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Abstract

Background: High-throughput sequencing technology and bioinformatics have
identified chimeric RNAs (chRNAs), raising the possibility of chRNAs expressing
particularly in diseases can be used as potential biomarkers in both diagnosis and
prognosis.

Results: The task of discriminating true chRNAs from the false ones poses an
interesting Machine Learning (ML) challenge. First of all, the sequencing data may
contain false reads due to technical artifacts and during the analysis process,
bioinformatics tools may generate false positives due to methodological biases.
Moreover, if we succeed to have a proper set of observations (enough sequencing
data) about true chRNAs, chances are that the devised model can not be able to
generalize beyond it. Like any other machine learning problem, the first big issue is
finding the good data to build models. As far as we were concerned, there is no
common benchmark data available for chRNAs detection. The definition of a
classification baseline is lacking in the related literature too. In this work we are moving
towards benchmark data and an evaluation of the fidelity of supervised classifiers in the
prediction of chRNAs.

Conclusions: We proposed a modelization strategy that can be used to increase the
tools performances in context of chRNA classification based on a simulated data
generator, that permit to continuously integrate new complex chimeric events. The
pipeline incorporated a genome mutation process and simulated RNA-seq data. The
reads within distinct depth were aligned and analysed by CRAC that integrates
genomic location and local coverage, allowing biological predictions at the read scale.
Additionally, these reads were functionally annotated and aggregated to form chRNAs
events, making it possible to evaluate ML methods (classifiers) performance in both
levels of reads and events. Ensemble learning strategies demonstrated to be more
robust to this classification problem, providing an average AUC performance of 95 %
(ACC=94 %, Kappa=0.87 %). The resulting classification models were also tested on real
RNA-seq data from a set of twenty-seven patients with acute myeloid leukemia (AML).

Keywords: Chimeric RNAs, Transcriptomics, Classification, Ensemble learning, Data
simulation
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Background
A chimeric RNA (chRNA) is a RNAmolecule that is made of two or more pieces of RNAs
from different loci. Chimeric RNAs are formed from genetic rearrangements like translo-
cation, inversion, deletion or copy number variation. Other studies have highlighted that
many other chRNA could be also generated from post-transcriptional mechanisms such
as read-through and splicing, transcription of short homologous sequence slippage or
from trans-splicing [1].
High-throughput sequencing technology and bioinformatics have identified chRNA,

raising the possibility of chRNAs expressing particularly in diseases can be used as poten-
tial biomarkers in both diagnosis and prognosis. However, only a limited number of
chimeric transcripts and their associated protein products have been characterised to
date, most of them resulting from chromosomal translocation and associated with cancer
[2, 3]. For instance the well-known gene fusion in chronic myelogenous leukemia leading
to an mRNA transcript that encompass the 5’ end of the BCR gene and the 3’ end of the
ABL gene, producing the chRNA BCR–ABL.
Most protocols used to identify chimeric transcripts rely on a reverse transcrip-

tion step and the reverse transcriptase is known to switch templates, thus creating
chimeric artifacts in vitro [4]. Thus, it remains unclear what proportion of putative
chimeric transcripts are true, and of these how many are translated. With the rapid
evolution of genomic research, next generation sequencing (NGS) has become widely
available. Sequences in databases or sequences directly from RNA-seq often contain
information that leads to false results when they are analysed with bioinformatics
approaches. This is partially due to the fact that the first stage of the available bioin-
formatic tools for finding chRNA basically rely on mapping, where reads are aligned
with respect to the reference genome used by the algorithm. Additionally, the length
and depth of sequencing might be inadequate for covering all exon junctions, and given
that repeated sequences are present, clearly, the alignment of sequences to specific
regions is highly biased to sequencing. Next to mapping, a set of filters based on sev-
eral technological or biological assumptions are applied to reduce the set of putative
chRNAs.
Many tools have been developed to detect chRNAs [5], though many complications

