in loss was seen in the validation set over five epochs (early
stopping) and the model with best performance (binary crossentropy) on the
validation set was selected for the final model.

Applying to new cases

Given a new case, the lesion mask was predicted, using only the processed FLAIR
maps, as follows.

Given a case from the MSSEG training data, the pipeline for lesion segmentation
was as follows: resample the processed FLAIR volume to 1mm isovoxels. Apply
the saggital, coronal and axial models to the resampled volume (padding the
image to ensure that the slice dimensions are divisible by eight). The final lesion
heatmap is given by averaging the heatmaps arising from the three models. This
heatmap is then resampled to the native voxel spacing of the original volume. An
initial segmentation is made by setting all voxels with posterior > 0.5 as lesion
voxels, and all voxels with posterior < 0.1 as non lesion: the final segmentation
is derived by using a random walk segmentation (beta = 10) as implemented in
the python scikit-image package (http://scikit-image.org/).

Processing a single case, on a laptop with an 8Gb NVIDIA GTX980M GPU,
took an average of 210s. Processing on the VIP system, which does not have
access to GPU accelleration, was substantially slower, on the order of two hours
per case.
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Abstract. We describe an analysis pipeline for processing the 2016
MSSEG MICCAI challenge data, where the goal is to identify lesions
from patients with multiple sclerosis (MS). From this data, we then cre-
ate a series of imaging predictors derived from all the imaging sequences
(T1-weighted, T2-weighted, FLAIR, and proton density) to build a ran-
dom forest classifier for MS lesions.

Keywords: random forests, segmentation, multiple sclerosis

1 Introduction

Patients with multiple sclerosis (MS) have white matter lesions in their brains,
which magnetic resonance imaging (MRI) scans is sensitive to. Manual segmen-
tation of the MRI scan by an expert reader is the gold standard for volume
estimation and localization, but is time-consuming and has within- and across-
reader variability. We propose an automated segmentation approach using a ran-
dom forest algorithm with features extracted from multiple sequences of MRI
scans.

2 Methods

2.1 Data

The overall training data consisted of 15 scans from 3 di�erent scanners from
the MICCAI 2016 Multiple Sclerosis Segmentation (MSSEG) Grand Challenge
(https://portal.fli-iam.irisa.fr/msseg-challenge/overview). The data
consisted of 4 imaging sequences: 1) a T1-weighted image, 2) a T2-weighted im-
age, 3) Fluid attentuated inversion recovery (FLAIR) image, and 4) and proton
density (PD) image. A T1-weighted image was taken before and after injection
of gadolinium, denoted as T1-pre and T1-post, respectively. Therefore, each per-
son had 5 images used for prediction. Lesions were manually segmented on the
FLAIR image by 7 expert readers and a consensus was derived using the loga-
rithmic opinion pool based STAPLE (LOP-STAPLE) method (Akhondi-Asl et
al. 2014).

We used 8 of the participant’s data to build a model. The remaining 7 par-
ticipant scans were used as a test set. For each participant in the test set, the
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model predicted a probability of lesions on a voxel level, which was thresholded
using a cuto� derived from the training data, resulting in a binary image mask
of predicted lesions.

2.2 Preprocessing

All operations were performed using the R statistical language (R Core Team
2015). The fslr package (Muschelli et al. 2015) was used, which relies on FSL
(Jenkinson et al. 2012), as well as the ANTsR package (https://github.com/

stnava/ANTsR), which is an implementation of the Advanced Normalization
Tools (ANTs) software ported to R.

The pipeline consisted of only the unprocessed images from the challenge,
using the T1-weighted, T2-weighted, proton density, and fluid attenuated inver-
sion recovery (FLAIR) sequences. The unprocessed images were corrected using
the N4 inhomogeneity correction (N. J. Tustison et al. 2010). For each imaging
sequence, we estimated a brain mask using a simple label fusion approach using
15 templates from the multi-atlas skull stripping software (MASS) (Doshi et al.
2013). Each template was registered to the target image using an a�ne transfor-
mation followed by symmetric normalization (SyN) (B. B. Avants et al. 2008).
The template brain mask was transformed into the native space and voxels clas-
sified as brain if over 50% of the template masks categorized that voxel as brain.
Brain-extracted images were corrected again using the N4 correction to remove
any additional inhomogeneity only within the brain.

Brain-extracted and inhomogeneity-corrected images were registered to the
FLAIR image of the study using a rigid-body transformation and a Lanczos
windowed sinc interpolation.

We normalized the intensity of each scan by subtracting the image by the 20%
trimmed mean and dividing the image by the 20% trimmed standard deviation
estimated from the intensity of values within the FLAIR brain mask. All imaging
predictors were calculated using the intensity-normalized images in the FLAIR
space. All predictors were computed on all imaging sequences, unless otherwise
specified.

2.3 Imaging Predictors

We derived a set of imaging predictors from each scan. We will describe each
predictor together with the rationale for their use. These features make up the
potential set of predictors/features for image segmentation.

Normalized Intensity The first predictor is the normalized intensity value
in standard deviation units denoted by x(v). This is the main predictor used
in visual inspection. For example, hyperintensities on the FLAIR, PD, and T2
images as well as hypointensities of the T1-pre are typically indicative of lesions.

https://github.com/stnava/ANTsR
https://github.com/stnava/ANTsR
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Local Moment Information For each voxel, we extracted a neighborhood,
denoted N(v), of all adjacent voxels along the 3 dimensions together with the
voxel itself. If xk(v) denotes the voxel intensity for voxel neighbor k, where
k = 1, . . . , N(v) = 27, then the local mean intensity is defined as:

x̄(v) = 1
N(v)

ÿ

kœN(v)
xk(v). (1)

Based on similar ideas we have also calculated statistics based on higher
order moments and define the local standard deviation (SD), skew, and kurtosis
as:
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We did not divide by {N(v) ≠ 1} in standard deviation and skew formula
and did not subtract by 3 for kurtosis. As N(v) is the same at every voxel, these
simplified choices will have no e�ect on modeling or prediction.

The higher order moments can provide information about how homogeneous
the intensities in the neighborhood are and where edges may be located.

First-pass Segmentation A major advantage of our approach is that it can
use the results of other segmentation algorithms as covariates in our model. Con-
sider, for example, Atropos (Brian B Avants et al. 2011), a previously published,
open source, general segmentation tool based on Markov random fields for im-
age segmentation. We used Atropos to conduct a 4-tissue class segmentation
of the FLAIR image and combined the top 2 probability classes into one class.
The probability of the resulting class was then used a predictor, denoted by
Atropos(v). Although Atropos has been shown to perform well in other studies
for tissue-class segmentation (Brian B Avants et al. 2011, Menze et al. (2015)),
the Atropos segmentation did not perform adequately in MS lesion segmenta-
tion. However, using the Atropos segmentation probabilities as predictors can be
done seamlessly in our approach. Similarly, the results of any other segmentation
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approach can be incorporated in our approach and the relative performance of
methods can be compared.

Contralateral Di�erence Images As lesions at a specific location at a spe-
cific visit are commonly constrained to one side of the brain, the contralateral
side tends to have di�erent intensities values. In contrast, for non-lesion voxels,
the contralateral voxels tend to have similar intensity values due to the quasi-
symmetry of the brain. To take advantage of this property, we right-left flipped
the image, and computed a di�erence image

f(v) = x(v) ≠ x(vú), (2)

where v

ú is the contralateral voxel of v.

Global Head Information We also created 3 images by smoothing the original
image using large Gaussian kernels (‡ = 5mm

3
, 10mm

3
, 20mm

3) to account for
potential heterogeneity in intensity. These smooth images we denoted by s5(v),
s10(v) and s20(v), respectively.

Standardized-to-template Intensity We have also incorporated predictors
that contrast the voxel intensities with those of an average brain obtained from
the training scans. More precisely, we registered the T1-weighted image, pre-
viously registered the FLAIR image, using a�ne transformations followed by
SyN (B. B. Avants et al. 2008) to this emplate. We transformed each intensity-
normalized sequence into template space using this transformation. For each
sequence, we created a voxel-wise mean image M and voxel-wise standard de-
viation S image across the registered images in template space for the training
scan.

