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Abstract

The design of experiments for discrete mixed effect models is challenging due to the
unavailability of a closed-form expression for the Fisher information matrix (FIM), on
which most optimality criteria depend. Existing approaches for the computation of
the FIM for those models are all based on approximations of the likelihood. A new
method is presented which is based on derivatives of the exact conditional likelihood
and which uses Monte Carlo (MC) simulations as well as adaptive Gaussian quadrature
(AGQ) to integrate those derivatives over the data and random effects. The method is
implemented in R and evaluated with respect to the influence of the tuning parameter,
the accuracy of the FIM approximation, and computational complexity. The accuracy
evaluation is performed by comparing the expected relative standard errors (RSE) from
the MC/AGQ FIM with RSE obtained in a simulation study with four different discrete
data models (two binary, one count and one repeated time-to-event model) and three
different estimation algorithms. Additionally, the results from the MC/AGQ FIM are
compared with expected RSE from a marginal quasi-likelihood (MQL) approximated
FIM. The comparison resulted in close agreement between the MC/AGQ-based RSE
and empirical RSE for all models investigated, and better performance of MC/AGQ
than the MQL approximated FIM for variance parameters. The MC/AGQ method also
proved to be well suited to calculate the expected power to detect a group effect for a
model with binary outcomes.

Keywords: optimal design, Fisher information matrix, generalized linear mixed model,
nonlinear mixed effect models, discrete data

1. Introduction

Mixed effect models allow to naturally capture data features arising in inherently
longitudinal experiments with heterogeneity between experimental blocks. These design
properties are found in many practical contexts (most notably clinical trials), which has
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led to an increasing utilization of mixed effect models for both continuous (often normally
distributed) and discrete responses. The design of experiments for the discrete response
mixed effect case is especially challenging due to the lack of a closed-form expression
for the Fisher information matrix (FIM), for both discrete response generalized linear
mixed effect models (GLMEM) and for discrete response nonlinear mixed effect models
(NLMEM) (this is similar to the normal case, but here effective approximations are
available [1]) . In this work, we describe a new method for evaluation of the FIM for this
class of models.

There is a relativly large body of work on calculation of the FIM for GLMM. However,
most articles describe methods that are based on approximate inferential methods, such
as quasi-likelihood and generalized estimating equations, and are response type-specific.
Examples include the work by Tekle et al., which focuses on the case of longitudinal
binary data [2], and Niaparast’s article, which is limited to Poisson models with random
intercepts [3]. Also based on generalized estimating equations inference, but more general
in terms of the distribution of the responses, is the approach presented by Woods and van
de Ven [4]. For likelihood estimation of general GLMM with random intercepts, FIM
approximations have been presented and evaluated in detail by Waite and Woods us-
ing marginal quasi-likelihood (MQL), penalized quasi-likelihood (PQL) or new complete
enumeration-based methods, as well as Monte Carlo (MC) approximations thereof [5, 6].

For discrete NLMEM, there is considerably less preexisting work concerning the cal-
culation of the FIM. Ogungbenro and Aarons describe a method based on generalized
estimating equations and the MQL approximation, adapted to binary, ordinal and count
responses [7]. Nyberg et al. presented a method utilizing a second-order approximation
of the likelihood and applied it to binary and count responses [8].

Here we take a slightly different approach: rather than deriving the FIM for an
approximate likelihood, we determine an expression for the FIM based on the exact con-
ditional likelihood and subsequently compute the resulting expressions using MC simula-
tions and adaptive Gaussian quadrature (AGQ). Provided there are a sufficient number
of quadrature grid points, our method evaluates the exact likelihood, it is adapted for
likelihood estimation of general discrete mixed effect models (GLMM as well as NLMEM)
and requires only the specification of the expression for the conditional likelihood. The
proposed method is an extension of the work by Nguyen and Mentré which describes
the application of an MC/AGQ-based approach to approximate the FIM for NLMEM
with normally distributed responses [9]. In their work, Nguyen and Mentré show the
superiority of the MC/AGQ-based approach to a linearization-based calculation of the
FIM when the model nonlinearity is increasing [9], as measured, for example, through the
absolute value of the second derivative [10]. This finding, together with the performance
of AGQ when used for parameter estimation in NLMEM [11, 12], was our motivation
to extend the approach of Nguyen and Mentré and apply it to discrete response mixed
effect models.

We evaluate our method by comparing the expected relative standard errors (RSE)
from the MC/AGQ-based FIM with the parameter precisions obtained by repeatedly
simulating responses from a model and subsequently re-estimating the model parame-
ters. We will refer to this procedure as clinical trial simulation (CTS) as our primary
interests are models originating from the analysis of clinical trials. The use of CTS is
a common approach to evaluate FIM approximations for NLMEM, due to the lack of
an analytic reference expression [7, 8, 9]. However, rather than limiting the compari-
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son to a reference value obtained with one estimation algorithm, as is generally done,
we obtain reference values with three different estimation algorithms: the Laplace ap-
proximation [13], importance sampling [14] and stochastic approximation expectation
maximization (SAEM) [15]. These algorithms represent different approaches to handling
the analytically intractable NLMEM likelihood as well as its maximization. The Laplace
approximation-based estimation algorithm uses a second-order approximation of the like-
lihood and a gradient-based algorithm for maximization. Importance sampling approxi-
mates the likelihood through MC sampling and performs maximization using the expec-
tation maximization algorithm. SAEM relies on Markov-Chain MC sampling in combi-
nation with the expectation maximization algorithm. All three algorithms are commonly
used in practice and have proven suitable for a wide range of models [12, 16, 17, 18, 19].

We structured our paper in three parts. Part one (section 2) describes the derivation
of an expression of the FIM for discrete mixed effect models as well as the proposed way
of approximating this expression using MC simulations and AGQ. In part two (section 3),
the proposed method is evaluated in regard to the influence of tuning parameters, its
performance in comparison with CTS or an MQL approximation, and the computational
complexity of the method. Part three (section 4) presents an application example that
uses the MC/AGQ method to calculate the expected power to detect a group effect for
a clinical trial with binary outcomes under cost constraints.

2. Fisher information matrix for discrete nonlinear mixed effect models

2.1. Notation

2.1.1. Design.

Let ξi denote the vector of design variables for individual i (i = 1, . . . , N). In most
cases, a limited number K of groups of subjects with identical design variables ξ{k} exist.
Hence, the population design, i.e. the superset of design variables from all subjects, can
be efficiently written as the set of pairs Ξ = {[ξ{1}, N{1}], . . . , [ξ{K}, N{K}]} where ξ{k}
is the design variable for group k and N{k} is the number of subjects in that group.

