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Abstract 
Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in 

oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, 

often only during and shortly after treatment, thus preventing correct identification of some TGI model 

parameters. Our aims were i) to evaluate the importance of including measurements during tumor 

regrowth; ii) to investigate the proportions of mice included in each arm. For these purposes, optimal 

design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published 

xenograft experiments, involving different drugs, schedules and cell lines, were used to help optimize 

experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm 

design, i.e. control vs treatment, was optimized with or without the constraint of not sampling during 

tumor regrowth, i.e. “short” and “long” studies, respectively. In long studies, measurements could be 

taken up to 6 grams of tumor weight, whereas in short studies the experiment was stopped three days 

after the end of treatment. Predicted relative standard errors were smaller in long studies than in 

corresponding short studies. Some optimal measurement times were located in the regrowth phase, 

highlighting the importance of continuing the experiment after the end of treatment. In the four-arm 

designs, the results showed that the proportions of control and treated mice can differ. To conclude, 

making measurements during tumor regrowth should become a general rule for informative preclinical 

studies in oncology, especially when a delayed drug effect is suspected.  
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Introduction 

The in vivo evaluation of antitumor effect is an important step of preclinical drug development in 

oncology. Experimental models in rodents have been developed in recent decades to assess the 

antitumor effect of a new compound (1). Among in vivo preclinical studies, the most popular is the 

xenograft model (2), that is the human tumor transplanted into animals. Most recent xenograft 

experiments have been performed on athymic nude mice (3), which are mice with reduced capacity to 

reject foreign cells. The common practice is either to implant tumor fragments subcutaneously or to 

inject tumor cells into the flank of athymic mice (4). When the tumor has reached the desired volume, 

mice are randomized into control and treatment arms receiving either a vehicle (control arm) or the 

compound to be tested at different dose levels or with different drug administration schedules 

(treatment arms). Tumor sizes are measured at repeated time points during the study and specific 

metrics are then calculated to assess tumor activity in the different arms (5). The main purpose of those 

studies isto quantify the inhibition of tumor growth provided by the treatment, which depends on dose, 

time and dosing regimen (4,6).  For this reason, mathematical models able to dissect system-related 

from drug-related parameters have been proposed to describe and predict the antitumor effect of a new 

compound. We chose to use the Simeonitumor growth inhibition(TGI) model (7,8)for in vivo evaluation 

of antitumor effect in xenografted mice. The Simeoni TGI model is a pharmacokinetic-pharmacodynamic 

(PKPD) model in which the dose of an anticancer compound is linked, through concentration, to the 

inhibition of tumor growth. By searching for papers that cite the model and looking at author affiliations, 

we observed that the model is widely used in both industry andacademia. It has been used for analysis of 

hundreds of single-agent experiments in preclinical studies in industry(4,9)and was recently used to 

evaluate interaction effects when drugs are administered in combination (9). Xenograft data may be 

analyzed by various methods. One method is the “naïve pooled data” (NPD) approach (10) in which the 

model can be fitted using standard nonlinear regression. In this approach parameter estimation is 
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straightforward but does not model all sources of variability, so no information about the differences 

between subjects is considered. Nonlinear mixed effects models (NLMEMs) (11–13)are a popular 

alternative approach. This method is more complex than NPD, but has been increasingly used in the 

biomedical field as it keeps all the data of all subjects.  

Before performing the experiment, it is important to define an appropriate design, which implies there 

has to be a good balance between the number of subjects, the number of samples per subject and the 

timing of sampling, and the doses, in line with the experimental conditions. As reported in (4), until now 

preclinical studies have been rarely designed using optimal design strategies. When planning a study it is 

crucial to choose a good design as it can play an important part in parameter estimation (14), and poor 

design can lead to inconclusive studies. As recommended in (4), designing experiments with optimal 

design strategies would lead to more informative studies and ensure more precise parameter estimates 

for the selected model. 

There are two main approaches to design evaluation. The first, by trial simulation, involves parameter 

estimation using numerous simulated datasets and thus is a time-consuming method (15). The second 

approach, which avoids simulation, relies on the Cramer-Rao inequality, which states that the inverse of 

the Fisher information matrix (FIM) is the lower bound of the variance-covariance matrix of any unbiased 

parameter estimate. Several criteria based on FIM have been proposed. One is the D-optimality criterion, 

which consists in maximizing the determinant of FIM, considering all model parameters. In NLMEMs 

there is no closed form of the likelihood and thus of FIM, therefore an approximation method must be 

used. Mentréet al. (16) first introduced the first-order (FO) linearization method and further 

approximations have been developed since. FIM is implemented in several optimal design software 

programs for NLMEMs(17,18). These are: PFIM (19,20), PopED(21), PopDes(22) and  POPT (23). These 

tools allow for design evaluation/optimization by computing FIM and the D-optimality criterion (24), and 



4 
 

it was shown in (17) that they all provided the same answer when using the same FO approximation of 

FIM. 