arise when trying to provide a complete benchmark. Each one of these tools have par-
ticular constraints regarding installation, parametrization, usability, and database(s) or
software(s) dependencies. Liu et al. [6] provided an overall evaluation of thirteen strate-
gies, suggesting the combination of three of them as a robust solution. In fact, there is
a trend to explore combination of algorithms to boost the analysis of chimera detection.
However, a good combination of software requires proper criteria of selections based
on metrics according to the biological question in order to choose the most suitable
ones. In fact, the basic information shared in common by all these softwares is the ini-
tial sequenced reads which is distinctively explored by each of them. In other words,
each software integrates its own algorithm and different external features and database
to define proper margins or “rule(s)” to classify potential chRNAs. If one is able to make
such abstraction (or rules) from the reads, it might be an interesting alternative to directly
explore models generated from classifiers. In this work, we propose a different angle of
discussion, model-oriented rather than comparing software for chRNAs detection which
are not necessarily comparable because there are questions-oriented.
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The task of discriminating true chRNA from the false ones poses an interestingMachine
Learning (ML) challenge. First of all, the sequencing data is highly biased and thus predict-
ing the real signal from the noise can be a hard task. Furthermore, even if we succeed to
have a proper set of observations (enough sequencing data) about true chRNAs, chances
are that the devised model can not be able to generalize beyond it.
Models generalization is the “holy grail” of machine learning. MLmethods must be able

to see beyond the data observed in order to generalize beyond it. The famous “no free
lunch” theorem of Wolpert says that no learner can beat a random guessing over all pos-
sible functions to be learned. Ensemble strategies overcome the no-free-lunch dilemma
by combining the outputs of many classifiers assuming that each classifier performs well
in particular domains while being sub-optimal in others. Machine learning and ensemble
based systems has been applied successfully in several data applications [7, 8]. The main
idea behind the ensemble strategy is simple, “rely on the feedback of a bunch of special-
ists”. Thus, a combination of several models might better estimate the margins boundaries
in the hypothesis space, reducing the bias and variance errors. Bias is a learner’s tendency
to consistently learn the same wrong thing. Variance is the tendency to learn random
things irrespective of the real signal [9]. Empirical and theoretical evidence show that
some ensemble learning techniques like bagging act as a variance reduction mechanism,
i.e., they reduce the variance component of the error. Boosting strategies reduce both the
bias and variance parts of the error. It sounds that the bias error is usually reduced in
the early iterations, while variance error decreases in later ones. Indeed, the key compo-
nent behind ensemble success is the concept of classifier diversity [7]. Classifier diversity
can be achieved in several ways. The most known approach is to use different training
datasets to train individual classifiers. Such datasets are often obtained through resam-
pling techniques, such as bootstrapping or bagging, where training data subsets are drawn
randomly, usually with replacement, from the entire training data.
Most of the available gene fusion-finders methods [5, 10] do not explore the poten-

tials of applying ML techniques to this classification problem. As far as we are aware
of, only two gene fusion-finders, namely EricScript [11] and deFuse [12], have explored
AdaBoost. AdaBoost generates a set of hypotheses and combines them through weighted
majority voting of the classes predicted by the individual hypotheses. The hypotheses
are generated by training a weak classifier, using instances drawn from an iteratively
updated distribution of the training data. This distribution update ensures that instances
misclassified by the previous classifier are more likely to be included in the train-
ing data of the next classifier. Hence, consecutive classifiers’ training data are geared
towards increasingly hard-to-classify instances. As fas as we are concerned, there is
no further literature in finding chRNAs using bagging-oriented strategies. Bagging is
one of the pioneers in ensemble learning. Diversity in bagging is obtained by using
bootstrapped replicas of the training data: different training data subsets are randomly
drawn, with replacement, from the entire training data. Each training data subset is
employed to train a distinct classifier of the same type. Individual classifiers are then
combined by taking a majority vote of their decisions. For any given instance, the class
chosen by most classifiers is the ensemble decision. Random Forest (RF) is a varia-
tion of the bagging algorithm, and it can be created from individual decision trees,
whose certain training parameters vary randomly. Such parameters can be bootstrapped
replicas of the training data, as in bagging, but they can also be different feature
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subsets as in random subspace methods. In this work we have successfully explored RF
models in the prediction of chRNAs in both read and event levels.
Like any other machine learning problem, the first big issue is about the data [9]. As