For all scans in the training and test sets, we created a standardized voxel
intensity with respect to this population, ztemplate, using the following equation:

ztemplate(v) = x(v) ≠ M(v)
S(v) ,

where this operation is performed voxel-wise, as denoted by v. This image
(ztemplate) was then warped back into the original space to align this predic-
tor with the other predictors using the inverse from the SyN registration step.

Quantile Images Although we believe the z-score normalization creates a stan-
dardized intensity value for comparison across participants, di�erences in distri-
butions still exist. As we commonly are trying to identify high or low-valued
voxels in most imaging sequences, we wish to focus on the quantile a voxel
falls into in the distribution of all voxels within that brain imaging sequence.
Therefore for each sequence s for each participant i, we estimated an empirical
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cumulative distribution function (CDF), Fi,s, from all voxels within the brain
mask. Using this, we estimated the quantile of each voxel intensity as follows:

qi,s(v) = F

≠1
i,s (x(v))

Applying this procedure to all voxels results in a quantile image, which we denote
q(v). We believe this may make images more comparable. For example, the fact
a voxel has a value of 2 in the FLAIR image may not be as important to discern
lesion status compared to the fact it is in the top 10% of the FLAIR intensities
over the brain.

2.4 Model Estimation

The full training data for model/algorithm creation consisted of all predictors
in the training scans for all voxels within each participant’s brain mask. We
subsampled 100, 000 voxels from each participant in the training data to fit
models, denoted as fitting voxels. On these fitting voxels, we fit random forest
classifier (Breiman 2001) with the randomForest package (Liaw and Wiener
2002) using the default parameters and 1000 trees.

2.5 Method Evaluation

For each voxel not within the fitting voxels, we estimated a probability that voxel
was lesion. Using these probabilities and the true label for lesion, we optimized a
probability cuto� using the Dice Similarity Index (DSI) (Dice 1945), an overlap
measure.

For each participant in the test set, we estimated the probability a voxel
was lesion versus non-lesion. Using the cuto� derived from the non-fitting voxels
in the training data, we thresholded the probability to create a binary mask
of predicted lesions. This mask was compared to the gold standard for that
participant using the DSI.
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Abstract. Lesion segmentation plays an important role in the diag-
nosis and follow-up of multiple sclerosis (MS). This task is very time-
consuming and subject to intra-inter rater variability. In this paper, we
present a tool for automated MS lesion segmentation using only T1w and
FLAIR images. Our approach is based on two main steps, initial brain
tissue segmentation according to the gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) performed in T1w images, followed
by a second step where the lesions are segmented as outliers to normal
apparent GM brain tissue on the FLAIR image. After a false-positive
reduction step is applied on the detected lesions, their segmentation is
refined using a level sets strategy.

1 Introduction

Magnetic resonance imaging (MRI) plays an important role in medical image
analysis for both clinical and research studies. Inflammatory demyelinating dis-
eases such as multiple sclerosis (MS) [10] presents plaques (lesions) of demyelina-
tion typically observed in conventional MRI. Detecting those lesions is a crucial
task for MS diagnosis as stated in the 2010 revision of the McDonald criteria
[12]. Thus, a fully automatic tool that can segment the lesions would prevent
user variability and reduce the time consumption considerably. In the literature,
there is not yet a standard tool feasible for daily clinical practice [9], although
many attempts have been proposed thus far [5,7,15,17,18,20]. Automatic detec-
tion of MS lesions is a challenging problem [6,9] that is hampered by factors such
as diversity among devices, MRI acquisition protocols and case of studies.

In this work, we present a tool that follows the principles of a recently re-
leased tool for MS lesion detection [3,13], that was configured and tested for both
1.5T and 3T images. This algorithm is based on two main steps, initial brain
tissue segmentation according to gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) in T1w images, followed by a second step where lesions
are segmented as outliers to normal apparent GM brain tissue on the fluid atten-
uated inversion recovery (FLAIR) image. To extend this tool for processing 3T
brain volumes, we have changed the bias normalization and tissue segmentation
steps. Moreover, we have modified the lesion segmentation process to include
three iterations and a level sets approach. These changes allow the reduction of
false-positive (FP) detection, maintaining a good true-positive (TP) rate.
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2 MS lesion segmentation pipeline

2.1 Preprocessing

Since our pipeline is optimised for a certain preprocessing setup, we use our
own preprocessing steps instead of segmenting the preprocessed dataset. This
preprocessing includes the following steps:

Skull stripping and tissue segmentation This step is applied by means of
the SPM tissue segmentation algorithm [1]. As the result is a probability map,
we performed a maximum likelihood between the three main tissue classes: WM,
GM and CSF. To obtain the brain mask we apply a probability threshold set at
0.5 [2,14].

Image denoising This step is applied in order to enhance and restore the MRI
image. We smooth the image histogram by using the 3D Matlab implementation
of the anisotropic di↵usion filter of Perona and Malik [11].

Bias correction This step is applied to correct the inhomogeneities. For this
purpose, we use a Matlab implementation of the bias field correction proposed by
Larsen et al. [8], which implements the well-known non-parametric, non-uniform
intensity normalization (N3) method [16] as a Bayesian modeling method.

Intra-subject registration Finally, we used SPM spatial co-registration, es-
timate and re-slice [14] to correct spacing and misalignments.

2.2 Lesion segmentation

Lesion detection Following the unsupervised strategy presented in Roura et
al. [13] (see Figure 1), we look for the hyperintensity regions as the outliers
in the GM tissue of the FLAIR image with three iterations. First of all, we
need to distinguish among the three main brain tissues. This is already obtained
when performing the skull stripping process via the SPM tissue segmentation on
T1w images. Afterwards, the hyperintensities are detected by a thresholding in
FLAIR images and refinement step which is performed three times, where the
first iteration takes into account very large lesions, the second segments large
and bright lesions and the third is performed at a lower threshold to look for
small lesions. The outliers are computed using a threshold defined as:

Thr = µ + ↵� (1)

where µ and � are the mean intensity and the standard deviation of the GM
histogram (computed by the full width at half maximum), respectively. Candi-
date lesions are adjusted by the parameter ↵. As stated in Roura et al. [13], this
alpha parameter has a strong impact on the results obtained.
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Fig. 1. Scheme of the whole pipeline. The first line represents the atlas information
used when segmenting the tissues and the ventricles of the T1w image in the second
row. The bottom row shows all the steps over the FLAIR image when segmenting the
white matter lesions.

Originally, three post-processing parameters were used to reduce the false
positive (FP) lesions after applying this threshold: lesion size (�

size

), percentage
of lesion voxels belonging to either WM or GM, and percentage of neighbor
lesion voxels belonging to WM (�

nb

). However, due to the tissue segmentation
we discarded the second rule. Moreover, since our first iteration is now focused
on detecting large hyper-intense lesions, we only apply the size rule during this
first iteration; whereas in the other two following steps, we follow the strategy
presented in Roura et al. [13]. After optimisation, the parameters were set as
defined in Table 1.

Detection refinement with structure information In the second and third
iterations, all the lesions attached to the ventricles’ region and presenting elon-
gated shapes are discarded in order to avoid periventricular inflammatory re-
gions. In Figure 1 there is an example of this scenario, where we show the ven-
tricles and some elongated candidate regions that have been removed. We have
used the maximum probability tissue labels derived from the MICCAI 2012
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Table 1. Parameters for the three iterations of the lesion detection process after opti-
misation with the training database.

