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Abstract 

The VHHs are antigen-binding region/domain of camelid heavy chain antibodies (HCAb). They have 

many interesting biotechnological and biomedical properties due to their small size, high solubility and stability, 

and high affinity and specificity for their antigens.  HCAb and classical IgGs are evolutionary related and share a 

common fold. VHHs are composed of regions considered as constant, called the frameworks (FRs) connected by 

Complementarity Determining Regions (CDRs), a highly variable region that provide interaction with the 

epitope. Actually, no systematic structural analyses had been performed on VHH structures despite a significant 

number of structures. This work is the first study to analyse the structural diversity of FRs of VHHs. Using a 

structural alphabet that allows approximating the local conformation, we show that each of the four FRs do not 

have a unique structure but exhibit many structural variant patterns. Moreover, no direct simple link between the 

local conformational change and amino acid composition can be detected. These results indicate that long-range 

interactions affect the local conformation of FRs and impact the building of structural models. 

 

Keywords: secondary structure / sequence structure relationship / structural alphabet / 
antibodies / frameworks. 
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Introduction 

The antibodies (Ab) or immunoglobulins (Ig) are glycoproteins that play a central role 

in the immune response. They allow the recognition of antigens, the recruitment of cells and 

stimulation of immune defence mechanisms. They have a similar structure in all vertebrates 

[1]. These large molecules (~ 150 kDa) are composed of two identical heavy (H) and two 

identical light (L) chains, linked by disulphide bridges. The type of heavy chain of the 

antibody determines the type of Ig. The most common Ig is the Ig type G (IgG). These chains 

are arranged in variable and constant domains. The L chains are composed of a variable 

domain (VL) and a constant domain (CL). The H chains are composed of a variable domain 

(VH) and three constant domains (CH1 to CH3). Antibodies have been widely used in 

biotechnological applications [2]. The number of medical treatments based on the use of such 

macromolecules (e.g. oncology, infectious diseases or against autoimmune diseases) increases 

greatly [3-5]. However the difficulty of producing them and their costs limit their use. 

In camelid family (camelidae), which includes camels and llamas, conventional 

antibodies are found, but in addition these species have particular antibodies where L chain 

and CH1 domain are missing. These antibodies are called Heavy Chain Antibodies (HCAbs 

[6]). C-terminal VH region derived from HCAbs are called VHH and NanobodyTM.  

Interestingly, even without their VL counterparts, the VHHs have an affinity and specificity at 

least as efficient as IgGs. VHH have also a good stability and solubility that lead to their use 

for biotechnological and biomedical applications [7]. 

These VHHs are composed of 4 regions whose sequences and structures are defined as 

conserved (called Framework Regions, FRs). In addition, VHHs contain three connecting 

regions showing high variability both in sequence content and structure conformation. These 

regions are complementary to the antigen surface and are called Complementarity 

Determining Regions or CDRs). Figure 1 underlines in 3D (see Figure 1A [8-16]) and 2D (see 



VHH FRs structures 

 4 

Figure 1B) similarities of VHHs to conventional antibodies. However, some difference can be 

noticed in the length of the CDRs and in the FR2 residue composition. The VHHs have many 

interesting biotechnological properties [17]. VHHs are very small molecules (~ 15 kDa) and 

are very soluble and highly stable. VHHs have a high specificity and affinity for their target 

antigen. In addition, it is possible to humanize them by modifying few residues in FR2 [18] 

without altering their properties. The cloning and production of VHHs are easy to implement. 

In addition the VHHs are interesting alternative to the use of monoclonal antibodies for 

therapy as shown by recent studies of their use against the Dengue virus [19], H5N1 influenza 

[20], viral infection [21], aflatoxins in agro-products [22], head and neck cancers [23], 

vascular endothelial growth factor implicated in cancers [24], venom therapy [25] and 

Plasmodium knowlesi malaria vector [26]. Phase II clinical trials are currently underway to 

evaluate the efficacy and toxicity of a therapeutic NanobodyTM in patients with thrombotic 

thrombocytopenic purpura [27] showing recent promising results [28]. VHHs may also be 

used as support materials for the crystallography of different proteins [29], as they prevent 

domain mobility, can bind to interface or cavities, and also stabilize loops [21, 30]. They have 

been widely used for membrane proteins [31-33] and also as biosensor [34]. 