far as we are concerned, there is no common benchmark data available. Indeed, even the
definition of a classification baseline is lacking in the related literature. In this work we
are moving towards a benchmark data and a fair comparison analysis unraveling the role
of supervised classifiers in finding chRNAs. All benchmark data and results are freely
available at https://sites.google.com/site/alvesrco/chimeres.

Methods
Simulated data sets

This procedure modifies the sequence of the input reference genome by introducing
random point mutations (SNV), insertions and deletions (or indels), as well as translo-
cations. Substitutions and indels are introduced at random genomic locations at rates
chosen by the user. By default, one every 1,000 nucleotides will be substituted (a rate
of 0.1 %), while at 1/10,000 positions, an indel will be introduced (a rate of 0.01 %).
At a substituted position, the new nucleotide is chosen at random with equal prob-
ability among the three other possibilities. For indels, the length is chosen uniformly
within a range [1,15] nucleotides and the inserted sequence are chosen randomly. Regard-
ing translocations, whose goal is to generate gene fusions, the exchanged chromosomal
locations are chosen within annotated genes. The genome simulator takes a gene anno-
tation file as input to get the positions of all exons. For a translocation, two exons
of two different genes are chosen at random with an input probability, then we per-
form a bidirectional exchange of the 3 prim part of one gene with the 5prim part the
other gene and the recripocal, thereby creating two chimeric, or fusion genes. Exons
are never splitted by this process, as we hypothesized that fusion genes with disrupted
exons are counterselected by evolution. For the sake of simplicity, the simulator gen-
erates chimeras using reads encoded on the forward strand only. Expressed chimeric
RNAs will be covered by RNA-Seq reads; it is worth noting that both fused genes gen-
erated by a translocation are, as any other gene, not necessarily expressed, nor covered
by reads. Another alternative for generating artificial gene fusions is by using the FUSIM
tool [13], though the pipeline does not simulate RNA-seq data including chimeras, it
only provides their associated sequences. The simulated data generator is packaged in a
tools called SimCT (not yet published) that can easily integrate new complex chimeric
events.

Feature engineering

We have developed a benchmark pipeline (Fig. 1) using the above genome simulation
procedure along with i) the generation of corresponding RNA-seq reads by Flux Simulator
[14] and ii) labelling chRNAs classes through the use of CRAC Software [15].
CRAC has been chosen to perform this experimental study for two main reasons. First

of all, it is a splice-aware mapping software that integrates the identification of chimeric
junctions with a high confidence ratio. The second reason is that CRAC’s algorithm is
based on the study of k − mer support and location profiles which provides for every
k−mer of a read its number of occurrences in the whole read collection and all its possible
locations on the reference genome. These profiles are of an extremely valuable source

https://sites.google.com/site/alvesrco/chimeres
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Fig. 1 The benchmark pipeline covering mutations along the genome and simulation of RNA-seq data with
Flux Simulator, followed by a chRNA labeling step with CRAC tool. CRAC’s algorithm is based on the study of
k − mer support and location profiles, being a valuable source of information to extract quantitative features
for machine learning models

of information to extract quantitative features that define chimeric junctions at the read
“level” and therefore, suitable for the development of ML models [see Additional file 1].
A total of fiveHuman (GRCh38 assembly) mutated genomes were generated. They were