↵ �size �nb

First iteration 2 7 ml -

Second iteration 2.5 0.035 ml 0.30

Third iteration 2 0.020 ml 0.45

Grand Challenge and Workshop on Multi-Atlas Labeling. The data was labeled
by Neuromorphometrics, Inc. using MRI from the OASIS project. This atlas be-
longs to the standard space used by SMP12 tissue segmentation; therefore, one
can easily obtain the deformation fields to this space from any subject space.
Since we already performed this process at the early steps, we are able to apply
the inverse deformation fields with a nearest-neighbor interpolation to the labels
belonging to the ventricles. This procedure allows to pullback any of the brain
structures of this atlas (see Figure 1). Once the ventricles have been brought
to the subject space, we obtain a smoothness region by applying morphological
operations (dilation and erosion).

Lesion segmentation refinement using level sets Finally, the remaining
lesion detections are used as the seed regions of the active contours segmentation
to improve the segmentation results. We formulate a level set method following
the principle of [4] of an active contour model detecting objects with undefined
edges, i.e. with a low or unappreciable gradient at the boundaries of the objects.
Let �(x, t) be the level set function and �(x, t) = 0 be the interface, which
bounds the open region ⌦, i.e. �(x, t) = 0 = �⌦. Therefore, the � properties
remain as follows:

�(x, t) > 0 for x 2 ⌦+ (inside the object ! lesion)
�(x, t) < 0 for x 2 ⌦� (outside the object ! normal tissue)

�(x, t) = 0 for x 2 �⌦

We initialize the surface S ⇢ ⌦ as the contour of the initial lesion mask.
Therefore, the inside(S) is denoted as s1 2 ⌦+ bounded by S, and the outside(S)
as s2 2 ⌦�, belonging to the ventricles. The surface S evolves by minimizing
the following energy based-segmentation:

� = � + �t ⇤ �
1

K
s

⇤ �
2

F
i

(2)

where �t is the time step for each iteration, �
1

is the weight for the smooth term
K

s

denoting the curvature of the surface [19], and �
2

is the weight for the image
force F

i

computed as follows:

F
i

= �(I � µ
s2

)2 + (I � µ
s1

)2 (3)



Unsupervised MS lesion detection and segmentation using level sets 55

3 Discussion

We presented an unsupervised pipeline that uses the unprocessed T1-w and
FLAIR images to detect and segment MS. This pipeline integrates pre-processing,
detection and false positive reduction in terms of both detection and segmenta-
tion without needing any training dataset. In order to do this, three detection
iterations are applied in order to detect di↵erent lesion topologies by varying the
post-processing parameters. Finally, a level sets approach is applied to improve
segmentation results.

Acknowledgments. This work has been partially supported by ”La Fundació
la Marató de TV3”, by Retos de Investigación TIN2014-55710-R, and by MPC
UdG 2016/022 grant.

References

1. Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26(3), 839 – 851
(2005)

2. Boesen, K., Rehm, K., Schaper, K., Stoltzner, S., Woods, R., Lüders, E., Rotten-
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Torrentà , L., Rovira, À., Lladó, X.: A toolbox for multiple sclerosis lesion segmen-
tation. Neuroradiology pp. 1–13 (2015)

14. Roura, E., Oliver, A., Cabezas, M., Vilanova, J.C., Rovira, A., Ramió-Torrentà,
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Abstract. In most of the current approaches to automatic segmenta-
tion of multiple sclerosis (MS) lesions, the segmentation methods are not
optimized with respect to all relevant evaluation metrics at once. An ob-
stacle is that the computation of relevant metrics is three-dimensional
(3D). The high computational costs of 3D metrics make their use im-
practical as learning targets for iterative training. In a companion paper,
we propose an oriented training strategy that targets cheap 2D metrics
as surrogates for costly 3D metrics. We applied the evaluation-oriented
training with surrogate learning targets to optimize a simple multilayer
perceptron (MLP) network at the core of a segmentation pipeline. In
a previous competition, our segmentation strategy achieved a perfor-
mance that was comparable to state-of-the-art methods. In this paper,
by the opportunity of the MS Segmentation Challenge 2016, we apply
the proposed method on a larger and more diverse dataset. We expect
to compare the proposed strategy to other methods concerning segmen-
tation quality and runtime on the computational cloud provided by the
challenge organizers.

1 Introduction

In most methods for multiple sclerosis (MS) lesion segmentation, specific met-
rics serve as evaluation criteria, but not as optimization targets. Usual evaluation
metrics involve lesion count, volume, and shape [1], representing clinical crite-
ria of disease progression [2]. On the other hand, many methods have energy,
likelihood, maximum a posteriori, or squared error as the optimization target
[3–6].

An obstacle to evaluation-oriented training is that evaluation metrics may
be too costly for iterative training. The high computational cost is in part due
to the three-dimensional computation of evaluation metrics. A shape-based met-
ric, as the average surface distance, may take seconds to be computed in three
dimensions [7]. Moreover, the measures based on counts of overlapping lesions
between the predicted segmentation and ground truth depend on obtaining con-
tiguous regions. To obtain contiguous lesions, the connected components method
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can take seconds in 3D images as well [8]. Suppose for instance that the com-
putation of measures spends 1 minute for each one of 10 patients. In this case,
for 1000 iterations of an optimization algorithm, a single training would take
almost a week (10,000 minutes). In a companion paper [9], we propose cheaper
2D metrics as surrogates for costly 3D metrics to make the oriented training
feasible.

In this paper, we apply the proposed strategy to images of the MS Segmen-
tation Challenge 2016. Compared to a previous challenge [1], the current com-
petition is an opportunity to assess our pipeline on a larger data set involving
more sequences, expert segmentations, and scanners.

2 Material and Methods

2.1 MS Segmentation Challenge 2016

Data Set and Preprocessing The MS Lesion Segmentation Challenge 2016
aims to assess automatic methods on a common infrastructure. The dataset is
comprised of 53 patients (15 for training, 38 for testing). The data were acquired
on 1.5T or 3T scanners, in 4 medical centers. For each patient examination, the
dataset contains 7 manual segmentations and 5 magnetic resonance (MR) se-
quences as follows: 3D FLAIR, 3D T1-w, 3D T1-w GADO, 2D DP, and 2D
T2-w. Both raw and preprocessed images are available. The available prepro-
cessed images were subjected to the following steps: denoising with a non-local
means algorithm [10], rigid registration of each image to FLAIR image [11], brain
extraction via volBrain platform [12], and bias field correction through the N4
algorithm [13].

Rather than using the available preprocessed images, we employed an al-
ternative preprocessing scheme. Our preprocessing routine yielded better values
for the objective function in a preliminary evaluation. For the competition, we
preprocessed the raw images according to the following steps: non-uniformity
correction with N3 [14]; using mni_autoreg tool [15], intra-subject registration
to FLAIR image and inter-subject registration to the MNI152 linear model [16];
brain extraction via bet2 tool [17]. The images were smoothed with a Gaus-
sian filter. To make intensities comparable among acquisitions, the foreground
intensities were transformed to have median 0 and interquartile range 1.

Evaluation Criteria In order to compute evaluation metrics, the gold standard
is defined as the consensus among 7 manual segmentations through the LOP-
STAPLE algorithm [18]. Algorithm assessment will occur in three categories:
segmentation, lesion detection, and computational performance. The segmenta-
tion assessment involves the Dice similarity coefficient and the average surface
distance. The evaluation for lesion detection considers region count metrics as
the lesion-wise F1-score. Finally, the computational evaluation includes runtime
and memory load as metrics.
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3 Evaluation-Oriented Training through Surrogate
Metrics

3.1 Segmentation Model and Optimization Method

We adopt a simple multilayer perceptron (MLP) model with a single hidden
layer containing just a few neurons for fast computation of outputs. We employ
particle swarm optimization (PSO) for training MLP as an alternative to back-
propagation algorithm [19]. The backpropagation restricts the form of learning
target. On the other hand, PSO enables to use different learning targets without
being necessary to develop a specific procedure for each function to be optimized.

