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Abstract 

Discovered decades ago, extracellular vesicles (EVs) emerge as dedicated organelles, able to deliver protected, 

specific cellular cues throughout the organism. While virtually every cell can release EVs, cancer cells co-opted 

this feature and efficiently unleashed them both in the tumor microenvironment and towards healthy tissues. 

This might contribute to tumor aggressiveness and spreading. Cancer-derived EVs that contain DNA, mRNA, 

miRNA, and packed and transmembrane proteins can operate locally or at distance. This review will focus on the 

high-grade brain tumor (i.e. glioblastoma)-derived EVs, discussing recent reports on i) their phenotype and 

content, ii) their putative functions, and iii) their clinical potential for improving diagnosis and therapeutics. 
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Introduction 

Although rare, glioblastoma (GBM) represents the most malignant and deadly brain tumor in adults, with a poor 

prognosis despite intensive researches and clinical efforts. 1 GBM exhibit high proliferation rate, invasion, 

angiogenesis and necrosis because of the diffuse and aggressive nature of the tumor cells. Relapse is almost 

inevitable and fatal within a short window of 7-10 months, while the average survival does not exceed 18 

months following diagnosis. Current standard treatments are essentially palliative, typically involving surgery 

followed by radiotherapy and DNA-alkylating chemotherapeutic agents to eliminate the remaining cells. 1 

Meanwhile, a subpopulation of cells with tumor-initiating properties bears resistance to conventional therapies, 

and as such has been implicated in tumor recurrence. 2 

Numerous recent studies unveil that tumor cells can efficiently release selected intracellular content in the 

milieu, embedded and protected in lipid layer-based structures, named extracellular vesicles (EVs). Such tumor-

derived EVs may contribute to intercellular communication, tumor progression and resistance mechanisms in 

the context of GBM. 3 

Extracellular vesicles in glioblastoma 

General definition of the tumor-derived EVs 

Extracellular vesicles (EVs) were discovered over 30 years ago and defined as extracellular lipid bilayer 

spherical structures from 30 to 1000 nm that are secreted in the cellular environment. 4,5 An international 

consortium adopted the generic term of extracellular vesicles (EVs) to clarify between the different names used 

in the literature. 6 The main subcategories of EVs are classified according to their size and their subcellular 

origin, while their content appears rather versatile. Classically, exosomes exhibit diameters of 30-100 nm and 

mostly originate from intra-cytoplasmic vesicular bodies; microvesicles (or ectosomes) range between 100 nm 

to 1 μm diameter and are derived from the plasma membrane; apoptotic blebs are the largest population of EVs, 

with a diameter of approximately 1-2 μm and emanating from dying cells. 7,8 Recently, the term of oncosomes 

was coined to define large EVs (1 to 2 μm) arising from the budding of the plasma membrane in cancer cells. 7,8 
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Studies in the 1970’s reported cell membrane undulations and peripheral vacuoles bordering the extracellular 

space of GBM giant-cells, 9 suggesting that tumor cells could be a non-physiological source of extracellular lipid 

layer-based structures. More recently, abundant EVs were observed on the surface of primary human GBM cells 

in culture. 10 Interestingly, it has been estimated that one primary GBM cell releases about 10.000 EVs in vitro 

over a period of 48 hours. 10,11 Molecularly, the fact that tumor cells exhibit enhanced EVs release as opposed to 

normal cells could be intrinsically caused by oncogenic mutations. For instance, the EGF receptor variant III 

(EGFRvIII), a feature of nearly 50% of adult GBM was shown to augment GBM cell-derived vesiculation. 12 

The molecular composition of EVs in glioblastoma 

Tumor-based EVs can carry a wide range of molecules from nucleic acids (including genomic and mitochondrial 

DNA, mRNA, miRNA) to proteins and lipids that mirror tumor cells and state. 13 

In 2008, Skog et al were among the first to report that GBM-derived EVs contain mRNA and miRNA. 10 They 

showed that the EV content is selectively enriched, as compared to the parental cells. Likewise, miRNA can be 

conveyed within GBM-released EVs. 15,16 In that view, miR-21, known for its protective action on GBM cells 17 is 

enriched in GBM-shed EVs. 10 Conversely, genomic or mitochondrial DNA were rarely reported in GBM-derived 