The structure of proteins is the support of their interactions. It is essential to have 

access to the VHH structures when working on their use in biotechnology. In a previous 

study, we highlighted the difficulty, as well as interest, to obtain a structural model of VHH 

directed against a specific receptor for chemokines (DARC or Duffy Antigen / Receptor for 

Chemokines, see [35-36]). In the present study, we focused on the VHH FR regions 

considered as constant. We have used all structural VHH data available from the Protein 

DataBank (PDB, [37-38]) to underline this consistency. For this purpose, we have used a 

structural alphabet (the Protein Blocks or BPs, [39]), which allows analysing finely the local 

protein structure conformations (see [40] for a review). It was used in multiple cases to 
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analyse difference from particular proteins involved in diseases, e.g. integrins implicated into 

allo-immunisations [41-43] or a transmembrane receptor implicated into hypogonadism [44]. 

Our study shows that the FRs regions, previously considered as constant, present 

(unexpected) variations. We also define structural patterns for the different FRs which will 

help to improve the 3D structural models as the analyses of paratope / epitope.  

 

Materials and Methods  

Data sets. The dataset of protein structures is taken from the Protein DataBank [37-38]. 

It was selected using key-words search on the PDB website [45]. VHH structures with 

missing residues in the structure were not taken into account. Analyses were done using an 

approach developed in PTM-SD [46]. The collected dataset is composed of 114 PDB files, 

with 160 VHH structures. Duplicated structures were deleted according to only one VHH 

structure was conserved if identical structures with identical sequences were identified. Then 

the final dataset of VHH structures is composed of 133 unique complete structures (see Sup 

Data 1), 70% are from llama glama, 4.5% from vicugna pacos, rest being from camelus 

dromadarius. 132 structures are X-ray structures (with a mean resolution of 2.1 Å) and one 

NMR structural model. 

 

Data analysis. Different analyses on VHH sequences and VHH structures were 

performed. The delineation of the FRs and CDRs was done using multiple alignments 

generated by the ClustalO software (version 1.1.0) [47]. Visualization of VHHs structures 

was done with the PyMOL software [48].  

Scripts for the different analyses were programmed with Python language and R script 

language [49]. The VHH structures are superimposed with the PROFIT software [50] and 

mulPBA webserver [51]. Root mean square deviation (rmsd) was computed to compare VHH 
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entirely or partially; rmsd is the square root of the average of distances (in Å) between 

backbone atoms of a protein structure [52]. 

 

Secondary structure. Assignment was performed by using the most classic approach 

DSSP [53] (CMBI version 4.0). DSSP assign more than four secondary structural states, thus 

we have reduced them as: α-helix including α, 310 and π- helices, the β-strand containing only 

the β-sheet, the turn involving the turn assignments and bends, and the coil including the rest 

of the assignments (β-bridges and coil), as done in previous studies [54]. Default settings had 

been used for all methods.  

The predictions of secondary structure were performed with PSIPRED [55-56] and 

Jpred 4 [57] software. The accuracy of the prediction is given by the Q3 score which is the 

percentage of residues predicted in their right state (α-helix, β-strand or coil). 

 

Protein Blocks description. Protein Blocks (PBs [40]) correspond to a set of 16 local 

prototypes, labelled from a to p (e.g., see Figure 1 of [58]), of 5 residues length, clustered 

based on φ, ϕ dihedral angles description. They were obtained using an unsupervised 

classifier similar to Kohonen Maps [59] and Hidden Markov Models [60]. The PBs m and d 

can be roughly described as prototypes for central α-helix and central β-strand, respectively. 