3.2 Computationally Cheap Learning Targets

The 3D computation of learning targets would be impractical for iterative train-
ing. To reduce the computational burden, instead of costly 3D metrics, we em-
ployed cheaper 2D surrogates. The 2D surrogates are calculated in lower di-
mension and averaged over a reduced number of selected slices. Thus, surrogate
metrics are faster due to problem reduction, regardless of hardware-based accel-
eration. For the MS segmentation challenge 2016, we use a combination of three
metrics as learning targets: ⇢

1

: Dice similarity score; two lesion count metrics,
⇢
2

: lesion-wise true positive rate and ⇢
3

: lesion-wise positive predictive value. On
model training, we do not target surface-based metrics because algorithms will
be ranked just according to ⇢

1

, ⇢
2

, and ⇢
3

in the competition. Thus, the learning
target for evaluation-oriented training is the 2D-Score = (⇢

1

+ ⇢
2

+ ⇢
3

)/3. Note
that the three component metrics are in the range [0, 1].

3.3 Oriented Objective Function

In evaluation-oriented training, the objective function (Algorithm 1) has as learn-
ing target the 2D-score. Moreover, the oriented objective computes an average of
three 2D metrics that requires samples of slices for each patient. The objective
function includes a pre-classification rule. This rule prevents unnecessary com-
putation of MLP outputs and takes advantage of the fact that lesions appear
hyper-intense in FLAIR images (Algorithm 1 at line 5). Notice that such rule
requires standardized intensities. Also, note that 2D-score must be maximized,
and the PSO must be configured accordingly.
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Algorithm 1 Oriented Objective
1: function objective(sliceSamples)
2: for each patient do

3: for each slice in sliceSamples do

4: for each voxel do

5: if FLAIR intensity < 0 then

6: assign non-lesion to voxel
7: else

8: classify voxel via MLP
9: end if

10: end for

11: compute 2D metrics
12: end for

13: end for

14: compute average 2D metrics
15: objective = 2D-score . Section (3.2)
16: end function

3.4 Slice Selection

The plane, quantity, and position of the selected slices can influence the final
2D-score. We adopted a simple strategy and selected the approximate medial
slices 85, 90, and 95 in the axial plane of the MNI152 space.

3.5 Model Training and Usage

The PSO-MLP training was repeated 10 times using a repeated holdout method
for model selection. As input, we use FLAIR, T1, and T2 sequences that were
preprocessed according to our routine. To apply a trained model to new im-
ages, we selected the MLP that yielded the best objective function value for
all entries in the training set. We developed a segmentation pipeline comprised
by preprocessing, segmentation (with the selected MLP) and postprocessing. In
the postprocessing stage, we employed a lesion probability atlas to remove false-
positives occurring in low probability regions. This lesion atlas was built from
the MS challenge 2008 data set.

4 Conclusion

We described evaluation-oriented training with surrogate learning targets to
train an MLP inside an MS segmentation pipeline. We report the preprocessing
steps employed. The pipeline was applied to the images of the MS Segmenta-
tion Challenge 2016. In comparison to previous MS segmentation competitions,
the 2016 challenge provides a larger and more diverse dataset, besides a sin-
gle platform to assess the computational performance of different segmentation
methods.
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Abstract. We present a fully automated algorithm for the segmentation
of the brain tissues (i.e. gray matter, white matter, cerebrospinal fluid
and white matter hyperintense lesions) from multispectral magnetic res-
onance (MR) images of multiple sclerosis (MS) patients. The method
performs intensity based tissue classification using a mixture model for
normal brain tissues as well as MS lesions. We propose to initialize the
model for MS lesions through the simultaneous estimation of a spatially
varying within-the-subject intensity distribution and a spatially local in-
tensity distribution derived from a healthy reference population.

1 Introduction

In order to provide objective assessments of segmentation performance, there is a
need for an objective reference standard with associated MRI scans that exhibit
the same major segmentation challenges as that of scans of patients. A database
of clinical MR images, along with their segmentations, may provide the means
to measure the performance of an algorithm by comparing the results against
the variability of the expert segmentations. However, an objective evaluation to
systematically compare di↵erent segmentation algorithms also needs an accurate
reference standard.

An example of such a reference standard is the synthetic brain MRI database
provided by the Montreal Neurological Institute that is a common standard for
evaluating the segmentations of MS patients. The synthetic MS brain phantom
available from the McConnell Brain Imaging Centre consists of T1w, T2w, and
proton density MRI sequences with di↵erent acquisition parameters as well as
noise and intensity inhomogeneity levels [2]. The MS brain phantom was based
on the original BrainWeb healthy phantom, which had been expanded to capture
three di↵erent MS lesion loads: mild (0.4 cm3), moderate (3.5 cm3), and severe
(10.1 cm3). Each MS phantom was provided with its own MS lesion ground
truth.

Although the BrainWeb synthetic dataset provides a reference standard, it
presents several limitations. First, the BrainWeb dataset just provides one brain
model, which results in a poor characterization of the anatomical variability
present in the MS population. Also, although the BrainWeb dataset is based on
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real MRI data, the final model is not equivalent to clinical scans in its contrast,
and it produces an easier dataset to segment than real clinical scans.

To overcome these limitations, most of the lesion segmentation algorithms
also evaluate their results in a dataset consisting in clinical scans. Such an ap-
proach allows for a better understanding of the performance of the evaluated
algorithms when faced with real data. Unfortunately, because each segmenta-
tion algorithm is validated with di↵erent datasets, comparison between di↵erent
methodologies is more di�cult.

As part of the ongoing e↵ort in providing publicly available datasets for
validation of MS lesion segmentation, a new MS segmentation challenge was held
during the 2016 MICCAI conference. The goals of this challenge are multiple.
The first aim was to evaluate state-of-the-art advanced segmentation methods
from the participants on a database following a standard protocol [1]. For this,
both lesion detection (how many lesions were detected) and lesion segmentation
(how precise the lesions are delineated) will be evaluated on a multi-centric
database (38 patients from four di↵erent centers, imaged on 1.5 or 3T scanners,
each patient being manually annotated by seven experts).

In addition to this classical evaluation, the goal of this challenge was also
to provide a common infrastructure on which the algorithms will be evaluated.
This infrastructure will enable a fair comparison of the algorithms in terms of
running time comparison and ensuring all algorithms will be run with the same
parameters for each patient (which is required for a truly automatic segmenta-
tion).

2 Method

Consider a multispectral grayscale MRI (i.e. T1w, T2w and FLAIR) formed by
a finite set of N voxels. Our aim is to assign each voxel i to one of K classes (i.e.
GM, WM, CSF and T2w hyperintense lesions) considering the observed intensi-
ties Y = {y1, ...,yN} with yi 2 R

m

. Both observed intensities and hidden labels
are considered to be random variables denoted respectively as Y = {Y1, ...,YN}
and Z = {Z1, ...,ZN}. Each random variable Zi = e

k

= {z
i1

, ..., z
iK

} is a K-
dimensional vector with each component z

ik

being 1 or 0 according whether Yi

did or did not arise from the kth class.
It is assumed that the observed data Y is described by the conditional prob-

ability density function f(Y|Z,�Y ), which incorporates the image formation
and noise models and depends on some parameters �Y . In addition, the hidden
labels are assumed to be drawn according to a certain parametric probability
distribution f(Z|�Z), which depends on parameters �Z .

If the underlying tissue segmentation Z was known, estimation of the model
parameters would be straightforward. However, only the image Y is directly ob-
served, making it necessary to tackle this problem as one involving missing data.
The Expectation-Maximization (EM) algorithm is the best candidate for model
fitting. The EM algorithm finds the parameters that maximize the complete data
log-likelihood by iteratively maximizing the expected value of the log-likelihood
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log(f(Y,Z| )) of the complete data {Y,Z}, where the expectation is based
on the observed data Y and the estimated parameters  (m) obtained in the
previous iteration m [8].

A popular strategy to initialize this iterative process, is to use a spatially
varying probability map for the di↵erent tissue classes [6]. However, because
the random distribution and burden of MS lesions, prior expectations about the
spatial location of tissue classes cannot be derived from a reference population
of MS patients. Instead, we propose to derive a patient specific model for MS
lesions through the simultaneous estimation of a spatially varying within-the-
subject intensity distribution and a spatially (MOPS) local intensity distribution
derived from a healthy reference population [5].