EVs. 11,18 Proteins are also specifically sorted and embedded in EVs, although the packaging mechanism is not yet 

elucidated (for a review, please see ref. 8 and 19). Mass spectrometry analysis of GBM-derived EVs identified 

more than 100 proteins that are also usually found in exosomes, based on the ExoCarta database. 15,20 

Interestingly, cytokines are enriched in GBM-produced EVs, such as pro-angiogenic agents, among which VEGF-

A, 10 the pro-permeability guidance molecule Semaphorin 3A, 21 and the immunosuppressive cytokine TGF-β. 22 

Additionally, one of the best-characterized GBM-based EV-harbored proteins is the tumor-specific EGF mutated 

receptor EGFRvIII. 10,12 Finally, whereas lipids are structural components of EVs, there is a lack of data on lipid 

composition 23 and rare information as for GBM. 

An important layer of complexity arose form the heterogeneity of EVs content produced by GBM tumors. Briefly, 

four different GBM subtypes, namely proneural, neural, classical and mesenchymal, have been described 

according to their molecular signatures. 24 Importantly, GBM-derived EV protein content remain clustered within 
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the same subtype of their origin (i.e. with proneural or mesenchymal signatures), 25 suggesting that hallmarks of 

each subtype is conserved and transferred throughout GBM-derived EVs even if the exact cargoes remain 

unknown. As a consequence, GBM-produced EVs may exhibit the ability to disseminate oncogenic materials. 

EV uptake and diffusion 

Among the communication network that operates between cancer cells and their environs (i.e secretion, cell-cell 

junction, mechanical forces, tunneling nanotubes, etc), EVs represent a powerful tool. EVs are released locally 

into the extracellular tumor microenvironment and are able to spread throughout the organism, as GBM-derived 

EVs can be found circulating into the bloodstream, urine and cerebrospinal fluid. 26,27 The molecular and cellular 

mechanisms of uptake, including endocytic mechanisms, ligand/receptor interaction and fusion with plasma 

membranes will not be discussed here (for a review, please see ref. 7). 

In GBM, neighboring cells such as healthy neural cells, endothelial cells, microglia, monocytes/macrophages and 

tumor cells have been documented to uptake tumor-derived EVs (Table 1 and please see our next section). 10,21 

Indeed, mRNA materials identified in GBM-derived EVs could be transferred to surrounding recipient cells. 10,14,15 

Moreover, specific mRNA mutations (i.e. IDH1) were detected in EVs isolated from glioma patient sera and 

cerebrospinal fluid. 29 As IDH1 mutations are well described in a subset of GBM patients, 30,31 we can hypothesize 

that these circulating EVs, which contain specific mutated mRNA, may arise directly from GBM cells. Recently, 

intravital imaging unveiled that GBM-derived EVs are ingested by the surrounding microglia and 

monocyte/macrophages in vivo. 32 

Interestingly, electronic microscopy analysis unveiled the presence of nanofilaments on exosomes derived from 

U87 and U251 GBM cell lines, but not on normal astrocytes. 28 As such, it is tempting to speculate that this 

phenotypic observation could have functional consequences. For instance, such nanofilaments may create a 

diffusive network around cancer cells and participate in the direct fixation of secreted exosomes to their cellular 

targets. 28 

Thus, GBM-released EVs might ultimately contribute to tumor progression and heterogeneity, since they retain 

their ability to be taken up by multiple cellular targets and to disseminate throughout the body. 
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Functions in the brain tumor microenvironment and beyond 

EVs action within brain tumors 

In the central nervous system, the main postulated physiological role for EVs corresponds to their ability to 

rapidly and robustly exchange signals between glia and neurons, thus promoting neuronal survival, microglia-

mediated immune responses, and synapse assembly and plasticity. 33 This system is most likely corrupted in 

brain tumors to the tumor’s own benefit. Indeed, EVs represent important means of communication within the 

tumor microenvironment and GBM-derived EVs have been suggested to promote cell proliferation, invasion, 

immunotolerance, angiogenesis and endothelium defects (Figure 1). 

It has been shown, for example, that hypoxic conditions can increase the hypoxic-related mRNA and protein 

content of tumor-released EVs, which in turn impacts on tumor growth both in vitro and in vivo. 14 The analysis 

of these patient-derived exosome-like fractions revealed that the enriched mRNA and proteins were associated 

with poor prognosis, 14 suggesting that cancer cells can adapt to the hostile hypoxic microenvironment. 