PBs a through c primarily represent the N-cap region of β-strand while PBs e and f 

correspond to the C-caps; PBs g through j are specific to coils, k and l correspond to the N cap 

region of α-helix, and PBs n through p to that of C-caps. This structural alphabet allows a 

reasonable approximation of local protein 3D structures [39] with an average root mean 

square deviation (rmsd) of 0.42 Å [61]. PBs assignment was performed with PBxplore tool 

developed under the guidance of Pierre Poulain (https://github.com/pierrepo/PBxplore, in 

preparation). PBs are used to translate the 3D structures under a 1D shape like a sequence of 
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amino acids and are particularly more accurate than the secondary structures [40, 62-63] (see 

Sup Data 2 to see translation of a 3D VHH into a 1D sequence). 

 

Analyses. Protein Blocks were used in this study to define specific patterns associated 

to each FR. For the main pattern associated to one FR is simply the succession of PBs that is 

the most occurring. Some PBs are close so the patterns can be slightly degenerated. We define 

the pattern as done in Prosite, e.g. the pattern “r [st] u” means that at position 1, the PB seen is 

PB r, in position 2 is it a mixture of PBs s and t that are close and at position 3, the PB u. 

Intrinsic propensity 
i
xfr  of amino acids (or PBs) observed at a position i of a sequence 

are normalized by dividing the frequency 
i
xf  of this amino acid x (or BP) by the observed 

frequency of this amino acid (or PB) in a non-redundant protein structure databank. Thus, the 

intrinsic propensity is DB
x

i
xi

x f
ffr = . If this value is one, the frequency is expected at random, if 

it is higher, it is over-represented and if it is less, it is under-represented. 

The equivalent number of PBs [or amino acids] [39, 64] (Neq) is a statistical 

measurement similar to entropy and represents the average number of PBs [or amino acids] 

for a given residue. 
i
eqN  at position i is calculated as follows: )ff(N i

x
x

i
x

i
eq lnexp ∑

=

−=
16

1
. 

A Neq value of 1 indicates that only one type of PB [or amino acids] is observed, while 

a value of 16 is equivalent to a random distribution for PBs [and 20 for amino acids].  

For N-terminus FR (FR1) and C-terminus FR (FR4), it should be noted that only the 

positions actually found on all VHHs were analysed), 

 

Results 

Overall Analysis. As noted previously in material and methods section, search in PDB 
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website allowed the final selection of 133 different VHH chains. As expected, both the 

superposition of the structures and multiple alignments showed that VHHs topology is 

globally well conserved with conserved regions (FRs) but and other regions less conserved 

(CDRs). 

To summarize, the succession of FRs and CDRs is clearly detectable. However, it must 

be initially well defined. Then the demarcation of the FRs and CDRs of conventional 

antibodies (IgG) has been studied and well characterized [17] and it can be transposed to 

VHHs. Nonetheless, this is not a trivial process [65-68]. To define a clear separation between 

FRs and CDRs, a multiple alignment was done using the ClustalO software [47]. The 

alignment also helped to select 10 VHHs representative of the entire data set. These VHHs 

represent the most diverse set of VHHs i.e. with highest sequence divergence. FRs and CDRs 

delineation corresponds to classical IMGT numbering for VHHs [69-70]. 

The FRs regions are commonly considered as 'constant' regions both in terms of 

sequence and structure while the CDRs are variable / hypervariable [17]. The visualization of 

the superimposition of representative VHHs confirms that topologies of FRs are quite similar 

and mainly composed of β-strands (see Figure 1A). It also highlights the structural diversity 

of CDRs, and at lesser extend to FRs, particularly regarding the size of β-strands or the 

conformation of the connecting loops. We were able to simplify the topology as one 2D 

projection see Figure 1B), which enables a simplified analysis of VHHs. This representation 

is based mainly on the interaction between β-strands. Please note that it had been postulated 

that VHH have a CDR “4” [71]. The region between residues 71–78 (according to IMGT 

numbering [69-70]) is close to the other CDRs, leading to a larger paratope [72-74]. In the 

present study we didn't take into account this potential CDR4 as a CDR but as intrinsically 

part of FR3 as the sequence identity of this region was high as expected in the FR regions. 