2.1 Model of Population and Subject (MOPS)

In addition to the patient scan Y, we observe an aligned reference of R healthy
subjects P = {V,L} = {V

1

, ...,V
R

;L
1

, ...,L
R

}.
Segmenting the observed data Y implies the estimation of parameters  .

log LC( ) = log (f (Y,P,Z| ))

= log

 
NY

i=1

KX

k=1

f(Zik| k)f(Yi,Pik|Zik, k)

!

=
NX

i=1

KX

k=1

zik log (⇡kf(Yi|Zik, k)f(Pik|Yi,Zik, k))

The observed population data P is conditionlly independent of the observed
patient scan Y formation model parametrized by  .

log LC( ) = log (f(Y,P,Z| ))

⇠
NX

i=1

KX

k=1

zik log (⇡kf(Yi|Zik, k)f(Zik|Pik)f(Yi|Pik))

=
NX

i=1

KX

k=1

zik log (⇡k⇡PikN (Yi|µk,⌃k)N (Yi|µPk,⌃Pk)) (1)

Since the underlying tissue segmentation Z is unknown, the EM algorithm will
be used to find the parameters that maximize the complete log-likelihood.

E-Step: The E-step requires the computation of the conditional expectation
of log (L

C

( )) given Y and P, using the current parameter estimate  (m).

Q( ; (m)) = E (m){log L
C

( )|Y,P}

The complete log-likelihood is linear in the hidden labels z
ij

. Again, the E-
step requires the calculation of the current conditional expectation of Zi given
the observed data Y:

E (m)(Zi = ek|Y,P) = f(Zi = ej |Yi,Pi, 
(m)
j )

=
⇡k⇡PikN (Yi|µk,⌃k)N (Yi|µPk,⌃Pk)

PK
k0=1 ⇡0

k⇡Pik0N (Yi|µ0
k,⌃0

k)N (Yi|µPk0 ,⌃Pk0)
(2)
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M-Step: Because the local reference population model parameter ⇠ is con-
stant, the Maximization step will consist of the maximization of Q( ; (m))
with respect to  , which results in:

f(Zi = ek| (m+1)
k ) =

1
N

NX

i=1

f
⇣
Zi = ek|Yi,Pik, (m)

⌘
(3)

µ(m+1)
k =

PN
i=1 Yif(Zi = ek|Y,Pik, (m))
PN

i=1 f(Zi = ek|Y,Pik, (m))
(4)

⌃(m+1)
k =

PN
i=1 f(Zi = ek|Y,Pik, (m)) (Yi � µk)T (Yi � µk)

PN
i=1 f(Zi = ek|Y,Pik, (m))

(5)

It follows intuitively that the local intensity model downweights the likeli-
hood of those voxels having an abnormal intensity given the reference population.
Since MRI structural abnormalities will show an abnormal intensity level com-
pared to similarly located brain tissues in healthy subjects, we seek to identify
MS lesions by searching for areas with low likelihood L

C

( ).
We define a voxels lesion probability as 1�f(Y

i

, P
i

, Z
i

| ). We initialize a sub-
ject specific MS lesion model by selecting those voxels with a lesion probability
greater than a given decision threshold (1 � f(Y

i

, P
i

, Z
i

| ) > 0.5).

3 Implementation Details

This section explains the implementation and distribution details of the proposed
brain tissue segmentation algorithm. First, we describe the reference template
library of healthy subjects which the MOPS algorithm uses to initialize the local
intensity distribution. Following, we outline the implementation details of the
segmentation pipeline.

3.1 Reference Population

We collected data from 15 volunteers on a 3T clinical MR scanner from GE
Medical Systems (Waukesha, WI, USA) using an 8-channel receiver head coil
and three di↵erent pulse sequences: a T1-weighted MPRAGE (Magnetization
Prepared Rapid Acquisition Gradient Echo) sequence; a T2-weighted scan from
an FSE (Fast Spin Echo) sequence; and a FLAIR scan, also run with an FSE
sequence. We acquired the T1w sequence axially; the T2w and FLAIR sequences
were sagitally acquired. All sequences were acquired with a matrix size of 256x256
and a field of view of 28 cm. Slice thickness was 1.3 mm for the T1w-MPRAGE
sequence; 1 mm for the T2w-FSE sequence; and 2 mm for the FLAIR-FSE
sequence. The MPRAGE parameters were TR 10/TE 6 ms with a flip angle of
8. For the FSE, the paramenters were TR 3000/TE 140 ms with an echo train
length of 15.

After image acquisition, we aligned the T2w and FLAIR images to the T1w
scan. Last, a trained expert manually segmented the intra-cranial volume, CSF,
GM and WM tissues [3].
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3.2 Segmentation Pipeline Implementation

1. Inputs
– RAW T1w scan.
– RAW T2w scan.
– RAW FLAIR scan.

2. Pre-processing
– Intra-subject rigid registration: The T2w and FLAIR scans were rigidly

aligned to the reference space of the T1w scan.
– Intra cranial cavity segmentation: To exclude non-brain tissues from the

posterior segmentation steps, an intra-cranial mask was estimated based
using the T1w and T2w scans based in the strategy described in [7].

– Intensity inhomogeneity artifact correction [8].
– Healthy Reference Population registration: To achieve accurate align-

ment between healthy volunteers and a patient with MS, we used a
block-matching nonlinear registration algorithm proposed by [4], which,
although not intrinsic to our method, was selected because it is robust
in the presence of WM lesions.

3. MOPS Brain Tissue Segmentation
– Spatially varying estimator sliding window radius was set to 2 voxels.
– To initialize the subject specific MS lesion model, we thresholded the

MOPS Lesion probability map to keep those voxels with a probability
higher than 0.5.
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cohort of people with multiple sclerosis: Consensus minimal MRI protocol. J. Neuro-
radiol. 42(3), 133–40 (jun 2015), http://www.ncbi.nlm.nih.gov/pubmed/25660217

2. Kwan, R.K., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-
processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–97
(nov 1999)

3. Makris, N., Meyer, J.W., Bates, J.F., Yeterian, E.H., Kennedy, D.N., Caviness, V.S.:
MRI-Based topographic parcellation of human cerebral white matter and nuclei II.
Rationale and applications with systematics of cerebral connectivity. Neuroimage
9(1), 18–45 (jan 1999)

4. Suarez, R.O., Commowick, O., Prabhu, S.P., Warfield, S.K.: Automated delineation
of white matter fiber tracts with a multiple region-of-interest approach. Neuroimage
59(4), 3690–700 (feb 2012)

5. Tomas-Fernandez, X., Warfield, S.K.: A Model of Population and Subject (MOPS)
Intensities With Application to Multiple Sclerosis Lesion Segmentation. IEEE Trans.
Med. Imaging 34(6), 1349–1361 (jun 2015)

6. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based
tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10),
897–908 (oct 1999)

7. Weisenfeld, N.I., Warfield, S.K.: Automatic segmentation of newborn brain MRI.
Neuroimage 47(2), 564–72 (aug 2009)

8. Wells, W.M., Grimson, W.L., Kikinis, R., Jolesz, F.a.: Adaptive segmentation of
MRI data. IEEE Trans. Med. Imaging 15(4), 429–42 (jan 1996)





A 3D hierarchical multimodal detection and
segmentation method for multiple sclerosis

lesions in MRI

Hélène Urien�†, Irène Buvat�, Nicolas Rougon†, and Isabelle Bloch�†
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Abstract. In this paper, we propose a novel 3D method for multiple
sclerosis segmentation on FLAIR Magnetic Resonance images (MRI),
based on a lesion context-based criterion performed on a max-tree repre-
sentation. The detection criterion is refined using prior information from
other available MRI acquisitions (T2, T1, T1 enhanced with Gadolinium
and DP). The method has been tested on fifteen patients su↵ering from
multiple sclerosis. The results show the ability of the method to detect
almost all lesions. However, the algorithm also provides false detections.