Conversely, EVs also convey messages to hack their environment. MiR-1 overexpression in glioblastoma stem-

like cells (GSC) was able to modify EVs protein cargoes and to ultimately reduce tumorgenicity, invasiveness and 

angiogenesis in vivo in xenografted mice. 34 From a molecular standpoint, miR-1 targets the mRNA of Annexin A2, 

one of the most abundant proteins in GBM-derived EVs, in addition to other pro-oncogenic signals. 34 In keeping 

with this idea, GBM-produced EVs were shown to operate directly on endothelial cells to promote tubulogenesis 

and permeability, two hallmarks of tumor angiogenesis. 25,35 Likewise, EVs collected from GBM cell lines can 

transfer RNA to normal brain endothelial cells. 10 Moreover, our team has demonstrated that GSC-liberated EVs 

convey the pro-permeability guidance molecule semaphorin 3A towards neighboring brain endothelial cells and 

ultimately contribute to enhance vascular permeability in orthotopic GBM xenograft models, 21 reinforcing the 

concept that tumor-derived EVs can pervert the vasculature. In line with the hypothesis that EVs play a role in 

the sabotage of their environment, GBM-produced EVs can be taken up by innate immune cells, microglia and 

monocytes/macrophages within the brain, and shift their cytokine expression profile and mRNA content 

towards a pro-tumoral phenotype (Figure 1). 32 
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Although these recent compelling data highlight the likely involvement of GBM-derived EVs to tumor properties, 

we have to keep in mind that most of these observations occurred following administration of EVs collected after 

several steps of purification/concentration and/or from in vitro experiments. Intesrestingly, intravital imaging 

was recently deployed to directly image GBM-derived EVs transfer to microglia and monocytes/macrophages 

within the brain in living animals. As a consequence, recipient cells were denatured, as exemplified by changes in 

the levels of miR-21 and c-MYC RNA. 32 

Is there a role for circulating EVs? 

EVs emanating from the tumor mass have been detected outside the tumor microenvironment, in particular 

circulating freely in the plasma. 21,26,27 While this feature could be employed as a diagnostic tool (please see our 

next section), the functional and biological consequences remain unclear in GBM (Figure 1). In the context of 

melanoma, endogenous tumor-derived EVs were tracked in vivo by the means of multiple reporter mouse 

strains, and their further dissemination through lymph nodes was visualized and established to precede tumor 

cell detection. 36 This study established that circulating tumor-derived EVs could also reshape at distance 

systemic responses, and affect in turn tumor progression. 

In GBM, two recent studies suggested that circulating EVs can modify the immune system and contribute to 

immunomodulation in systemic and in the tumors. 37 First, GBM-derived EVs impact on the monocytic lineage, 

which acquires a de novo tumor-supportive phenotype. 37 Additionally, EVs derived from serum-purified GBM 

patients were shown to promote the M2-like phenotype, with the serum cytokine profile typical of Th2 bias, 

suggesting an action of EVs throughout the organism. 38 

Paralleling the action on the immune system, GBM-derived EVs can affect the biology of the vasculature. For 

instance, thromboembolic diseases observed in GBM patients might rely on the pro-coagulant activity detected 

in circulating microparticles. 39,40 Circulating EVs were shown to transport pro-permeability and pro-angiogenic 

factors, 10,21 including GSC-derived semaphorin 3A that could reach the endothelium of virtually all healthy 

organs. 21 Indeed, GBM patient serum-purified EVs are loaded with semaphorin 3A, which further orchestrated 

the loss of barrier integrity. 21 One important challenge will be to track in vivo specifically GBM-derived EVs and 
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explore both their cargoes and their biological functions, in the course of tumor initiation, progression and 

relapse. 

Translational outcomes and clinical potential 

Could EVs serve as prognosis/theranostic marker? 

Lack of therapeutically convenient monitoring tools remains a major cause of failure in the management of GBM 

patients. 41For example, MRI only detects already established tumor of several hundreds or thousands of tumor 

cells. 42 According to the recent review by Westphal and Lamszus, 43 there are still only very few clinically 

relevant markers for GBM, among them MGMT methylation status, 1p/19q codeletion in oligodendroglial 

tumors, the EGFRvIII variant, and IDH1 and BRAF mutations. 43 Interestingly, analysis of EVs derived from 

biofluids emerged as a promising source of biomarkers because: i) they are easy to collect and implied non-

invasive procedures as opposed to intracranial tissue biopsies; ii) their content mirrors the genetic and cellular 

status of mother tumor cells; 13 and iii) the half-life of labeled EVs seems quite short in the blood circulation, 

suggesting that they could be a suitable biomarker reflecting rapid changes in tumor cell state (Figure 2). 44 This 

raises the possibility that several biomarkers could be combined to recapitulate the tumor heterogeneity at a 

given time point and in the course of tumor progression, from multiple exploitable clinical samples (blood, urine, 

cerebrospinal fluid, saliva, lymph, sexual secretion etc). 