2.1.2. Nonlinear mixed effect models.

This work considers NLMEM for discrete data where the conditional probability for
observation j from subject i can be written as

P (yij |bi) = h(yij , ξi, g(µ, bi, zi)). (1)

Here h is a function describing the probability of yij given bi for a vector of design
variables ξi and a vector of subject-specific parameters modeled through the nonlinear
function g. The function g depends on the vector of fixed effects parameters µ, the vector
of random effects bi and the vector of subject-specific covariates zi. The random effects
are assumed to follow a multivariate normal distribution with mean zero and covariance
matrix Ω, i.e. bi ∼ N(0,Ω). Furthermore, let Ψ be the vector of all model parameters,
i.e. Ψ = (µ,Ωu)T where Ωu is a vector containing all unique elements of Ω.

Generally, observations are assumed independent conditionally on the random effect,
i.e. the joint conditional probability for the vector of observations for subject i (yi =
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(yi1, . . . , yini)
T ) is equal to

P (yi|bi) =

ni∏
j=1

h(yij , ξi, g(µ, bi, zi)). (2)

The likelihood L(yi,Ψ) is a marginal likelihood, given as the integral

L(yi,Ψ) =

∫ ni∏
j=1

h(yij , ξi, g(µ, bi, zi))p(bi)dbi (3)

=

∫
l(yi,Ψ, bi)dbi, (4)

where p(bi) is the p.d.f. of a multivariate normal distribution (mean 0 and covariance
matrix Ω) and l(yi,Ψ, bi) the joint likelihood of observations and random effects.

2.2. Fisher information matrix

The information matrix I(Ψ,Ξ) for the parameters Ψ and the population design Ξ is
given by the sum over all elementary matrices I(Ψ, ξi), i.e.,

I(Ψ,Ξ) =

N∑
i=1

I(Ψ, ξi) (5)

or in the case of K groups of subjects of size N{k} (N =
∑
N{k}) with identical design

I(Ψ,Ξ) =

K∑
k=1

N{k}I(Ψ, ξ{k}). (6)

The elementary information matrix I(Ψ, ξi) is defined as

I(Ψ, ξi) = IEyi

[
∂ logL(yi,Ψ)

∂Ψ

∂ logL(yi,Ψ)

∂Ψ

T
]

(7)

= IEyi

[
∂L(yi,Ψ)

∂Ψ

∂L(yi,Ψ)

∂Ψ

T

(L(yi,Ψ))−2

]
. (8)

Under fairly general conditions the differentiation and integration operators can be ex-
changed and the derivative of the likelihood in equation (8) can be calculated as

∂L(yi,Ψ)

∂Ψ
=

∂

∂Ψ

∫
l(yi,Ψ, bi)dbi =

∫
∂

∂Ψ
l(yi,Ψ, bi)dbi. (9)

Performing the differentiation under the integral sign w.r.t. to µ and Ωu results in
(the details of this derivation are given in the appendix)

∂l(yi,Ψ)

∂µ
=

∫ ni∏
j=1

h(·)

 ni∑
j=1

∂ log h(·)
∂g

∂g(·)
∂µ

 p(bi)dbi (10)

∂l(yi,Ψ)

∂Ωu
=

∫ ni∏
j=1

h(·)

(
Ω−

1
2 biΩ

− 1
2
∂Ω

1
2

∂Ωu
Ω−

1
2 bi − Tr

(
∂Ω

1
2

∂Ωu
Ω−

1
2

))
p(bi)dbi (11)
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The derivative of the Cholesky factor Ω
1
2 w.r.t. Ωu is given by the matrix [20]

∂Ω
1
2

∂Ωu
= Ω

1
2 Λ

(
Ω−

1
2
∂Ω

∂Ωu
(Ω−

1
2 )T
)
, (12)

with Λ defined as the function

Λ (M) =


Mij if i > j
1
2Mij if i = j

0 if i < j.

(13)

2.3. Proposed algorithm

The challenge in the calculation of the FIM is the evaluation of the integrals. First,
the integration required to calculate the expectation in equation (8) and, second, the
integration over the random effects in equations (3), (10) and (11). We propose to solve
the former using MC integration (section 2.3.1) and the latter using AGQ (section 2.3.2),
and refer to our method as MC/AGQ.

2.3.1. Monte Carlo integration.

The expectation over the observations in equation (8) was approximated through MC
integration for each elementary design ξi, by first simulating S vectors of random effects
bs, subsequently simulating observations ys according to ξi for each random effect bs and
finally approximating the FIM as the average over all samples, i.e.,

IEyi

[
∂L(yi,Ψ)

∂Ψ

∂L(yi,Ψ)

∂Ψ

T

(L(yi,Ψ))−2

]
≈ 1

S

S∑
s=1

∂L(yi,s,Ψ)

∂Ψ

∂L(yi,s,Ψ)

∂Ψ

T

(L(yi,s,Ψ))−2

(14)

2.3.2. Adaptive Gaussian quadrature.

To compute the integrals in equations (3), (10), and (11) over the random effects we
use numerical quadrature. First, we note that all three equations can be written as∫

R
f(bi, ·)p(bi)dbi (15)

with

f(bi, ·) =

ni∏
j=1

h(·) (16)

for equation (3),

f(bi, ·) =

ni∏
j=1

h(·)

 ni∑
j=1

∂ log h(·)
∂g

∂g(·)
∂µ

 (17)
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for equation (10) and

f(bi, ·) =

ni∏
j=1

h(·)

(
Ω−

1
2 biΩ

− 1
2
∂Ω

1
2

∂Ωu
Ω−

1
2 bi − Tr

(
∂Ω

1
2

∂Ωu
Ω−

1
2

))
(18)

for equation (11). Second, we introduce the transformation ηi = Ω−
1
2 bi to yield∫

f(bi, ·)p(bi)dbi =

∫
f(Ω

1
2 ηi, ·)p(Ω

1
2 ηi)|Ω

1
2 |dηi =

∫
f̃(ηi, ·)φ(ηi)dηi, (19)

where φ(·) denotes the p.d.f. of the standard multivariate normal distribution and f̃(ηi, ·) =

f(Ω
1
2 ηi, ·). The right-hand side of equation (19) can then be computed using Gaussian

quadrature with appropriately chosen quadrature nodes aq1,...,qd and weights wq1,...,qd as∫
f̃(ηi, ·)φ(ηi)dηi ≈

Q∑
q1=1

· · ·
Q∑

qd=1

wq1,...,qd · f̃(aq1,...,qd , ·). (20)

Both nodes and weights can be calculated as described, for example, by Golub and
Welsch [21]. In general, the higher the order Q, the better the approximation will be [22].
Alternatively, the integral approximation can be improved by using AGQ, which takes
the shape of the integrand (f̃(ηi, ·)φ(ηi)) into account. Nguyen and Mentré, for example,

propose to center the AGQ grid at the simulated random effect value ηs = Ω−
1
2 bs [9].