Keywords: Max-tree, multiple sclerosis, MRI multimodal segmenta-
tion.

1 Introduction

In this paper, we present a new method to detect and segment lesions from MRI
images of patients su↵ering from multiple sclerosis. The method is based on a
hierarchical approach, where the image is represented by a tree depicting the
relationship between all the connected components of all the thresholded ver-
sions of the image. The nodes of the tree represent the potential lesions, and are
selected only if they satisfy a criterion based on the di↵erence between the lesion
and the surrounding intensities. Our method was tested on the fifteen training
datasets given by the MICCAI MSSEG challenge, providing di↵erent MRI ac-
quisitions for each patient (FLAIR, T2, T1, T1 enhanced with Gadolinium and
DP). The detection is first performed on FLAIR, and then refined using the
other available modalities. Parameter setting is given and results are discussed.

2 A 3D multiple sclerosis lesion detection method using
a hierarchical approach

The lesion detection is based on the hypothesis that the FLAIR intensity of
a lesion is higher in a lesion than in the surrounding region. This assumption
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was verified on the lesions extracted from the manual consensus segmentations
performed using the LOP STAPLE algorithm [1], considering the average FLAIR
intensity in the segmented region and in a neighborhood. The detection relies
on a max-tree representation of the image [2], which highlights regions of high
intensities. This method, based on the study of inclusion relationships between
connected components obtained by thresholding an image at all its intensity
values, has several advantages. It allows searching for potential lesions in the
whole image, without any prior information about the number or localizations
of lesions. Connected components are selected according to a given criterion. An
example is depicted in Figure 1, where homogeneous regions, called flat zones, are
illustrated by a letter identifiying a specific region, and a number corresponding
to the signal intensity in each voxel of the region. The tree is oriented from
the root corresponding to the flat zone of lowest intensity, to the leaves, which
correspond to the flat zones of highest intensities in the image. A node N is said
to be a descendant of a node M if it is higher in the tree. As an example, D is
a descendant of C in Figure 1.

A0 C3 
B1 

B1 

D5
E6

F6 G6

(a)

{E,F,G} 
{D} 

{C} 

{B} 

{A} 

(b)

Fig. 1. Example of a synthetic image (a) and its corresponding max-tree (b). The root
node is depicted in red, while the leaves are represented in green. Regions are identified
by a letter and a number corresponding to the grey level in the region.

The first step is the selection of relevant nodes according to a given criterion,
composed of two terms and applied to each current node N :

�
I

(N) = X1
I

(N) � X2(N) (1)

The first term X1
I

follows our hypothesis of di↵erence in intensities between
the lesion and its surroundings:

X1
I

(N) =

�

x��N
I(x)

n�N�
x�C�N

I(x)

nC�N

(2)

where I(x) = I
FLAIR

(x) is the pre-processed FLAIR intensity in a voxel x, n �
N

the number of voxels within the region �N , representing the current node N and
all its descendants, and n

C�N
the number of voxels within a contextual volume

surrounding node N and all its descendants. The maximal Euclidian distance
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from a voxel of the contextual volume to the nearest voxel to �N is set to ↵ voxels.
If a node N is representative of a lesion, the criterion value X

I

(N) is superior
to 1.

The second term X2 depends on the location of current node N compared
to the z axis. If the node is located in slices of the FLAIR image containing
ventricles, we assume that the lesion tends to be near the ventricles:

X2(N) =

min
x2 �

N,v2V

d(x, v)

max
b2B,v2V

d(b, v)
(3)

where x is a voxel from the volume �N composed of the current node N and
all its descendants, v a voxel from the binary mask of the ventricles V , d the
Euclidian distance and b a voxel from the binary mask of the brain provided
in the unprocessed dataset B. Otsu’s thresholding [3] is applied on the pre-
processed T1 image to segment the ventricles.

If the node is not located in slices containing ventricles, we penalize small
nodes:

X2(N) =
1

n �
N

(4)

where n �
N

is the number of voxels within region �N , representing the current node
N and all its descendants.

The last step is the reconstruction of the image. Only the nodes with crite-
rion value � superior to 1 are taken into account. The first node to be selected is
the one with the highest criterion value. All its descendants and ancestors with
criterion value superior to 1 are removed from the searching list. The remaining
node with the highest criterion value superior to 1 is then selected. This pro-
cess is repeated until there is no node with criterion value superior to 1 in the
searching list. The final image is the union of all the selected nodes filled with
their descendants.

To improve the detection performance, additional constraints are used, de-
pending on the location of the lesions with respect to brain structures, and with
adaptative ranges of admissible � values. These ranges are defined in a super-
vised way. The position of a lesion compared to brain structures is assigned to
one of three categories: near the ventricles, inside the white matter, and near the
cortex. Otsu’s thresholding [3] is applied on the pre-processed FLAIR image to
segment the white matter. Using an automatic thresholding is enough to roughly
localize the structures of interest. The manually segmented lesions were also as-
signed to these three regions, according to their position. For each region, and
for each available modality I, the maximal and minimal values of the criterion
�

I

were computed, as illustrated in Table 1. Moreover, the maximal and minimal
values of the volume of each lesion were computed according to their position,
as illustrated in Table 2. Finally, a node N is selected only if the value of the
criterion �

I

computed for all the modalities I and depending on the position of
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the node with respect to the brain structures falls within the intervals defined in
Tables 1 and 2. If so, the criterion �

FLAIR

is assigned to this node N , which is
taken into account in the image reconstruction step only if its value is superior
to 1.

3 Results and discussion

The algorithm uses images from both pre-processed (FLAIR, T1 enhanced with
Gadolinium, T2, T1, DP) and unprocessed (FLAIR and brain binary mask)
datasets.

3.1 Parameter setting

In order to limit the size of the tree, while preserving contour information, the
input image is first quantified on k levels. Here we used k = 20 for FLAIR images.
Then the tree is created using Salembier’s algorithm [2] on the quantized FLAIR
image.

The maximal Euclidian distance from a voxel of the contextual volume to
the nearest voxel to node �N filled with all its descendants is set to ↵ = 1 voxel.

The connectivity was set to 26 to compute the max-tree. Tables 1 and 2 show
the minimal and maximal values of the criterion and of the volumes of manually
segmented lesions according to the position of the lesion.

Lesion near the ventricles Lesion inside the white matter Other lesion
Minimal value Maximal value Minimal value Maximal value Minimal value Maximal value

Original FLAIR 1.00 1.50 1.00 1.50 1.00 1.50
Pre-processed FLAIR 1.00 1.50 1.00 1.50 1.00 1.50
Pre-processed T2 0.90 2.00 0.90 2.00 1.00 2.00
Pre-processed T1 0.50 1.50 0.80 1.50 0.70 1.00
Pre-processed T1 Gado 0.50 1.50 0.80 1.50 0.70 1.00
Pre-processed DP 0.90 1.50 0.90 1.50 1.00 1.50

Table 1. Ranges of values for criterion � for a node, depending on the modality and
the position of the node.

Lesions near the ventricles Lesions inside the white matter Other lesions
Minimal value Maximal value Minimal value Maximal value Minimal value Maximal value

Volume (mm3) 3.85 6.44 104 3.02 2.28 103 9.07 807

Table 2. Ranges of values of node volume (mm3) depending on the position of the
node.
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3.2 Preliminary results

A preliminary result is shown for one of the patients in Figure 2. The algorithm
manages to detect almost all lesions, but leads to an over-detection in areas of
the brain which do not contain ventricles.

(a) (b)

Fig. 2. Visual results. (a) Pre-processed FLAIR image requantized to 20 grey levels.
(b) Contours of manual (in green) and automatic (in red) segmentations.