The translational interest for GBM diagnosis was firstly highlighted with the pioneer work of Skog et al. 10 In this 

study, they demonstrated that EVs purified from patient sera, as opposed to healthy donors, are enriched in a 

specific subset of RNA (i.e. EGFRvIII and miR-21) that could be further used to monitor oncogenic mutations and 

gene expression. 10 In keeping with this idea, Akers et al. 45 characterized the presence of miR-21 in EVs prepared 

from cerebrospinal fluid of GBM patients. However, the in-depth determination of the relative abundance of 

miRNA in plasma- or cerebrospinal fluid-isolated EVs reveals the heterogeneity of such biomarkers. 46 Indeed, 

this study reported that the amount of detectable miRNA was rather low and heterogeneous in plasma exosomes 

or microvesicles, with an average of less than one miRNA molecule monitored per 200 to 85.000 EVs. In contrast, 

this average was higher in cerebrospinal fluid and increased to around one molecule of miRNA for 150--25.000 
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EVs. 46 This emphasizes that extraction protocols and detection sensitivity are critical steps for robust clinical 

applications. 47,48 Optimizing preservation of EVs content and improving quantification methods are currently 

under investigation to determine new informative markers. 46,47,49 Furthermore, a number of recent studies 

established that, in addition to mRNA and miRNA, proteins can also be examined from plasma-isolated EVs. 21,50 

Besides diagnosis purposes, the fact that EVs can somehow mirror tumor progression (please see our previous 

section) raises the possibility that EVs are suitable for theranostic application, personalized medicine and 

evaluation of response to treatment. In this regard, the levels of exosomal mRNA collected from plasma correlate 

with the immunological responses of patients enrolled in a vaccination trial. 51 In addition, as mentioned above, 

MGMT methylation status in circulating EVs was also found to correspond with the identity of the parental 

tumor and be predictive of the current response to treatment. 52 

Altogether, this recent series of studies hold promise that EVs content may provide a novel tool for early 

diagnosis and companion biomarkers in combination with the current methods. 10,48 

Could EVs be functionally targeted? 

Blocking EV emission, diffusion and transmission may be envisioned as a novel therapeutic strategy. First, an 

early study demonstrated that the secretory mechanism involved in tumor-based EV release could be halted. 53 

Indeed, this was achieved by interfering with the Rab27 small GTPase. Although blocking Rab27 in GBM 

efficiently reduced migration and invasiveness, this involves slightly different mechanisms, such as lysosomal 

action. 54 Thus, it is still unclear whether Rab27 contribution to GBM disease relies on EV secretion, as shown in 

other cancers. 55 On the other hand, exosome uptake can be impaired by heparin. 56 Heparin and α-

difluoromethylornithine (DFMO) target heparan sulfate proteoglycans, impacting the general mechanisms of 

vesicle endocytosis, including in GBM cells. 57 Cholesterol of lipid rafts on EVs can also be manipulated by 

methyl-ß-cyclodextrin (MßCD) in the U87 GBM cell line, in order to block lipid raft-mediated endocytosis. 58 

Applied to the tumor microenvironment, these approaches could hypothetically affect tumor growth and 

invasion. However, further efforts must elucidate the signaling mechanisms involved prior to clinical application. 

Could EVs be used as drug delivery agents? 
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Because EVs are prone to protect their content in order to cross membrane/biological barriers, to travel 

throughout the body and reach specific cellular targets, they emerge as attractive strategy to deliver drugs into 

the tumor mass, with the idea to target defined cellular components within the tumor microenvironment (Figure 

2). Paralleling drug delivery systems such as synthetic vectors, adeno-associated virus and lipidic and carbone-

based nanocarriers, EVs could be engineered to transport and release therapeutic compounds into the brain. 59 