used in a progressive sampling scheme for benchmarking several supervised classifiers.
For each mutated genome, 40 millions of paired-end reads with read length of 100bp
were generated. CRAC selected all reads and labelled them according to their associated
class. Next, five features emerging from CRAC’s algorithm were extracted as follows: i)
score_break_length, it describes the size of the break (adjacent unmapped k-mers), par-
ticularly those presenting sizes higher than the average; ii) score_nb_merge, it evaluates if
the break corresponding to the chimera has a number of merges < to the related param-
eter; iii) score_break_variance, it checks the inter-quartile range of support values in the
break; iv) score_is_duplicate, it checks if the chimera is ambiguous; v) score_has_repeat,
it evaluates if the break is in a repeated region. Given that several chRNAs reads can
map to one particular chimeric event, some of those reads may hold the same values for
the previously described set of features. Therefore, only unique reads per chRNAs are
taken into account in the model building phase. Table 1 summarises the chimeric reads
distribution within the progressive sampling runs. The first run (r1) has one transcrip-
tome and, progressively, one more were added to the sample up to having all five mutated
transcriptomes in the fifth run (r5) (Fig. 2a).

Supervised learning strategies

The challenge of finding chRNAs can be seen as a binary classification problem (posi-
tive class: true chimera and negative class: false chimera) [12]. Once having the mutated
genomes we can move towards the evaluation of several supervised learning strategies

Table 1 The chRNAs reads distribution within the progressive sampling

(A)ll reads (U)nique reads % U/A

True False True False T F

r1 5253 1462 118 316 2.25 21.6

r2 7169 1761 145 415 2.02 23..6

r3 8563 2377 163 560 1.90 23.6

r4 11238 3795 259 836 2.30 22.03

r5 15016 4988 460 995 3.06 19.95
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Fig. 2 Overall performance of several chRNA classifiers at the read level. Progressive sampling using five
genomes along chRNA mutation profiles, from “r1” to “r5”. Training were performed with a 10-fold cross
validation scheme along with a tuning grid to each ML technique. Additionally, we repeated each run three
times (e.g., rX1, rX2, and rX3) to check models stability. Thus, having a total of 15 performance points. Models’
performance were average to each run (r1 to r5). The chRNA’s classes distribution along reads (a).
Performance metrics of ACC (b), Kappa (c), and AUC (d) highlight the robustness of ensemble models.
Classification performance using another independent genome (e)

for mining chimeras. The comparison study takes into account distinct supervised learn-
ing strategies, namely, one lazy learner (KNN: K-Nearest Neighbors), one eager-learner
(SVM: Support Vector Machines) and two ensemble learners (RF: Random Forest and
GBM: Grandient BoostingMachines). EachML strategy has a particular way to generalize
the search space.
Nearest-neighbor classifiers are based on learning by analogy, by comparing a given

test instance with training instances that are similar to it. Support Vector Machines
uses a linear model to implement nonlinear class boundaries. SVM transform the input
using a nonlinear mapping, thus, turning the instance space into a new space. Random
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forest is a well-known ensemble approach for classification tasks proposed by Breiman.
Its basis comes from the combination of tree-structured classifiers with the randomness
and robustness provided by bagging and random feature selection. Gradient boost-
ing machines consecutively fits new models to provide more accurate estimate of the
response variable. Thus, new base learners are built being maximally correlated with the
negative gradient of the loss function associated with the entire ensemble. The loss func-
tion applied can be arbitrary, so as an example, if the error function is squared-error loss,
the learning procedure would result in consecutive error fitting.

Building models

Model building and evaluation was carried out with the caret R package [16]. We used the
built-in tune() function for resampling, tuning and optimisation of all selected classifiers.
We have also adopted a progressive sampling strategy to better understand the impacts
of adding more observations to the classifiers performance. We first started using one
simulated data set (incorporating a mutation process), and next more data were added
sequentially up to having all five genomes. To each run we have set aside one third of
the data for the test phase while the remaining two third were used for model building.
Training were performed with a 10-fold cross validation scheme along with a tuning grid
to each ML technique. Additionally, given that the data split (training/test) were random,
we repeated each run three times to checkmodels stability, providing fifteen performance
points. As an example r11, r12, and r13 are subsets of the r1 data set (Fig. 2b and d).
Models’ performance were average to each run (Fig. 2c).