4 Conclusion

We proposed a 3D method for multiple sclerosis detection embedded in a hierar-
chical approach. The results show that the lesions from the manual segmentation
are well included in the segmentation, but at the price of a number of false de-
tections. The method could be improved using other contextual criteria, such
as the one from [4], based on the di↵erence of variance between the object of
interest and its surroundings.
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Abstract. Automatic multiple sclerosis (MS) lesion segmentation in
magnetic resonance (MR) imaging is a challenging task due to the small
size of the lesions, its heterogeneous shape and distribution, overlapping
tissue intensity distributions, and the inherent artifacts of MR images.
In this paper we propose a convolutional neural network trained with 3D
patches of candidate lesion voxels. The method uses 4 anatomical MR im-
ages: T1-weigthed, T2-weighted, PD-weighted and T2-FLAIR-weighted.

1 Introduction

Magnetic resonance (MR) imaging of the brain has been widely used during
the last years in clinical practice. This image modality presents a high contrast
for soft tissues, including white matter lesions (WML). Expert tracing of these
lesions is a time-consuming task prone to observer errors. On the other hand, in-
tensity inhomogeneities and image artifacts render di�cult the task of obtaining
an automatic and reliable segmentation of these lesions based only on intensity
features.

Common supervised approaches rely on the use of a classification algorithm.
These algorithms involve a first stage in which a model is estimated on training
data composed by a set of features and their corresponding ground truth, and a
second stage in which the model is tested on a new dataset to provide the desired
classification. These features can include information from an atlas, context,
spatial coordinates or even texture. However, classic machine learning methods
require hand-crafting these feature vectors to extract appearance information
using, for instance, Gaussian or Haar-like kernels. In contrast, convolutional
neural networks (CNNs) learn sets of convolution kernels that are specifically
created for the task at hand.

Currently, CNNs have demonstrated a superior performance in several com-
puter vision tasks including handwriting recognition [10], classification of 2D
images in 1000 classes [9], segmentation of crowds in surveillance videos [7] or
the application of a painting’s style to other pictures [5]. Recently, CNNs have
also gained popularity in medical imaging in general [2,6], and brain imaging
specifically [12,14].
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Di↵erent architectures have been published in the literature to tackle the
abovementioned problems. For instance, Zhang et al [14] proposed a deep con-
volutional neural network for segmenting isointense brain tissues using multi-
modality MR images. Their multiple intermediate layers applied convolution,
pooling, normalization and other operations on 2D patches to capture highly
nonlinear mappings between the inputs and the outputs. Moreover, Moeskops
et al [12] also presented a CNN architecture based on 2D patches of a single
anatomical MR image. However, in their work they used di↵erent patch sizes to
which they applied di↵erent convolutional layers and average pooling that were
finally combined using a fully connected layer with softmax to obtain a 9 class
segmentation including background. On the other hand, Brosch et al [1] defined
a multiscale fully convolutional encoder network with shortcuts to segment le-
sions using the whole brain image. However, as pointed out in their work, this
kind of network requires a large number of cases in order to train a deep network
of more than 1 layer for the convolutional and deconvolutional pathways.

In this paper we present a 3D CNN that uses 3D candidate voxel patches
to train an architecture that incorporates convolutional layers, max pooling and
dense layers to obtain the probability for each candidate voxel of being lesion.
This map is then post-processed to obtain a final lesion mask.

2 Methods

2.1 Preprocessing

We decided to use the pre-processed dataset to focus exclusively on the CNNs
implementation. This dataset has been denoised with the NL-means algorithm [4]
and rigidly registered [3] of each image towards the FLAIR image. Moreover,
the skull has been stripped using the volBrain platform [11] on the T1 image
and applied on the other modalities with sinc interpolation, and, finally, bias
correction was applied using the N4 algorithm [13].

In order to train our CNN architecture, we also normalised the intensities for
each image using the mean and standard deviation of the brain voxels.

2.2 CNN architecture

Most of the CNNs from the literature use 2D images or patches to segment tissues
or lesions. However, when using MR images, such approaches are prone to false
positives on some slices, due to the similarity between lesions and artifacts in
some slices. By using 3D patches we can discard those false positives that are
clearly not lesions when analysed in 3D. Furthermore, we decided to use patches
instead of the whole image as input to obtain a higher number of training samples
(positive and negative) while also reducing the amount of parameters to optimise
as network weights. For each candidate voxel, we define a patch of size 15 ⇥ 15
⇥ 15 for each image T1,T2,PD,FLAIR. Therefore, our input vector has a size of
N ⇥ 4 ⇥ 15 ⇥ 15 ⇥ 15, where N is the number of training patches.
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Fig. 1. Architecture of the convolutional network taking candidate patches of size
15 ⇥ 15 ⇥ 15 as inputs.

With this input vector, we designed our CNN architecture detailed in Fig-
ure 1. The first convolutional layer contained 32 filters of size 5⇥ 5⇥ 5, followed
by a max pooling of size 2 with stride 2. The following convolutional layer had
64 filters of the same size, also followed by a max pooling with the previous
parameters. Afterwards we applied a dropout on probabilities lower than 0.5
to reduce overfitting, and we finished the architecture with 2 dense layers. The
first one had 256 outputs and the last one was a 2-way softmax to obtain the
probabilities for the 2 possible classes (lesion and not lesion).

2.3 Training

Since the dataset is unbalanced, we have a larger number of voxels that belong
to normal appearing tissues than lesion voxels, we decided to apply an iterative
process during training. This process had two main steps that trained the same
CNN architecture with di↵erent data.

During the initial step, we selected a random number of negative voxels. First,
we applied an empirical threshold of 1.5 (deviations) on the normalised FLAIR
image to obtain all hyperintense candidate voxels. From this set of voxels, we
used all the voxels defined as lesion in the consensus and a random sampling of
the same size of all the candidates that are not lesion, in order to balance the
dataset. Since this initial selection is suboptimal, some of the tissue voxels from
each image have a high probability of belonging to lesion and would be classified
as false positives. Therefore, we trained again our network with a new subset of
negative voxels to better classify these voxels.

During the second and final step, we tested the training images with the
first network to obtain a probabilistic map. In order to select challenging false
positive, we applied a threshold of 0.5 to this map and we randomly selected
a sample of the negative voxels inside this mask of the same size as the lesion
voxel dataset. Finally, we trained again the same CNN architecture with these
new training set.

Since both networks use the same positive voxels, when testing both net-
works, all lesions are correctly classified. However, since we used di↵erent nega-
tive voxels, the probabilistic maps present di↵erent false positive detections that



78 Sergi Valverde, Mariano Cabezas et al.

do not overlap. Therefore, we decided to multiply the output of both networks
to maximise the true positives and minimise the false positives.

2.4 CNN parameter tuning

Our CNN architecture was developed in Python using the nolearn1 and Lasagne2

modules for Theano3. The batch size of the net for training was set to 4096
and the maximum number of epochs was set to 50 for the initial iteration and
2000 for the final iteration (even though it automatically stops if there is no
improvement after 50 iterations). To update the weights we used the ADAM
learning algorithm [8].

In order to evaluate the performance of the net, we used the training dataset
with a leave-one-out strategy. Since we had more than million of patches per
training, we decided to use a Tesla K40 GPU device with CUDA and cuDNN in
a server with 56 cores and 256GB of RAM memory to accelerate the process.

3 Discussion

We presented a multichannel approach based on deep learning of 3D patches from
candidate lesion voxels previously segmented in T2-FLAIR-weighted images.
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Abstract. Multiple Sclerosis (MS) is a chronic, inflammatory and de-
myelinating disease that primarily a↵ects the white matter of the central
nervous system. Automatic segmentation of MS lesions in brain MRI
has been widely investigated in recent years with the goal of helping
MS diagnosis and patient follow-up. It o↵ers an attractive alternative
to manual segmentation, which remains a time-consuming task and suf-
fers from intra- and inter-expert variability. We propose a new approach
that uses a Random Forest (RF) classifier. Its input has been filtered
with a threshold based on the gray matter (GM) distribution and uses
several features that take into account voxel and context information. A
Markov Random Field (MRF) post processing algorithm has been ap-
plied to make lesions grow through probable neighborhoods. In order to
train and test the method we use the database provided for the MICCAI
2016 challenge, which consists in 15 subject from 4 di↵erent centers, im-
aged on 1.5T or 3T scanners.The provided MR sequences include: 3D
FLAIR, 3D T1-w, 3D T1-w GADO, 2D DP and 2D T2. In this data
set each patient has being manually annotated by seven experts. We
found that segmentation results are maximized by using all available se-
quences, but the FLAIR volume provides most of the information. Thus
our method can work only with the T1-w volume to segment the tissues
and the FLAIR volume to extract the most important features, still, its
performance improves slightly if more types of sequences are available.