The proof-of-concept has been elegantly established in healthy and Alzheimer-like mouse brains, where 

systemically injected exosomes were shown to convey siRNA to brain tissues and to specifically and efficiently 

target RNA expression in neurons, microglia and oligodendrocytes. 60 Dendritic cells were manipulated to 

release exosomes expressing at their surface Lamp2 fused to the neuron peptide RVG, in order to specifically 

target neural cells. Meanwhile, siRNA were prior introduced in donor cells. 60 Likewise, exosomes were 

manipulated to express EGFR ligands and therefore designed to deliver siRNA to EGFR-expressing breast cancer 

cells. 61 Similarly, intranasal administration of exosomes was proven to efficiently reach brain tissues in mice. 62 

In this search for novel therapeutic approaches, systemic injection of brain endothelial cell-derived EVs loaded 

with cytotoxic drugs (doxorubicin and paclitaxel) were demonstrated to cross the blood brain barrier in a fish 

model for GBM. 63 In addition, the expression of GBM-specific multidrug transporter could be reduced by anti-

miR strategy introduced into exosome-producing donor cells. 64 

Thus, cellular exosomes can be manipulated to specifically reach brain tissues, normally protected against 

xenobiotic invasion by the blood brain barrier (Figure 2). Their content can be specifically enriched with siRNA, 

miRNA to be delivered to the tumor and even loaded with cytotoxic drugs via direct electroporation onto 

exosome preparation. 56 

Although promising, such data were obtained from in vitro approaches and in vivo mouse models. To our 

knowledge, there is no translational application yet in GBM. Preclinical studies should define whether risk for 

patients can be reduced and therapeutics well tolerated when using non-viable biological structures. To this end, 

it will be essential to identify safety donor cells (i.e. autologous to the patient, cultured in safety and sterile 

conditions without derivations…) that can be engineered and loaded with specifics cargoes to cross the blood 

brain barrier and reach the recipient cells. 
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Conclusions and perspectives 

Over the past five years, researchers have collected information on glioblastoma-derived extracellular vesicles in 

terms of their content and their fundamental properties. Although their genesis and the triage process of cellular 

component specifically addressed into EVs are rather elusive, it is now well established that circulating EVs 

reflect tumor state and therefore can serve as diagnostic and theranostic tools towards personalized medicine. 

Additionally, EVs offer useful features to improve drug delivery systems as they can pass through biological 

barriers, are immunotolerated, can freely circulate, and their content is protected from degradation. Better 

knowledge is still however required to clarify their biological functions, their mode of action both within and 

outside the tumor microenvironment, and their privileged cellular targets. 
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Table 1. GBM-derived EV cargoes and their functional impacts. 

 Recipient cells Cargo Biological effects 

Intra- 

Tumoral 

Tumor cells 

mtDNA nd 18 

miR-1 Tumorgenicity, invasion and 

growth 34 

miR-21 Anti-apoptosis, proliferation 10,17 

hypoxia signature 

EGFRvIII 

clic1 

proteins 

TrkB 

Cell migration 14 

Tumor growth 12 

Tumor growth 65 

GBM subtype tumorigenesis 25 

Aggressiveness 50 

Endothelial cells 

miR-9 

mRNAs 

hypoxia signature 

angiogenic factors 

semaphorin 3A 

Migration, angiogenesis 66 

Angiogenesis 10 

Angiogenesis 14 

Angiogenesis 10 

Permeability 21 

Microglia 

Monocyte/macrophage 

miR-451, miR-21 Cytokine profile 32 

Extra- 

Tumoral 

Endothelial cells  Pro-coagulation 39,40 

Endothelial cells 

Monocyte/macrophage 

semaphorin 3A nd 21 

TrkB nd 50 

proteins M2 phenotype 37 

Lymphocyte proteins Immunotolerance 67 

 

nd: not determined 
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Figure 1. Glioblastoma-derived extracellular vesicles actions in the tumor microenvironment. 

Glioblastoma and Glioblastoma Stem-like (GSC) cells composing the tumor mass release extracellular vesicles 

that can be taken up and affect tumors cells themselves or neighboring cells such as endothelial cells and 

immune system cells to corrupt their functions (labelled as #1-3). They could also potentially affect healthy 

surrounding neural cells, such as neurons and astrocytes, and therefore spread oncogenic materials (indicated as 

#4). 

  



 

18 

 

 

 

 

Figure 2. Potential translational applications of extracellular vesicles in glioblastoma. Extracellular 

Vesicles (EVs) are not yet used in clinic for glioblastoma patients but recent researches highlight them as 

promising circulating biomarkers, potentiate new tools for drug delivery and new target to block intercellular 

communication. 