 

FR analyses. These observations led to quantify without any a priori this 'constancy' of 
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FRs both in terms of sequence and of structure. Then we observed that the FRs are similar, 

but with some positions not conserved. Their percentages of identity range from 76.9% to 

94.4% respectively for FR2 (14 residues, see Sup Data 3) and FR4 (9 residues). A specific 

analysis in terms of species (namely llama glama, vicugna pacos, and camelus dromedarius), 

show no specific tendencies from one species in regards to another, i.e. no sequence species 

specificity is observed. 

We therefore analysed the 3D structure through a 1D representation via Protein Blocks.  

Then we clustered the succession of PBs leading to the description of FRs as patterns, this PB 

series can be seen as a classical Prosite patterns but not made from amino acids but with 3D 

information. These patterns are structural patterns as PBs represent 3D local conformation. 

For each FR, a distance matrix between these series of PBs has been made to group the 

closest structural patterns [75]. 

Table 1 shows the results for each FR. FR2 is the framework which has the structural 

pattern representing the largest number of structures (84%) while for the other FRs the most 

recurrent structural patterns only represents 40% (FR1), 63% (FR3) and 38% (FR4). We also 

observed no second highly recurrent patterns appear for each of the FRs. FR2 is the most 

directed structural pattern; it had the lowest number of variant patterns (5). The very long FR3 

has 10 variants representatives of the remaining 37% of the structures. It is a limited number 

in regards to the length of this FR. No significant correlation between FR length and the 

percentage of structures corresponding to the variant patterns can be found, or even between 

this length and the number of variants patterns.  

Focusing on the FRs amino acid sequence, we observed that 14 positions are constraint 

to one amino acid (see Figure 2). As shown in Table 1, 30 positions (out of 78) are exclusive 

to one type of amino acids while 14 positions show a Neq  on amino acids of these positions 

quite high (> 2). Thus, for FR2 and FR3, they represent only 3 residues on 14 and 11 on 32 
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respectively. For FR1 and FR4, the figure is higher but associated with greater structural 

variability, probably due to fewer structural constraints. We also noticed that non-exclusive 

positions are rare and usually have very different residues. 

In terms of sequence – structure relationship, we evaluate the prediction of secondary 

structure of the whole dataset using PSIPRED software [55-56]. PSIPRED is the most widely 

used secondary structure prediction method with a third version leading to an expected 

average prediction rate (Q3) of 82%. A striking result is the weak quality of the prediction for 

the VHHs; the Q3 value is only of 72.2%. It is slightly better for FR2 (86.4%), but lower for 

other the FRs with FR1 equals to 75.5%, FR3 to 66,9% and FR4 to 72.0%. This observation 

may be related to the difficulty to predict β-strand, i.e. the most difficult repetitive structure to 

predict [76]. Jpred 4 [57] prediction leads to a relative similar prediction rate of 78%, with 

similar tends. In regards to VH of IgGs, the results do not show a direct correlation. 

 

FR2 analyses. The analysis of the FR2 (see Figure 3) allows us to identify a main 

structural pattern (ddd[de]ehia[cd]ddfbd) and seven variant patterns (see Table 1 and Figure 

3B). The first three sub-patterns present similar structure (see Figure 3C with variant patterns 

FR2sm1.1, FR2sm1.2 et FR2sm1.3). The central region of the main structural pattern shows a 

specific series of PBs ehia, while these variants have a variation around a motif f[kb][bl]c 

which are clearly distinct from ehia as seen in [77]. The divergence of this framework 

encompasses especially the loop connecting the two β-strands of FR2, showing the existence 

of five distinct structural subunits (having a rmsd of 1 Å which is important for this short 

length sequence, see 3D examples in Figure 3C).  

The differences are mostly found at the same positions. The FR2sm2 is associated with 

PB series dfbd which causes ‘contraction’ of the loop; this loop is therefore more outwardly. 