Results
Towards a classification baseline at the “read” level

Give the absence of a classification baseline for the problem of finding chRNAs, let us
assume, essentially, the performance results we got from the first run (r1) of KNN as the
initial baseline . The baseline accuracy is also known as the null rate. In machine learning
it is also a good practice to start with simple classifiers rather than sophisticated ones
[9]. The KNN provided average AUC performance of 88 % (ACC=87 %, Kappa=0.71).
Kappa measures how closely the instances labeled by the classifiers matched the data
labeled as ground truth, controling for the ACC of a random classifier as measured by the
expected accuracy. Thus, the Kappa for one classifier is properly comparable to others
Kappa’s classifiers for the same classification problem. We will make use of Kappa as the
unbiased metric to compare the selected classifiers along all the progressive sampling
strategy.
The general idea behind of a progressive sampling is straightforward. We start with

some chRNA reads arising from a individual genome and then, iteratively, build a model,
evaluate its performance, and acquire additional chRNA reads from another individual
genome. Initially, we were planing to use a simple stop criteria along sampling until get-
ting a performance plateau. Thus, we might be able to stop having more data in the third
run (Fig. 2b). However, we decided to have two more additional runs, and, as it can be
observed, all models loosed generalization power in the fourth run. All simulations have
the same genome simulator parameters and mutation profile and expression profiles,
though “randomness” plays quite distinctly to the fourth ones. It might be partially due
to the fact that the associated data sets are unbalanced but, every run has about the same
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proportion of true and false chRNAs (see Table 1). Another hypothesis is that, perhaps,
mutations in the fourth genome is biased to patterns in alternative splicing.
Ensemble learning strategies were more sensitive to this “random perturbation” added

by the fourth genome. The feature score_has_repeat does not bring any discriminative
power, being eliminated from the set of predictors. Additionally, we have worked on
improving performance of classifiers by introducing three more features, enhancing the
break profile (Fig. 3), namely: i) coefficient_variation, the coefficient of variation of the
support of the k-mers over the break; ii) mean_amplitude, mean amplitude of the break
support; and iii) coefficient_dispersion_interquartile, Q3 − Q1/Q3 + Q1. Finally, the
best performance results were obtaining by combining the features score_is_duplicate,
coefficient_variation, and score_break_length (see Table 2).
It is important to mention that a grid of optimisation were applied to all supervised

classifiers. Surprisingly, the SVM provided one of the most unstable results, even when
compared to KNN. We hypothesise that the search space might be a set of Boolean func-
tions, and given that both RF and GBM employ tree stumps, random perturbations are
handled efficiently by ensemble of Booleans rules generated by these classifiers. Thus,
in this particular study, indeed, a more powerful learner is better than a less powerful
one. Ensemble learning strategies demonstrated to be more robust to this classification
problem, providing an average AUC performance of 95 % (ACC=94 %, Kappa=0.87 %)
(Fig. 2).

Towards a classification baseline at the “event” level

The problem of chRNAs classification can also be tackled from the perspective of the
event level. The event level is basically the aggregation of all reads corresponding the
same chimeric junction and its associated functional (biological) annotation (Fig. 4).
Gingeras et al. [1] define chRNAs events (classes) as follows: i) individual RNAs can be
transcribed on separate chromosomes (Class 1), on the same chromosome but with a
different genomic order from that found in the mature RNA (Class 2), on the same chro-
mosome but transcribed from different strands (Class 3), or on the same chromosome
but from different alleles (Class 4). Before grouping chimeric reads into an event, it is
required a proper filtering stage of potential methodological artifacts at the read level.