Here, we extend their approach by centering the grid at the mode and scaling it by the
second derivative of the joint likelihood. The nodes a∗q1,...,qd and weights w∗q1,...,qd for
this adaptation can be calculated by first determining the mode η̂i of the joint likelihood
under the transformation ηi = Ω−

1
2 bi, i.e.,

η̂i = arg max
ηi

log l̃(yi,Ψ, ηi) (21)

with l̃(yi,Ψ, ηi) = l(yi,Ψ,Ω
1
2 ηi). Then computing the nodes according to

a∗q1,...,qd = η̂i +

[
− ∂2

∂η2
i

log l̃

∣∣∣∣
ηi=η̂i

]− 1
2

aq1,...,qd (22)

and the weights according to

w∗q1,...,qd =

∣∣∣∣∣∣
[
− ∂2

∂η2
i

log l̃

∣∣∣∣
ηi=η̂i

]− 1
2

∣∣∣∣∣∣
d∏
k=1

wqk
φ(a∗qk)

φ(aqk)
, (23)

where ∂2

∂η2i
log l̃|ηi=η̂i denotes the second derivative of the joint log-likelihood w.r.t. ηi

evaluated at η̂i. The latter can be calculated using a finite difference approximation.
Substituting the adaptive nodes a∗q1,...,qd and weights w∗q1,...,qd in equation (20) yields

the AGQ formula∫
f̃(ηi, ·)φ(ηi)dηi ≈

Q∑
q1=1

· · ·
Q∑

qd=1

w∗q1,...,qd · f̃(a∗q1,...,qd , ·) (24)
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which was used to compute the integrals in equations (3), (10), and (11).
The FIM approximated with S MC samples and Q quadrature points will be denoted

IS,Q in the following sections.

3. Evaluation of the algorithm

The MC/AGQ FIM method described above was implemented in R version 3.1.1 [23]
using the statmod package [24] for the calculation of the Gaussian quadrature nodes and
weights. The resulting implementation was then evaluated using four different evaluation
examples regarding the influence of algorithm tuning parameters, the performance of the
FIM approximation obtained in comparison with results from CTS as well as an MQL-
based FIM, and the computational complexity of the algorithm.

3.1. Examples

All algorithm evaluations were performed for four different evaluation examples of
discrete mixed models, representing a selection of different discrete data types. A sample
of the data simulated for each example as part of this evaluation is displayed in Figure 1.

3.1.1. Example 1 – Binary response.

The model was based on an example used by Nyberg et al. [8] as well as Ogungbenro
and Aarons [7] to evaluate alternative implementations of the FIM for discrete NLMEM.
For this example, the observations are binary responses (yij ∈ {0, 1}) for different dose
levels (Dj). The model of the observations was given as

h(yij , ξ, g(µ, bi, zi)) =

{
expit(g1 + g2Dj) if yij = 1

1− expit(g1 + g2Dj) if yij = 0
(25)

with

expit(x) =
1

1 + e−x
(26)

and

g(µ, bi, zi) = (g1, g2)T = (µ1 + bi, µ2)T, (27)

where µ1 and µ2 are fixed effects for intercept and slope of the dose relationship and
bi is an intercept random effect. The parameter values used for this example were µ =
(µ1, µ2) = (−0.5, 5) for the fixed effects and ω2

1 = 0.1 for the variance of the random
effect. A study design with N = 50 individuals and n = 30 observations per individual
was used (ξ = (D1, . . . , Dn)T). The 30 observations were split across three dose levels
with

Dj =


0 j = 1, . . . , 10

0.25 j = 11, . . . , 20

0.45 j = 21, . . . , 30.

(28)
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Figure 1: Examples of simulated observations yij for four subjects for each of the four models (see
section 3.1). The figure shows, in a separate row for each of the four examples, the observation index on
the x axis, the simulated value on the y axis as well as the association of the design variables through
shading, lines, or arrows.
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3.1.2. Example 2 – Count response.

The second example models count type data and was also used previously to evaluate
the performance of an FIM approximation for discrete data [8, 7]. The observations
are non-negative integer values (yij ∈ {0, 1, 2, . . .}) representing counts for different dose
levels (Dj). The probability for each observation was described using the Poisson distri-
bution with dose-dependent Poisson parameter λij , i.e.,

h(yij , ξ, g(µ, bi, zi)) =
λ
yij
ij

yij !
exp(−λij). (29)

with

log λij = g1

(
1− Dj

Dj + g2

)
(30)

and

g(µ, bi, zi) = (g1, g2)T = (µ1 exp(b1i), µ2 exp(b2i))
T, (31)

where µ1 and b1i, and µ2 and b2i are fixed and random effects of the dose relationship.
The parameter values used for this example were µ = (µ1, µ2) = (1, 0.5) for the fixed
effects and ω2

1 = ω2
2 = 0.09 for the variances of the random effects. The design considered

for this example included N = 20 subjects with n = 90 observations (ξ = (D1, . . . , Dn)T),
split across the three dose levels with

Dj =


0 j = 1, . . . , 30

0.4 j = 31, . . . , 60

0.7 j = 61, . . . , 90.

(32)

3.1.3. Example 3 – Repeated time-to-event response.

The third example described repeated time-to-event (RTTE) type data (which strictly
speaking are not discrete, but were included here to show the versatility of the approach).
For each subject, the observations yi consisted of the event times between 0 and the end
of the study Tend ({yi,j ∈ R|0 ≤ yij ≤ Tend}). The model assumed a constant, subject-
specific hazard. The conditional probability for yi was given as

h(yij , ξ, g(µ, bi, zi)) =

{
(g exp(−g(yij − yi(j−1)))) if j < ni

exp(−g(Tend − yini)) if j = ni
(33)

with

yi0 = 0 (34)

and

g(µ, bi, zi) = µ1 exp(bi). (35)

The parameters for the hazard used in this example were µ1 = 0.5 for the fixed effect
and ω2

1 = 0.1 for the variance of the random effect. A study design with N = 50 subjects
and a study length of Tend = 10 time units was assumed.
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3.1.4. Example 4 – Dynamic binary response.