The FR2sm3 greatly diverges as loop often associated to β-strand is replaced by a typical loop 
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associated to helical structures, namely fkop. So the loop sticks up at the opposite of FR2sm2. 

The PB motif ehia of FR2sm4 is shifted and replace by hiab that is drastically different 

compared to the other motifs. Here the loop is much more extended, and not like any other 

FR2. FR2sm5 is also different with specific features observed on the second β-strand of FR2. 

This allows the creation of more hydrogen bonds than other FR2 and extends the length of β-

sheets. 

For this framework along 14 residues, the positions 1 (residue W), 3 (residue R) and 7 

(residue G) are associated to only one type of amino acids (see Figure 3A). For 4 other 

positions, the most represented amino acid does not exceed 80% (positions 2, 9, 12 and 14), 

and finally the most variable position is the position 7 with 12 residues (amino acids on Neq> 

4, Figure 3A). 

Analysis of the various patterns of different FRs shows only one case of a sequence 

substitution clearly associated with a unique type of variant pattern, namely the FR2sm3, 

characterized by the succession fokp, a Proline residue is observed; it is the only case 

observed. 

 

The other FRs. Concerning FR3, which is the longest FR, the Figure 4A shows the 

occurrence of PBs inside the VHHs. The figure 4A underlines the variability of positions 6 to 

13 in terms of structure and also in less extend the connection to CDR3. In the amino-acid 

sequence, 11 positions among 32 are only associated to 1 kind of residues. Five positions 

have equivalent residues (namely, residues are highly similar). The other positions represent 

half of the FR (16/32) and very different amino acid associations even with very different 

properties are found (see Sup Data 4). 

We observed that the most variable local structure conformation is also the most 

variable in terms of sequence. Nonetheless, the amino acid sequences do not allow predicting 
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the associated PBs. Only position 7 is well-conserved compare to the other positions 

(positions 6, 10 and 12 being associated to higher amino acid Neq values, see Figure 2C). 

A precise analysis of the 10 variant patterns underlines that the main differences are 

found in positions of the sequence that are not strictly conserved in main structural pattern. In 

addition, no direct correlation can be seen with amino acid content and the PBs constructed 

sequence. As for FR3, the connecting loop is associated to various modifications (see Figure 

4B). Most of them shorten the first β-strand of FR3 and we observed they are associated to 

high B-factors. 

FR1 and FR4 are shorter than FR3 and FR2. Their main structural patterns are less 

represented (40 and 38% respectively). For this two FRs, only 4 positions among 23 have 

amino acid composition encompassing very diverse types of residues (big, aromatic, polar, 

charged…). This percentage is largely lower compared to  FR2 and FR3. For FR1, the less 

determined structural region is the N-terminus region. It is also found with higher B-factors, 

and a low number of contacts. The more stable region starts with the second β-strand. We 

observed just before the second β-strand a sharp determined turn that is a PBs series dehiac; a 

very stable element that is important for protein structures [77]. The connection to CDR1, 

even if the length of CDR1 is short and constant, shows a high diversity in terms of local 

conformations. It highlights the impact of CDR1 on the final fold of FR1. 

FR4 shows similar features. Its end is often short with high B-factors or unresolved, a 

typical case of most of the proteins [78-79]. Only the first nine positions are always found in 

all VHHs and have been analysed. The striking point is that 5 positions among 9 are totally 

conserved and only two have distinct amino acid kinds (position 1 with aromatic and 

positively charged residues, and position 3 with positively charged, polar uncharged and 

breakers). Two points must be underline here: (i) at first, these results have nothing to do with 

a potential problem of the PCR primer region. Indeed, it is mainly after the analysed positions 



VHH FRs structures 

 13 

[80]; (ii) the number of number of J segments is limited (e.g. 6 in llama) and so have not 

really provided a strong divergence between the FR4s.  