Fig. 3 Box-plots of the selected features to discriminate chRNAs (TRUE and FALSE) at the read level. From left
to right (score_break_length, score_break_variance, coefficient_variation, score_is_duplicate,
mean_amplitude, score_nb_merge, coefficient_dispersion_interquartile). Best discrimination results are
obtaining with the features score_is_duplicate, coefficient_variation, and score_break_length



Beaumeunier et al. BioDataMining  (2016) 9:34 Page 9 of 15

Table 2 The average performance of classifiers at the read level using the top-3 more discriminative
features (score_break_length, coefficient_variation, score_is_duplicate)

GBM RF KNN SVM

Acc 95.01 95.16 94.29 93.49

Spe 92.64 93.02 92.44 92.05

Sen 96.42 96.42 95.39 94.35

Kappa 89.31 89.62 87.79 86.13

AUC 94.53 94.72 93.91 93.20

In the previous section we have conducted a first attempt at classifying chRNAs at the
read level. These results allowed us to refine the current chimera score on CRAC (Crac-
Score) eliminating false positives that might strongly bias the classification of chRNAs at
the event level. This score was based on a set of selected significant rules extracted from
the Random Forest model, by the utilization of the inTree R package.
Once having applied CRAC with an “optimal” score, one can go forward to the aggrega-

tion and annotation of chRNAs at the event level. We use the cractools extract command
from the CracTools (http://cractools.gforge.inria.fr/) to aggregate chRNAs. Then, we
annotate chRNAs and use it as filter to reclassify those involving the same gene as splicing
or alternative splicing and also pseudogene as artefact. Without loss of generality, we con-
tinue to tackle the chRNAs prediction at the event level as a binary classification problem.
We also make use of the terms “filtered aggregation” to differentiate this approach from
CRAC. We have implemented and test this tool along with a fixed value of 0.7 on a new
simulated data set. This data set follows the same strategy as discussed in previous section,
so 40 millions of paired-end reads with read length of 100bp were generated. This sim-
ulation also covers 180 chromosome translocation over Human (GRCh38) genome. Flux
Simulator were also used to express 121 translocation over 46938 reads. The following
table summarizes the analysis (Table 3).
The performance of the classification at the event level, as it might be observed in

(Table 3), is not better than a “random guess”. In fact, this is mainly due to the fact that
i) aggregation does not take into account a customized classification model to discrimi-
nate chimeric events, and ii) chimeric (false positives) reads continue passing through the

Fig. 4 The chRNA granularity. Scaling chRNAs classification from read to event level. The event level is
basically the aggregation of all reads corresponding the same chimeric junction at read level and its
associated functional (biological) annotation

http://cractools.gforge.inria.fr/
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Table 3 Classifiers performance at both read and event level

Total True False Accuracy Sensitivity

read level (CRAC) 5 444 4 964 480 91.18 10.58

Filtered aggregation 153 83 70 54.25 68.60

filters (CracScore), causing trouble to the classification at the event level. Therefore, it is
advisable to employ a stacking model, so chimeric reads that are not properly filtered out
at the read level, can be, with the advantages of having additional functional information,
be enhanced to engineering new features playing interesting role at building a model at
the event level.
In order to provide a classification baseline at the event level, we carried out new

simulations, avoiding the bias that might be associated while evaluating classification per-
formance at both levels using the same data. In fact, it opens the possibility to explore
new covariates, specifically suitable for chRNA predictions at the event level. We have
generated six data sets (3 RNA-seq 100bp + 3 RNA-seq 200 bp), corresponding to 1634
chimeric events (1257 = False and 377 =True). A feature set of eleven covariates were
carefully designed, though, without loss of generality, only the three most discriminative
ones are described: i) coefficient_variation, false chimeric events present higher variabil-
ity within the junction support than true ones. This is partially due to false localisation
inferred wrongly by repetitive regions; ii) fusion_distance, the larger the fusion distance
is, the less is the likelihood of the event be a false positive; iii) junction_support, once the
support is low one might expect of being a false event, give that the junction support is
covered by a few or none reads.
The classification baseline at the event level explores the same strategy discussed in

the “building model” section. We also provided to each model the average and standard
deviation of the three repetition of 10-fold cross validation (Table 4).