In the final, fourth, example a dynamic model for a binary response was considered.
The observations yi consisted of binary responses (yij ∈ {0, 1}) recorded over time in
two different groups. The model describes an increasing probability of one response over
time with group-specific slopes, i.e.

h(yij , ξ, g(µ, bi, zi)) =

{
expit(g1 + g2tj) if yij = 1

1− expit(g1 + g2tj) if yij = 0
(36)

with ξ = (t1, . . . , tn)T and

g(µ, bi, zi) = (g1, g2)T = (µ1 + bi1, (µ2 + bi2)(1− µ3zi))
T, (37)

where µ1 and µ2 are the baseline and slope fixed effects, b1i and b2i are the associated
random effects, µ3 is the group effect, tj is time, and zi ∈ {0, 1} is the group indicator.
The parameter values µ = (µ1, µ2, µ3) = (−1, 4, 0.4) were used for the fixed effects and
(ω2

1 , ω
2
2) = (0.5, 4) for the variances of the random effects. The design consisted of two

equal sized groups with N1 = 25 subjects zi = 0 in group 1 and N2 = 25 subjects
zi = 1 in group 2 (N = N1 + N2 = 50), as well as n = 13 observations per subject.
Observations were assumed to be taken between 0 and 1 time units with equal spacing
between observations.

This example was also used to evaluate the performance of the MC/AGQ method
when varying design variables. Starting from the reference scenario described above,
three different scenarios were studied: scenario S1 varied the total study size N = N1 +
N2, scenario S2 varied the number of observations per subject n, and scenario S3 varied
both study size and number of observations per subject while keeping the total number
of observations ntot = N ·n constant. All three scenarios assumed equal spacing between
observations between 0 and 1 time units.

3.2. Evaluation of MC/AGQ tuning parameters

The two most important tuning parameters of the MC/AGQ algorithm are the num-
ber of MC samples, S in equation (14), and the number of quadrature grid points Q
(equation (24)). While Q affects the accuracy of the approximation of the FIM, S influ-
ences its precision.

3.2.1. Methods – Evaluation of MC/AGQ tuning parameters

The influence of both parameters was evaluated for each of the four examples using
three criteria of the FIM, the Pth root of the determinant of the FIM where P is the
total number of parameters, i.e.,

φ1(S,Q) = P

√
|IS,Q(Ψ,Ξ)|, (38)

the trace of the fixed effect parameter part of the inverse of the FIM

φ2(S,Q) = Tr((I−1
S,Q(Ψ,Ξ))(µ)), (39)
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and the trace of the variance of the random effect part of the inverse of the FIM

φ3(S,Q) = Tr((I−1
S,Q(Ψ,Ξ))(Ωu)). (40)

The three criteria were normalized by their respective values obtained with a sufficiently
large number of grid points, i.e.

φrel,k(S,Q) =
φk(S,Q)

φk(104, 10)
. (41)

For the evaluation of Q, φrel,k(104, Q) was studied for Q = 1, 3, 5, 10 and for the evalu-
ation of S, the standard deviation of φrel,k(S, 3) from 100 repetitions of MC/AGQ with
S = 100, 250, 500, 1000, 2000, 5000 was evaluated. The value of Q = 3 for the latter was
chosen based on the results from the Q evaluation.

3.2.2. Results – Evaluation of MC/AGQ tuning parameters

φ1 φ2 φ3

0.5

1.0

1.5

2.0

1 3 5 10 1 3 5 10 1 3 5 10
Number of quadrature nodes Q

φ k
(1

04 , Q
)

φ k
(1

04 , 1
0)

Ex1: Binary

Ex2: Count

Ex3: RTTE

Ex4: Dynamic Binary

Figure 2: Influence of the number of quadrature nodes Q on the normalized determinant of the Fisher
information matrix (FIM) (φ1, left panel), the trace of the fixed effect parameter part of the inverse of
the FIM (φ2, middle panel), and the trace of the variance of the random effect part of the inverse of the
FIM (φ3, right panel) for all four models. All criteria are shown relative to the values obtained with 10
quadrature nodes and were obtained with S = 10, 000 Monte Carlo samples.

The influence of the number of quadrature grid points on the three evaluation criteria
is illustrated in Figure 2. With 1 grid point, results differed by more than a factor of
2.5 from the reference, but when using 3 or more grid points all evaluation criteria were
virtually identical to the reference.

Figure 3 displays the impact of the number of MC samples S on the standard deviation
of the three evaluation criteria. Clearly, the influence of S differs between criteria. For
example, to obtain a standard deviation of less than 10% only 500 MC samples are
sufficient for the trace of the fixed effect parameter part of the inverse of the FIM, but
1,000 are required for the normalized FIM and even 2,000 for the trace of the variance
of the random effect part of the inverse of the FIM.

3.3. Performance of the MC/AGQ-based FIM approximation

To evaluate the performance of the MC/AGQ-based FIM approximation, the ex-
pected RSE based on the predicted FIM (ratio of the square root of the diagonal terms
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Figure 3: Influence of the number Monte Carlo (MC) samples S on the standard deviation (sd) of the
normalized determinant of the Fisher information matrix (FIM) (φ1, left panel), the sd of the trace of
the fixed effect parameter part of the inverse of the FIM (φ2, middle panel), and the sd of the trace of
the variance of the random effect part of the inverse of the FIM (φ3, right panel) for all four models.
The sd for all criteria was obtained with Q = 3 quadrature nodes.

of I−1 and the parameter value) from the algorithm were compared with the empirical
RSE from CTS for all four evaluation examples. Where applicable (examples 1, 2, and
4), the results from the MC/AGQ-based FIM were also compared with the expected
RSE obtained with an MQL-based FIM approximation presented by Ogungbenro and
Aarons [7] (the details of this approximation are given in the appendix).