The high number of structural variant patterns (19 corresponding to about two third of 

the total number of FR4) encompasses a larger twisted conformation directly guided by the 

CDR3. FR4 first positions are not flexible region, so it underlines the impact of CDR3 to 

guide its local conformation. Here again, no correlation between the variant patterns in terms 

of PBs and amino acid contents. 

 

Discussion 

In the recent years, antibody uses have shown an impressive success for 

biotechnological and biomedical applications [5]. Use of bioinformatics approaches is an 

essential tool for engineering proteins and a fortiori for antibodies. A good knowledge of the 

sequence – structure relationship, which controls the protein folding, is essential. This is 

especially true for antibodies for which modifications are important questions. Humanization 

technology was fundamental for the remarkable progress of antibodies use for therapeutic 

area [81]. This optimisation needs a small set of variants. These variants design are based on 

the antibody structure and/or sequence information, and could impact folding, fold, fold 

stability and specificity. A recent in silico approach to perform the crafting of frameworks to 

accommodate other CDR regions had been proposed [82]. It combines homology modelling 

with simulated annealing to humanize mouse antibodies using computationally derived 

antibody homologous structures. However, in silico approaches for antibodies design for drug 

discovery have numerous drawbacks [83]. 

Compared to others antibodies, camelid VHHs have a short but rich story of 

experimental laboratory usage, biotechnology and biomedical purposes, e.g. nanobody-based 

cancer therapy of solid tumours [84]. Indeed, clear advantages of nanobodies compared to 
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conventional antibodies include their size, solubility and stability. Because of these 

characteristics, nanobodies can be formulated as a long shelf-life, ready-to-use solution [85]. 

Nonetheless, in terms of structure, few works have analysed their characteristics. Many 

studies have been done on a limited number of VHH structures. For instance, a potential 

universal VHH framework was tested to graft various loops of VHHs of subfamily 2 

(representing 75% of all antigen-specific VHHs), but only 5 chimeras were tested [86]. 

Similarly, the convexity of paratope defined by CDRs of VHHs was mainly extracted from an 

analysis of eight VHHs binding lysozymes [87].  

Comparative molecular modelling had shown the difficulty to propose pertinent 

structural model of VHHs [26, 35-36], even with very sophisticated approaches as 

RosettaAntibody [71]. In fact, the results can be appreciated as less efficient than for classical 

antibodies as tested in AMA I and AMA II [88-91]. 

From our experiences, we have underlined a precise characteristic of VHH modelling 

[36], which is the difficulty to select a correct series of structural templates. At the first sight 

frameworks seem all highly stable, and we need mainly to focus on CDRs. In this study, we 

have done the first attempt to analyse precisely the structural diversity of FRs of VHHs. An 

important methodological asset is the use of Protein Blocks. PBs are a very useful tools as 

they allow a local comparison with higher precision than classical secondary tools, and are 

very useful to align protein structures [51, 92] and analyse protein flexibility [62, 93]. 

Each of the four FRs is associated to a main structural pattern, which can be considered 

as canonical, but represents only 40, 84, 63, and 38%, leading to the characterization to 

variant patterns ranging from 6 to 19. Among some of them, we observe some similarity and 

the final number of variant patterns could be slightly reduced. However, clearly some are 

really outliers at more than 1 Å from the main structural pattern and could have strong impact 

of the proposition of structural models. The molecular modelling performed on these extreme 
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cases show that the structural models obtained are of low quality even for the FR regions 

(data not show). This result is in agreement with previous modelling [71]. It is also linked to 

the amino acid conservation of numerous FR positions, which is sometimes limited. In 

addition we underline that no correlation is found between the local conformational change 

and amino acid composition. These results indicate that long-range interactions affect the 

local conformation of this constrained topology and have strong implication (i) for 

comparative structural modelling and (ii) for antibody informatics for drug discovery. We 

have already observed a direct effect on the first point with some dedicated examples.  
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Legends 

 
Figure 1. VHH topology. A) Superimposition of 10 representative VHH structures with two 

orientations. These 10 VHH represents the most diverse VHHs of the dataset in terms of 

sequences (PDB codes 3QXU chain D [8], 4GFT chain B [9], 3V0A chain C [10], 4C57 chain 