The fidelity of supervised classifiers in the prediction of chRNAs

We have performed an evaluation using anotherHumanmutated genome, as an indepen-
dent test set, and the results again are promising for ensemble learners as RF and GBM.
We again use our genome simulator, and a total of 80 millions of paired-end reads with
read length of 100bp were generated for this new mutated genome. For this last evalua-
tion, we have selected the respective models for each classifier obtained in sampling r5 to
predict chRNAs within this new genome (Fig. 2e). Despite small performance differences
across ensembles, the RF provided the best overall results (AUC=98 %) (Fig. 2e).
We carried out another evaluation using a generated mutatedDrosophila genome (40M

reads having 100bp) to check whether the Human-based models could predict efficiently

Table 4 The overall performance of classifiers at the event level using the top-3 more discriminative
features (coeficient_variation, fusion_distance, juntion_support)

RF GBM KNN SVM

mean sd mean sd mean sd mean sd

ACC 97,98 0,12 97,85 0,20 97,43 0,61 97,98 0,12

Spe 95,67 0,84 95,39 1,02 94,63 2,04 95,94 0,65

Sen 98,71 0,11 98,77 0,13 98,33 0,23 98,63 0,25

Kappa 94,46 0,34 94,09 0,66 92,92 1,72 94,45 0,50

AUC 97,01 0,48 96,65 0,23 96,47 1,10 97,29 0,30



Beaumeunier et al. BioDataMining  (2016) 9:34 Page 11 of 15

chRNAs in other, let us say, distant organism. As it was expected no classifier were better
than a random guessing. Such observation is due to the fact both organisms have a distinct
“chimeric profiles” with respect to the number of chromosomes, the arrangements of the
exons and evolutionary rate of mutations. Therefore, classification margins boundaries
built for Human cannot hold for Drosophila.
It is remarkable that classifiers employing an ensemble learning strategy are most suit-

able for the challenge of prediction chRNAs. Furthermore, a stacking model where false
chimeric reads are filtered out at the read level, being followed by a classifier at the event
level (embedding functional e biological covariates) is strongly recommended. We have
generated two more RNA-seq data sets covering 40M reads (1x100 bp and 1x200 bp) to
evaluate the strength of the prediction in both levels (Tables 5 and 6). The first genome
has 121 chRNA events (translocations quantified along 46936 reads), and the latter has
115 events (translocations quantified along 101093 reads). We observe from (Fig. 5) that
setting a CracScore to 0.7 is a good compromising between precision (PPR) and false
discovery rate (FDR). Moreover, the higher the CracScore is the higher is the precision.
However, such precision come with the cost of increasing the FDR at the read level, being
compensate by lower FDR values at the event level. The size of the read does not imply
in having better classification performance at both levels but, can increase the chance of
having more reads covering chimeric junction, and consequently long reads, can help in
boosting prediction at the event level.
To conclude our experimental study, we have applied the proposed pipeline for the pre-

diction of chRNAs in real RNA-seq data (Illumina HiSeq 2000 Homo sapiens) from a set
of twenty-seven patients having acute myeloid leukemia. The goals of this study are to
obtain a comprehensive study of mutations and gene expression in human acute myeloid
leukemia (AML). All sequence data are freely available at Gene Expression Ominibus
(GEO) database within the accession number GSE49642. From the previous simulation
study, we observed that most of the false chRNA events belong to the “Class_1” (60 %),
while the remaining false events are shared between “Class_2”(30 %) and, “Class_3” and
“Class_4” together (10 %). We hypothesise that the same amount of sequence artefacts
found in simulated data can be equally distributed on real data. Thus, it is expected that
classifiers might be able to eliminate successfully many of these false events. Indeed, the
classification results obtained after applying the pipeline highlight a significant reduction
in chRNA class distribution (Fig. 6). Biological process that generates Class_1 events are
well-known. However, the main part of chRNA found in real data belong to Class_3 and
Class_4. These chRNA have various mecanisms that are still little known. The simulation
must be continuously improved to integrates new biological mecanisms but also other
properties as cellular heterogeneity and library conception bias.