3.3.1. Methods – Clinical trial simulations

For each example, MC = 1000 datasets were simulated using R. Each dataset was sub-
sequently used to estimate the population parameters using the SAEM estimation algo-
rithm in MONOLIX version 4.3.3 as well as the Laplace and importance sampling (IMP)
estimation algorithms in NONMEM version 7.3. SAEM in MONOLIX and Laplace in
NONMEM were run with their default settings (except for example 4, where MONOLIX
was run with 5 chains), IMP in NONMEM was run with the option AUTO=1. The 1000
sets of parameter estimates from each algorithm were used to calculate the empirical
RSE according to

RSE(ψ̂) =
1

ψ

√√√√ 1

MC

MC∑
m=1

(
ψ̂m − IE(ψ̂)

)2

, (42)

where ψ̂m is the parameter estimate, ψ is the true parameter value that was used to
simulate the data, and IE(ψ̂) is the empirical mean (IE(ψ̂) = 1/MC

∑MC

m=1 ψ̂m). Addition-
ally, a 95% confidence interval for the empirical RSE of each parameter and estimation
algorithm was determined through a bootstrap procedure. The bootstrap procedure de-
termined the 2.5% and 97.5% percentiles of the empirical RSE distribution, by sampling
(with repetition) 1000 vectors of size 1000 from the set of final parameter estimates and
subsequent calculation of the RSE according to equation (42).

The set of 1000 estimates from each estimation algorithm was also used to calculate
the observed FIM as the inverse of the empirical variance-covariance matrix of estimates.
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Table 1: Combination of design variables (total study size N , number of observations per subject n and
total number of observations ntot = N · n) studied with example 4 and method of evaluation used.

Scenario Method of evaluation
Design variables

N n ntot = N · n
S1: Total study size

MC/AGQ FIM 20 - 80 13 260 - 1040
CTS 20, 50, 80 13 260, 650, 1040

S2: Observations per subject
MC/AGQ FIM 50 5 - 20 250 - 1000
CTS 50 5, 13, 30 250, 650, 1000

S3: Constant total number of observations
MC/AGQ FIM 20 - 60 4 - 12 240
CTS 20, 40, 60 12, 6, 4 240

For the observed FIM, the normalized determinant was calculated as specified before and
compared with the normalized determinant of the expected FIM.

For the second part of example 4, three specific designs from each scenario were
evaluated through CTS for the evaluation of the performance of the MC/AGQ method
when varying design variables. The range of design variables studied with the MC/AGQ
FIM and with CTS under the three scenarios is listed in Table 1.

3.3.2. Methods – MC/AGQ-based FIM approximation

Based on the results of section 3.2 and the precision achieved with CTS, the MC/AGQ
algorithm was run with S = 2000 MC samples and Q = 3 adaptive quadrature grid
points, i.e. the comparison was performed for I3,2000. The expected standard error (SE)
was calculated as the square root of the diagonal terms of I−1

3,2000 and the expected RSE

was defined as the ratio of SE and the parameter value. Additionally, the Pth root of the
determinant of the FIM, with P equal to the total number of parameters, was calculated
as defined in equation (38).

3.3.3. Results – Performance of the MC/AGQ-based FIM approximation

For all four examples, Figure 4 compares the expected RSE, obtained through the
MC/AGQ and MQL FIM, with the empirical RSE, obtained through CTS with three
different estimation algorithms. The differences in empirical RSE between estimation
algorithms are minor for all models, with larger deviations only for the variance of the
random effects for the count and dynamic examples. Concerning the evaluation of the
RSE predictions, it should be noted that based on the Cramer-Rao inequality, the FIM
predicted RSE are expected to be equal to or lower than the empirical RSE. Since rather
rich designs were used for the evaluation, a close agreement between the two quantities
is expected for a good approximation of the FIM.

Generally, the empirical RSE are in good agreement with the MC/AGQ FIM pre-
dicted RSE. For all fixed effect parameters as well as for the random effect variances of the
binary example and RTTE examples the agreement is very high. For the random effect
variances ω2

2 of the count and dynamic examples, the deviations between the MC/AGQ
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FIM predicted RSE and the empirical RSE are estimation algorithm-dependent and low
overall. Also, the agreement between the normalized determinant of the expected and
observed FIM, shown in Table 2, is high overall. Only the determinant of the expected
FIM for the RTTE model is lower than the determinant of the observed FIM.

For fixed effect parameters, the agreement between the empirical RSE from CTS and
the expected RSE from the MQL approximated FIM is also very high and essentially
identical to the MC/AGQ-based results. For random effect variances, however, the per-
formance of the MQL approximated FIM is clearly inferior. Especially for ω2

2 of the
count and both ω2 parameters of the dynamic example the agreement with CTS is weak.
Most importantly, the MQL approximation could not be applied to the RTTE example.

Ex1: Binary Ex2: Count

Ex3: RTTE Ex4: Dynamic Binary
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Figure 4: Relative standard errors (RSE) for the four simulated examples as predicted through the
MC/AGQ Fisher information matrix (FIM) with Q = 3 and S = 2000, in comparison with RSE predicted
from a marginal quasi-likelihood approximation (MQL) of the FIM as well as the empirical RSE obtained
through clinical trial simulations (CTS) using three different estimation algorithms. Error bars indicate
a 95% confidence interval of the RSE obtained by repetition for MC/AGQ and bootstrap for CTS.

For fixed effects, Figure 5 illustrates the performance of the MC/AGQ method when
varying design variables of example 4 in three different scenarios: total study size, obser-
vations per subject, and constant total number of observations. The figure shows good
agreement between FIM predicted RSE and the empirical RSE from CTS for the whole
range of design variables. Nevertheless, for less informative designs (small study size or
few observations per subject) the predictions from FIM are optimistic (as expected from
the asymptotic nature of the FIM). Still, even for a study size of 20 subjects (i.e. 10
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Table 2: Pth root of the determinant of the expected (E) and observed (O) Fisher information matrix,
with P equal to the total number of parameters in the model.

Method Binary Count RTTE
Dynamic

Binary

E MC/AGQ 85.2 385.8 501.5 8.1
E MQL 81.8 273.3 - 9.1
O SAEM 80.7 300.6 516.4 7.1
O LAPLACE 84.3 263.3 540.4 6.9
O IMP 83.7 298.7 541.8 6.6

subjects in each group) there is rather good agreement between MC/AGQ FIM predicted
RSE and CTS-based RSE.
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Figure 5: Expected relative standard errors (RSE) from MC/AGQ (Q = 3, S = 2000) for the fixed effects
of example 4 (longitudinal binary) as a function of varying total study sizes (left, n = 13 observations per
subject), varying number of observations per subject (middle, study size of N = 50) and varying both
with constant number of total observations (right, ntot = 240 observations). The median of the error
bars indicates the empirical RSE obtained through clinical trial simulations and the whiskers indicate
their 95% confidence interval obtained by bootstrap.