1 Introduction

Our approach is inspired in the work of O.Maier et al.[4] in which a RF classifier
is used to classify longitudinal MS lesions with several features, Roura et al.[5]
in which lesions are segmented as outliers to the normal apparent GM brain
tissue on the FLAIR image and P. Smith et al.[7] where a MRF is used to
makes lesions grow from an initial segmentation based on tissue thresholding.
We use the RF to obtain an initial lesion segmentation instead of the tissue
segmentation thresholding used in P. Smith et al.[7]. The RF used by O.Maier
et al.[4] is trained with random sampled voxels. In contrast, we propose to use
a FLAIR thresholding based in the GM distribution to reduce the number of
points 3-4 times; this eliminates background voxels while preserving most of the
lesion voxels. Finally, in a similar approach as P. Smith et al.[7] a MRF is used
to make lesions grow through probable neighborhoods.
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2 Materials and Method

We use the data provided by the MSSEG Challenge that will take place during
MICCAI 2016[1]. This data consist in 15 subjects, of which the raw data, the
bias-corrected and the skull-stripped versions of the following MRI sequences are
provided: 3D FLAIR, 3D T1-w, 3D T1-w GADO, 2D DP and 2D T2. We work
with the volumes already pre-processed by the challenge organizer. In order to
train the algorithm, a manual segmentation annotated by 7 experts and a unique
mask for every subject obtained using LOP STAPLE is also provided. We train
RF with all sequence types provided by the challenge, in order to obtain the best
result, but we also train the model using just the T1 and FLAIR sequences, to
contrast the performance using a variable number of input sequences.

2.1 Pre-processing

The di↵erent training images of the challenge display large intensity di↵erences,
which usually occurs in MRI images acquired in di↵erent scanners. Using a
learning-based intensity standardization method implemented in MedPy [3], we
harmonize every sequence intensity profile [4].

2.2 Data filtering for Training

In order to reduce the training time of the classifier, the number of candidate
voxels that are input to the classifier must be reduced. This is achieved by
detecting the possible lesions as outliers of the apparently normal GM brain
tissue on the FLAIR volume. The GM mask was used to compute the intensity
distribution of the GM in the FLAIR image. To detect the outliers, we used
the full width at half maximum (FWHM) of the main peak to determine the
standard deviation [5]. The threshold is computed as follows:

Thr = µ + ↵ ⇥ ✓ (1)

Fig. 1: Gray matter threshold

where µ is the mean intensity of the GM distribution and ✓ is the standard
deviation determined using the FWHM. The parameter ↵ is used to adjust
the threshold, in order to obtain the maximum reduction of lesion candidates
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while maximizing the true positive rate of the filter. This thresholding makes
the training 3-4 times faster, it makes the data more manageable, and we found
this method gives better results than extracting random voxels from the images,
which is the approach used in [4]. We tested di↵erent values for ↵ and selected
0.2 for the rest of our experiments, as it maintains a good TPR while reducing
the voxels to a manageable amount.
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Fig. 2: True positive rate and % of remaining voxels for di↵erent ↵ values

2.3 The Features

From each MRI sequence, a number of intensity-based features are extracted:
voxel intensity value, voxel intensity value after smoothing (Gaussian filter with
� = 3; 5; 7mm) and the di↵erence between the voxel and its neighborhood.
These features provide information about gray-values at di↵erent scales as well
as the mean intensity distribution in small areas around each voxel. To provide
the classifier with a rough estimation of spatial location, we additionally com-
pute the distance of every voxel to the image center. Since MS lesions appear
primarily in white matter (WM), a probability based tissue segmentation is ob-
tained with SPM12 on the MPRAGE/T1w sequence, separating the brain tissue
into WM, gray-matter (GM) and cerebral spinal fluid (CSF). From the resulting
tissue probability maps, we extract voxel gray-value and voxel gray value after
smoothing (Gaussian filter at = 3; 7; 15 mm) [2]. Since it is easy to find false
positive lesions in the external CSF, we also extract the external CSF in the
FLAIR volume and calculate the distance from every voxel to this region.

2.4 The classifier

We use the RF implemented in Sckit-Learn[2]. We train it with the data filtered
from the GM thresholding, using 200 trees with the maximum possible depth,
to obtain pure leaves. The number of background voxels are 4-5 times greater
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than the lesion voxels so we need to balance the weight of the classes. Therefore,
we design the weights to be inversely proportional to the class frequencies of the
input data of the RF.

With this classifier we obtain an initial lesion mask and a lesion probability
mask. The initial lesion mask is obtained from the probability lesion mask using
a threshold ✓, with a value selected using cross validation. These two masks will
be used to generate the final lesion segmentation.

2.5 Markov Random Field for lesion growing

Each voxel in the neighborhood of the initialized lesions obtained from the RF
is labeled as lesion (Les) or non-lesion (Non�Les). This latter class consists of
the three main tissue classes CSF, GM and WM. Thus, the discrete label for a
voxel can be either Les or Non � Les. We approximate the distribution of Les
by a gamma distribution with shape and scale parameters ↵ and �, respectively,
and the distribution of Non � Les by a mixture of three Gaussians with means
µ

k

. Using the probability mask obtained from the Random Forest classifier, we
compute the average of the neighbourhood of the voxel, to take into account if it
is surrounded by probable lesion voxels. With these probability distributions and
the initial lesion mask, we apply the MRF algorithm in every voxel i conected
to a Les voxel using the following equation:

If
Ples(yi|↵, �) ⇤ 1

Ni
⇤
P

j2Ni
⇡les

j

PGMM (yi|µk) ⇤ 1
Ni

⇤
P

j2Ni
(1 � ⇡les

j )
> � then voxel i is labeled as Les (2)

The � value was selected using cross validation in order to obtain the best
results .

3 Cross validation

We use the cross-validation to select the best values for the ✓ to obtain the initial
lesion mask and the � value used to stop the lesion growing. We use always one
subject to test and the remaining subjects for training.

Table 1 show the di↵erent results for di↵erent values of � and ✓, we have
selected 1.5 for the � and 0.3 for the ✓.

4 Results

Table 2 shows the inter-variability between the experts, while Table 3 summarizes
the results of our algorithm using all sequences and just using the FLAIR and
the T1-w. To compare our method with the state of the art, we chose the second
algorithm of the Lesion Segment Tool (LST) LPA proposed by Paul Schmidt [6].
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� \ ✓ 0.15 0.2 0.25 0.3 0.4

1 64.01 65.52 66.33 66.65 65.78
1.5 64.47 65.96 66.59 66.6 65.55
2 64.48 66.02 66.52 66.42 65.15

2.5 64.46 65.94 66.45 66.28 64.77

Table 1: Cross validation measuring the DICE metric in %

Experts 1 2 3 4 5 6 7 Average

DICE 0.649 0.644 0.596 0.664 0.687 0.595 0.588 0.632

TPR 0.681 0.739 0.587 0.786 0.788 0.566 0.508 0.665

FPR 0.641 0.661 0.423 0.831 0.605 0.303 0.182 0.498

Table 2: Expert inter-variability

DICE TPR FPR

RF 0.651 0.689 0.437

RF FLAIR-T1 0.638 0.683 0.483

LST-LPA 0.610 0.633 0.460

Table 3: Evaluation of results
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As we can see in the tables, our proposal improves the state of the art and it
provides results which are similar to the inter-variability of the experts. More-
over, our method can achieve good results using just the FLAIR and T1-w
sequences.
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