Table 5 Performance of classifiers at both read and event levels using 100 bp

Data Simulated RNA-Seq 40M reads 100 pb

CracScore 0 0.7 0.9 0.95 0.99

Class True False True False True False True False True False

Count reads 4196 1498 3815 600 2644 226 2056 139 477 139

Aggregation 56 209 56 89 29 31 16 8 2 8

Filtered aggregation 35 6 35 5 22 3 14 1 0 1
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Table 6 Performance of classifiers at both read and event levels using 200 bp

Data Simulated RNA-Seq 40M reads 200 pb

CracScore 0 0.7 0.9 0.95 0.99

Class True False True False True False True False True False

Count reads 13164 4965 10238 2178 7099 2015 4732 1789 4732 1789

Aggregation 57 266 55 107 28 44 12 25 12 25

Filtered aggregation 38 5 37 4 14 4 5 3 5 3

The proposed benchmark highlights the fidelity of supervised classifiers in the problem
of chRNAs prediction. Though, it is always important performing biological validation of
these events to confirm the biolo gical soundness of all discovered chRNAs.

Conclusion
We proposed a modelization strategy that can be used to increase the tools performances
in context of chRNA classification.We improve the models dynamically using a simulated

Fig. 5 The fidelity of chRNA classifiers using simulated RNA-seq data. The radar chart of using distinct
chimera scores (0.7, 0.9, 0.95, 0.99, and 1) on CRAC (CracScore) and its impact on prediction performance.
CracScore to 0.7 is a good compromising between precision (PPR) 100bp (a), PPR 200bp (b), and false
discovery rate (FDR) (c). Moreover, the higher the CracScore is the higher is the precision though with the
cost of increasing the FDR at the read level



Beaumeunier et al. BioDataMining  (2016) 9:34 Page 13 of 15

Fig. 6 The fidelity of chRNA classifiers using real RNA-seq data. The x-axis are related to samples, while the
y-axis presents the number of chimeric events. The same amount of sequence artefacts found in simulated
data can be equally distributed on real data (a) . The classification results obtained after applying the pipeline
highlight a significant reduction in chRNA class distribution (b)
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data generator, called SimCT (not yet published), that permit to continuously integrate
new complex chimeric events.
We have developed a benchmark pipeline incorporating a mutation genome process

and simulated RNA-seq data to evaluate the fidelity of using classifiers to predict chRNAs.
The simulated sequencing reads were aligned and annotated by CRAC. CRAC analyzes
the RNA-seq data, integrating genomic location and local coverage, allowing biological
predictions in one single step which is not available in any other fusion finder tools. More-
over, we enhance chRNAs classification by building models at both levels of read and
event. Aggregating reads at the event level allows us to incorporate biological covariates
and improving models’ generalization along with the presented experimental study. We
envisage focusing on developing models and improving biological annotation at event
level which will be addressed in a future work.
Simulated and real RNA-seq data were carefully designed to explore feature engineering

and model performance of several classifiers, unraveling the role of ensemble learning
strategies in finding chRNAs. As far as we are concerned the present study provides the
first common benchmark data, as well as classification baseline for the identification of
chRNAs in both levels of reads and events.

Additional file

Additional file 1: Figure S1. Anatomy of a chimeric junction identified with CRAC algorithm and its potential
extracted features for machine learning benchmarking. (PDF 41.8 kb)
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