3.4. Computational complexity evaluation

For a practical use of an algorithm, runtime or computational complexity is one of
the most important properties. In this section, the computational complexity of the
MC/AGQ algorithm is compared with CTS and an MQL-based approximation of the
FIM.

3.4.1. Methods – Computational complexity evaluation

The comparison of CTS and MC/AGQ in terms of time is complicated by the
difference in implementation, i.e., while the three estimation algorithms used for the
CTS are implemented in fast low-level programming languages (C++ for MONOLIX and
FORTRAN 90 for NONMEM), the two FIM-based methods are implemented in R, which is
comparatively slow. Therefore, rather than comparing algorithm runtimes, the compu-
tational complexity was compared based on the number of evaluations of the conditional
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probability function for the observations given in equation 1. A formal evaluation of this
quantity (big O notation) is challenging since some of the algorithms require multiple
optimization steps, which is why the actual number of evaluations was recorded and used
for the comparison. The details of how this was done for the MQL method are given in
Appendix B.

Algorithm settings were set to the values used to obtain the results visualized in
Figure 41. Furthermore, for this comparison the CTS were run with full finite difference
gradient evaluation (as used for MC/AGQ and the MQL approximation) as the number
of conditional probability function evaluations is also dependent on the method used to
calculate the gradients (especially for the Laplace algorithm).

3.4.2. Results – Computational complexity evaluation

100

102

104

106

108

1010

1012

Ex1: Binary Ex2: Count Ex3: RTTE Ex4: Dynamic Binary

N
um

be
r 

of
 fu

nc
tio

n 
ev

al
ua

tio
ns

FIM MC/AGQ

FIM MQL

SAEM

LAPLACE

IMP

Figure 6: Number of conditional probability evaluations for the observations required to obtain relative
standard errors with a precision as shown in Figure 4.

The results of the computational complexity comparison is visualized in Figure 6.
While the absolute number of evaluations is a function of the model (number of fixed and
random effects) as well as the design (number of subjects and observations per subject),
and hence differed between examples, the relative difference between methods was the
same across examples. The MQL-based evaluation of the FIM clearly required the fewest
evaluations (approximately 102), followed by MC/AGQ (106 to 107 evaluations). The
CTS-based methods required a significantly larger number of conditional probability
evaluations (between 1010 and 1012).

4. Application of the MC/AGQ method

Section 3.3.3 also highlighted the ability of the MC/AGQ method to predict the RSE
for different design variables. This section illustrates a potential application, by studying
the influence of the design on power to detect a group effect under cost constraints [25]

1The number of conditional probability evaluations for the SAEM algorithm was obtained with the
corresponding NONMEM method. While differences between MONOLIX and NONMEM are expected,
the order of magnitude is likely to be the same.
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(p. 16). The design variables considered in this example are study size (N) and number
of observations per subject (n).

In this case, the example is theoretical, but the chosen setting easily extends to clin-
ical studies with binary outcomes such as when performing a responder/non-responder
analysis or when studying the ACR20 response in rheumatoid arthritis [26](ACR20 is
a binary endpoint and a response of one corresponds to a 20% improvement on the
American College of Rheumatology scale) .

4.1. Method

Model formulation and parameter values from evaluation example 4 are reutilized
here. Hence, a null and alternative hypothesis for the test of a group effect on the slope
can be formulated as

H0 : µ3 = 0 H1 : µ3 6= 0, (43)

where µ3 is the group effect parameter. In this setting, the expected power for a Wald
test is a function of the design (Ξ) given by

π(Ξ) = 1− Fχ2(χ2
1−α,k, k, λ(Ξ)), (44)

where Fχ2 is the cumulative distribution function of the non-central chi-square distribu-
tion, χ2

1−α,k is the 1 − α quantile of the chi-square distribution with k = 1 degrees of
freedom [27], and the non-centrality parameter λ(Ξ) is given through the expected Wald
statistic

λ(Ξ) =
µ2

3

SE (µ3)
2 , (45)

where SE (µ3) is the expected estimation SE of µ3 as determined from the inverse of the
FIM for a specific design. Similar to example 4, observations are assumed to be taken
between 0 and 1 time units with equal spacing between observations, but varying the
number of subjects (N) and number of observations per subject (n).

Study costs are assumed to involve recruitment costs (cr) and observation costs (co).
For fixed cr and co, the overall study costs are therefore a function of the number of
subjects (N) and the number of observations per subject (n), i.e.,

c(N,n) = N · n · co +N · cr. (46)

For the sake of this example, a cost constraint of 12,000 units will be considered with
an expected recruitment cost of cr = 100 units per subject and costs of co = 10 units per
observation. Assuming a true group effect of µ3 = 0.4, the design is constrained to have
at least 80% power (α = 0.05) and costs of at most 12,000 units. The two ’best’ designs
will be determined: the most powerful design (within the given cost constraint) ξπ and
the design with lowest costs (and at least 80% power) ξc.

4.2. Results

The influence of the number of subjects and the number of observations per subject
on the expected power to detect a group effect as well as on the expected study costs is

17



0 20 40 60 80

0
5

10
15

20

Study size (N)

O
bs

. p
er

 s
ub

je
ct

 (
n)

Power

 10 

 30 

 50 

 60 

 70 

 90 

ξπξc

0 20 40 60 80

0
5

10
15

20

Study size (N)
O

bs
. p

er
 s

ub
je

ct
 (

n)

Costs

 2000 

 4000 

 6000 

 8000 

 10000 

 14000 
 16000 
 18000 
 20000 

ξπξc

Figure 7: Contour plots of the expected power to detect a group effect (left panel) and expected study
costs (right panel) as a function of study size (N) and number of observations per subject (n) for the
trial designs from the application example. The design constraints (at least 80% power and costs of at
most 12,000) are indicated as contours plotted with thicker lines and the designs with maximal power
ξπ as well as with minimal costs are ξc are indicted through 3 and #, respectively.

Table 3: Study size (N), observations per subject (n), power (π) and costs (c) for the most powerful
(ξπ) and the least expensive design (ξc) from the application example

N n π c

ξπ 54 12 87.8 11,880
ξc 46 11 80.2 9,660

visualized in Figure 7. The graph shows a contour plot of power and cost as a function of
the number of subjects (N) and the number of observations per subject (n). It illustrates
that specific power and cost levels are obtainable with multiple combinations of the two
design variables. For example, an expected power of 80% can be achieved with a study
size of 40 and 20 observations per subject (40 · 20 = 800 observations in total) or with
80 subjects and 5 observations per subject (80 · 5 = 400 in total). This illustrates
that by balancing study size and number of observations per subject, the total number
of observations can be reduced by a factor of 2, while maintaining the level of expected
power. This non-trivial relationship between the two design variables and expected power
is the result of the dependence between observations from the same subject, introduced
through the random effects. The evaluation of the study design is further complexified
in the present example through the cost constraint, resulting in the two ’best’ designs ξπ
and ξc. Both designs, are annotated in Figure 7 and their details are listed in Table 3.