C [11], 4BFB chain E [12], 3CFI chain I [13], 4C58 chain B [11], 1KXQ chain F [14], 2X6M 

chain A [15], 2WZP chain E [16]). B) A 2D projection of the same information. In grey are 

indicated the three variable CDRs, while FR1 is in yellow, FR2 in orange, FR3 in red and 

FR4 in magenta. Superimposition was done using mulPBA [51] and visualisation with 

PyMOL software [48]. 
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Figure 2. Amino acid Neq distribution of the four 4 FRs. A. FR1, B. FR2, C. FR3 and D. FR4. 

Stars represent Neq higher than 2. 
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Figure 3. FR2 characteristics. A. amino acids frequencies at each position; B: Protein Blocks 

Representation of different structural variants of the FR2 (the dots correspond to the sequence 

identity with the main structural pattern); C. 3D representation of structural variants of the 

FR2. Following IMGT numbering [69-70], it corresponds to positions 36-49 which defines in 

IMGT this FR. 
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Figure 4. FR3 characteristics. A. PB frequencies along FR3, on the right is provided the 

corresponding gradient, the two more variable regions in terms of PBs are bordered in grey; 

B. 3D representation of the main structural pattern and some structural variants of the FR3. 
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Figure 5. FR1 and FR4 characteristics. PB frequencies along A. FR1 and B. FR4, on the 

right is provided the corresponding gradient, the more variable regions in terms of PBs are 

bordered in grey. 
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Region #positions Main pattern 
(%structures) 

#positions with 
unique AA 

#variant patterns 
(%structures) 

FR1 23 1 (40) 11 14 (60) 

FR2 14 1 (84) 3 6 (16) 

FR3 32 1 (63) 11 10 (37) 

FR4 9 1 (38) 5 19 (62) 

 

Total 78 1 (56) 30 39 (44) 

 
 
Table 1. Summary of the difference variant patterns. The following features are noted for 
each FR : The FR length, the percentage of structures corresponding to the main structural 
pattern, the number of positions associated to only one kind of amino acid, and the number of 
structural variants (with corresponding percentage). The last line corresponds to the summary 
of all FRs, in italics is provided the mean values of structure occurrences. 
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Sup Data 1. Protein dataset. The 133 protein structures are described by species and types of 

experiments. 

 

Number of structures X-ray diffraction Solution NMR Total 

Camelidae 1 0 1 

Camelus dromedarius 32 0 32 

Lama glama 93 1 94 

Vicugna pacos 6 0 6 

Total 132 1 133 
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Sup Data 2. Translation of a VHH structures in a sequence of Protein Blocks. On the left is 

the 3D structure of a camelid VHH [which is in complex with porcine pancreatic α-Amylase, 

http://www.rcsb.org/pdb/explore.do?structureId=1kxq]. The protein is encoded as a series of 

(φ, ψ) dihedral angles. Each consecutive fragment of five residues is compared to the series of 

(φ, ψ) dihedral angles of the 16 canonical Protein Blocks [1-3]. The one with the minimal 

distance is associated to the central residues. The protein fragments are overlapping. Please 

note that the final PB sequences are 4 residues shorter than the amino acid sequences 

(corresponding to the ZZ at N and C termini). 
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Sup Data 3. Redundancy of the dataset. Identity (%ID) mean rates for each region (FRs and 

CDRs) between 133 VHHs sequences obtained from the PDB (and associated standard-

deviation, sd). 

 

 % ID (mean) % ID (sd) 

FR1 88.70 4.06 

FR2 76.91 8.54 

FR3 79.35 4.51 

FR4 94.43 4.70 

CDR1 33.47 10.32 

CDR2 52.13 6.19 

CDR3 19.31 4.32 
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Sup Data 4. FR3 characteristics. A. Amino acid Neq of FR3. B. Occurrence of amino acids at 

each position. Following IMGT numbering [4, 5], it corresponds to positions 66-94. 
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