5. Discussion

In this work a new method for the evaluation of the FIM for discrete mixed effect
models was presented. Unlike previous approaches, this method does not use any likeli-
hood approximation and is based on the derivatives of the exact conditional likelihood.
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MC simulations and AGQ are subsequently used for the numerical computation of the
FIM.

The evaluation of the algorithm was performed through a simulation study as well
as in comparison with a competing approximation due to the lack of a closed-form solu-
tion for discrete NLMEM. For the simulation study, we selected three diverse estimation
algorithms to obtain more agnostic reference values. For the four models investigated
in this work the expected RSE were in very good agreement with the CTS results for
most parameters. Notable deviations between empirical RSE and MC/AGQ-based RSE
were found only for the RSE obtained for the random effect variance ω2

2 of the count
example and the RSE for ω2

2 of the dynamic example. For these parameters, larger
differences between the three estimation algorithms could be observed, indicating that
estimation might be challenging. Furthermore, it should be noted that the deviations
found in this investigation are of minor importance from a practical perspective as their
magnitude was high only for parameters with already high RSE. The computational com-
plexity evaluation revealed the drastically lower effort needed by the MC/AGQ method
compared with CTS. This difference in computational effort is a major advantage of
optimal experimental design methodology over CTS and, hence, is essential for adoption
in practice.

The second comparison performed in this manuscript compared the MC/AGQ-based
approximation of the FIM with the MQL-based approximation suggested by Ogungbenro
and Aarons [7]. Advantages of the MC/AGQ method were visible only for random effect
variances. However, it is important to highlight that two of the four examples were
taken from the publication of Ogungbenro and Aarons, and a good performance of the
method for those examples is therefore not surprising. For more complex examples with
more parameters and sparse design the advantages in accurate prediction of RSE by
the MC/AGQ method are expected to be greater. This has been shown for NLMEM
with normally distributed observations, for example, by Nguyen and Mentré [9], but
remains to be verified for discrete NLMEM. The computational effort for the MQL-based
approximation of the FIM is several orders of magnitude lower than for the MC/AGQ-
based approximation. It should be noted, however, that the MQL-based approximation
requires a different formula for different types of observation (see section Appendix B)
to account for the difference in marginal distribution (most importantly the marginal
variance). This calculation of the distribution of the observations is also where a big part
of the computational effort of the MC/AGQ method goes. One can therefore interpret
the reduction in computational effort for the MQL-based method as being ‘bought’ by
replacing machine through human effort. The universal applicability of the MC/AGQ
method is in our opinion also its biggest advantage. It merely requires formulas for data
simulation and likelihood calculation to apply optimal design-based methods.

Considering the agreement between FIM predictions and CTS for the first two exam-
ples, the approach presented appears also to perform similarly to the method by Nyberg
et al. [8], the second existing approach for calculating the FIM for discrete data NLMEM
(examples 1 and 2 are shared between the evaluations). However, the method presented
here requires considerably less computational effort than the second order-based approxi-
mation by Nyberg et al.. Another advantage of the MC/AGQ method is the possibility of
increasing the number of quadrature nodes to improve the approximation of the marginal
likelihood integral. As a result, a more precise prediction of the parameter precision than
through the approximation by Nyberg et al. is expected for more complex examples.
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The MC/AGQ method is in its overall concept identical to the one presented by
Nguyen and Mentré [9] for normally distributed observations. However, it represents a
considerable improvement in the sense that it is adopted to GLMM as well as discrete
data NLMEM. Furthermore, our method uses an improved AGQ method by employing
both centering and scaling, compared with only centering as done by Nguyen and Mentré.
Finally, instead of centering the quadrature grid at the simulated value of the random
effect parameters, we center the grid at the mode of the joint likelihood. This results in
better approximation of the integrals over the random effects and allows drastic reduction
in the number of quadrature grid points. In an evaluation for one of the examples from
the work of Nguyen and Mentré, our algorithm achieved a comparable precision with 100
times (10 in each random effect dimension) fewer quadrature points than the algorithm
presented by Nguyen and Mentré (the details of this evaluation are presented in Appendix
C).

An application example was used to highlight the utility of the proposed algorithm.
It utilizes the expected parameter precision from the MC/AGQ approximated FIM to
calculate the expected power to detect a group effect and combines it with a cost eval-
uation. Despite the relatively simple structure of the model and the restriction to two
design variables, the example illustrates the complexity of designing an experiment for
discrete mixed effect models and stresses the usefulness of carefully studying the design
with the FIM.

One limitation of the approach presentedis a consequence of the curse of dimensional-
ity. The number of model evaluations increases exponentially with the number of random
effects in the model, as the same number of quadrature grid points is needed in each di-
mension of the random effect vector. While this is still manageable for models with
2 and 3 random effects, the computational effort quickly becomes infeasible for more
complex models. Possible alternative integration techniques that avoid this drawback
are discussed in the following paragraph, but it is important to note that for categori-
cal data models the number of random effects is often low due to the lower amount of
information in the data. A second issue of this approach is its stochastic nature due to
the MC sampling involved. This makes it harder to employ deterministic optimization
algorithms such as Fedorov-Wynn [28, 29]. A possible solution is either the increase
of the number of MC samples or the use of a stochastic optimization algorithm (e.g.,
simulated annealing [30] or stochastic gradient [31]).

Future perspectives for this work involve the investigation of alternative approaches
to calculate i) the expectation over the data (equation (14)) and ii) the integrals over
the random effects (equation (20)) more efficiently. For the former, variance reduction
techniques such as Latin hypercube or importance sampling are envisionable [32]. A
promising alternative technique for the evaluation of the integrals over the random ef-
fects is the use of quasi-Monte Carlo sampling [33]. This integration method avoids the
exponential growth of the number of quadrature points as the number of random effects
increases and has a higher accuracy than classical MC methods with same number of
function evaluations.

Finally, it will be important to make the methods developed in this work available
to potential users, thereby it is hoped further increasing the use of optimal experimental
design for discrete data mixed effect models.
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F. Mentré, Methods and software tools for design evaluation in population pharmacokinetics-
pharmacodynamics studies, British Journal of Clinical Pharmacology 79 (1) (2015) 6–17.
doi:10.1111/bcp.12352.

[2] F. B. Tekle, F. E. S. Tan, M. P. F. Berger, Maximin D-optimal designs for binary lon-
gitudinal responses, Computational Statistics & Data Analysis 52 (12) (2008) 5253–5262.
doi:10.1016/j.csda.2008.04.037.

[3] M. Niaparast, On optimal design for a Poisson regression model with random intercept, Statistics
& Probability Letters 79 (6) (2009) 741–747. doi:10.1016/j.spl.2008.10.035.

[4] D. C. Woods, P. van de Ven, Blocked designs for experiments with correlated non-normal response,
Technometrics 53 (2) (2011) 173–182. doi:10.1198/TECH.2011.09197.

[5] T. W. Waite, Design of experiments with mixed effects and discrete responses plus related topics,
Thesis for the degree of doctor of philosophy, University of Southampton (2012).

[6] T. W. Waite, D. C. Woods, Designs for generalized linear models with random block effects via in-
formation matrix approximations, Biometrika 102 (3) (2015) 677–693. doi:10.1093/biomet/asv005.

[7] K. Ogungbenro, L. Aarons, Population Fisher information matrix and optimal design of discrete
data responses in population pharmacodynamic experiments, Journal of Pharmacokinetics and
Pharmacodynamics 38 (4) (2011) 449–469. doi:10.1007/s10928-011-9203-7.

[8] J. Nyberg, M. O. Karlsson, A. C. Hooker, Population optimal experimental design for discrete type
data, in: PAGE 18 (2009), no. Abstr 1468.
URL www.page-meeting.org/?abstract=1468
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Appendix A. Derivative of the joint-likelihood

With the definition of the joint-likelihood as

l(yi,Ψ, bi) =

ni∏
j=1

h(yij , ξi, g(µ, bi, zi))p(bi)
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the derivative w.r.t. µ is

∂

∂µ
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and w.r.t. Ωu is
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where h(·) = h(yij , ξi, g(µ, bi, zi)), g(·) = g(µ, bi, zi) and φ(·) denotes the p.d.f. of the
standard multivariate normal distribution with mean 0 and variance matrix I [34] (p. 23).

Appendix B. Methods – MQL approximation of the FIM

Following Ogungbenro and Aarons [7], the elementary information matrix I(Ψ, ξi)
was evaluated as

I(Ψ, ξi) =

(
JT
i V
−1
i Ji 0

0 1
2

[
Tr
{
ZT
i,(k)V

−1Zi,(l)(Z
T
i,(k)V

−1
i Zi,(l))

T
}]

0≤k,l≤r

)

with

Vi = ZiΩZ
T
i +Wi
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where Zi,(l) denotes column l of Zi. The matrices Ji, Zi and Wi are all model-dependent
and for the binary examples 1 and 4 are defined as

Jij =
∂h(yij , ξ, g(µ, bi, zi))

∂µ

∣∣∣yij=1
bi=0

Zij =
∂h(yij , ξ, g(µ, bi, zi))

∂bi

∣∣∣yij=1
bi=0

Wi = diag(pi1(1− pi1), . . . , pij(1− pij))

with

pij = h(yij , ξ, g(µ, bi, zi))
∣∣∣yij=1
bi=0

.

For the count model in example 3 these matrices were defined as

Jij =
∂λij
∂µ

∣∣∣
bi=0

Zij =
∂λij
∂bi

∣∣∣
bi=0

Wi = diag(λi1, . . . , λij).

The derivatives needed to calculate Jij and Zij were approximated using forward
finite differencing according to the formula

∂f(x)

∂x
=
f(x+ h)− f(x)

h

with h = 10−6.
For the computational complexity comparison, the number of function evaluations of

h for the binary and λ for the count example were considered for the MQL method, i.e.
the number of evaluations needed to calculate Wi as well as Jij and Zij using the finite
difference method were added together.

Appendix C. Evaluation of the AGQ adaptation strategy

For the MC/AGQ method presented in this manuscript, the quadrature grid was
centered at the mode and scaled by the second derivative of the joint likelihood. This is
in contrast to the work of Nguyen and Mentré where the simulated value of the random
effect was used for the centering and no scaling was performed [9]. The influence of the
adaptation strategy on the RSE prediction for the example M3S of the work by Nguyen
and Mentré is compared in Figure C.1. The example used the model

yij = 5 +
µ1 exp(b1)d3

j

µ2 exp(b2)3 + d3
j

+ εij (C.1)

where εij was assumed to follow a normal distribution with mean 0 and standard devi-
ation σ. The parameter values were µ = (30, 500), ω2

1 = ω2
2 = 0.09, and σ = 2. The
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design consisted of two doses d per individual with d = (300, 1000). Figure C.1 compares
the three adaptation strategies: i) centering and scaling at the mode (CS MODE), ii)
centering only at the mode (C MODE), and iii) centering at the simulated value of the
random effect (C SIM). In the figure φrel,k for k = 1, 2, 3 (see section 3.2) is plotted as a
function of the number of quadrature grid points Q.

Figure C.1 highlights the advantage of centering the quadrature grid at the mode
rather than at the simulated value. While with CS MODE and C MODE stable results
for φ2 and φ3 are already obtained with 3 grid points, C SIM requires more than 30.
Figure C.1 also illustrates, most clearly for φ1, how scaling further improves the quality of
the approximation. For this criterion, in order to reach the same quality in prediction as
CS MODE, both approaches without scaling require more than 10 times more quadrature
grid points.

φ1 φ2 φ3

0

1

2

3

1 3 5 7 15 31 1 3 5 7 15 31 1 3 5 7 15 31
Number of quadrature nodes Q

φ k
(1

04 , Q
)

φ k
(1

04 , 1
0)

CS MODE

C MODE

C SIM

Figure C.1: Influence of the number of quadrature nodes Q and the adaptation strategy (CS MODE –
centering and scaling at the mode, C MODE – centering only at the mode, and C SIM – centering at the
simulated value of the random effect) on the normalized determinant of the Fisher information matrix
(FIM) (φ1, left panel), the trace of the fixed effect parameter part of the inverse of the FIM (φ2, middle
panel), and the trace of the variance of the random effect part of the inverse of the FIM (φ3, right panel)
for example M3S of Nguyen and Mentré [9].
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