The aim of this study was thus to apply optimal design strategies to the xenograft experiments analyzed 

with the Simeoni TGI model, to derive some general rules that could be used as guidelines for future 

preclinical studies in this field, and to assess the impact of suboptimal design. More specifically, in vivo 

tumor size measurements in xenograft experiments are often taken only duringand shortly after 

treatment(25,26), possibly preventing correct identification of some parameters of TGI models(27). The 

first objective of this study was to assess quantitatively in two-arm experiments, i.e. one control and one 

treatment arm, the difference in terms of precision of parameter estimation of taking samples only 

during and shortly after the treatment administration, or also later, during the tumor regrowth phase, by 

using standard nonlinear regression or anNLMEM. The main idea behind this thought is that the time 

efficacy index (TEI), which is a secondary parameter of the SimeoniTGI modelthat is linked to the drug 

potency parameter, is estimated better when consideringregrowth(8). Although many institutionshave 

already had the common intuition that sampling during tumor regrowth would allow for more 

informative studies, to our knowledge this was never proven before. 

The second objective of this work was to investigate the influence of including arms with different doses 

or different drug administration schedules in the trials, as well as the number of treated and control mice 

to be used in the experiments, when using NLMEMs. 

Materials and Methods 

Experimental Settings 

Several xenograft experiments were selected from the literature (7,28) involving various drugs with 

various modes of action, different drug administration schedules and cell lines. The compounds tested in 

the experiments considered were paclitaxel and 5-fluorouracil (5-FU), which are available on the market, 

and two drugs (Drug A and Drug B) synthesized by Pharmacia (7). The A2780 human ovarian carcinoma 
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and HCT116 colon carcinoma cell lines were used. Tumor fragments were subcutaneously implanted into 

the left flank of athymic nude mice and, one week after tumor inoculation, mice bearing a palpable 

tumor were randomized into control and treatment arms. Tumor dimensions were measured using 

calipers and the tumor masses 𝑤 were calculated at each time 𝑡 with the following formula reported in 

(7): 

𝑤 =
𝑙∙𝑧

2
𝜌                     (1) 

where 𝑙 is the length of the tumor measured in mm and 𝑧 is the tumor squared width expressed inmm2. 

It was assumed that the density 𝜌 was equal to 1 mg/mm3 for tumor tissue such that the tumor weight 𝑤 

is expressed in mg. 

A schematic description of selected experiments is reported in Table I. Experimental settings for 

experiments 1, 2, 9 and 10 were taken from (28), whereas the information for the other experiments 

was found in (7).  

Tumor Growth Inhibition Model  

The Simeoni TGI model is built based on the assumption that tumor growth follows an exponential curve 

in the early phases followed by linear growth (5,7). The unperturbed growth model for untreated mice is 

expressed  with the following differential equation (7): 

𝑑𝑤 (𝑡)

𝑑𝑡
=

𝜆0 ∙𝑤 𝑡 

 1+ 
𝜆1
𝜆0
∙𝑤 𝑡  

𝜓

 

1
𝜓 

        

𝑤(0) = 𝑤0                                                                                                                                              (2) 

where 𝑤0 is the tumor weight at inoculation time, and𝜆0 and  𝜆1 are parameters describing the rate of 

exponential and linear growth, respectively. The parameter 𝜓 is set to 20 ensuring a sharp system 

transfer from first-order growth (exponential) to zero-order growth (linear) (7).  With this model, if the 

tumor weight 𝑤(𝑡) is small the denominator of equation 2 can be approximated to 1 and then the tumor 

growth is given by 𝜆0 ∙ 𝑤 𝑡 ; whereas when  𝑤(𝑡) is large, 1 can be neglected in the denominator and 
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the tumor growth is approximated by  𝜆1.  The system-related parameters of the unperturbed model are 

therefore: 𝜆0, 𝜆1 and 𝑤0. 

In the treatment arms the action of the antitumor compound prevents the proliferation of a proportion 

of tumor cells, which go through a three-stage chain at a constant rate of damage 𝑘1, with different 

levels of impairment, and then, eventually, die. The antitumor potency is characterized by the constant 

parameter 𝑘2,which is proportional to 𝑐(𝑡) ∙ 𝑥1 𝑡 , where 𝑐(𝑡) is the drug concentration, which can be 

predicted with a PK model, and 𝑥𝑖 𝑡  are the proliferating cells in 𝑤(𝑡). A schematic representation of 

the perturbed growth model is reported in Figure 1. 

The perturbed growth model for treated mice is described with the following system of differential 

equations(7): 

𝑑𝑥1 𝑡 

𝑑𝑡
=

𝜆0 ∙ 𝑥1 𝑡 

 1 +  
𝜆1

𝜆0
∙ 𝑤 𝑡  

𝜓

 

1
𝜓 
− 𝑘2 ∙ 𝑐(𝑡) ∙ 𝑥1 𝑡  

𝑑𝑥2 𝑡 

𝑑𝑡
= 𝑘2 ∙ 𝑐 𝑡 ∙ 𝑥1 𝑡 − 𝑘1𝑥2 𝑡  

𝑑𝑥3 𝑡 

𝑑𝑡
= 𝑘1 𝑥2 𝑡 − 𝑥3 𝑡   

𝑑𝑥4 𝑡 

𝑑𝑡
= 𝑘1 𝑥3 𝑡 − 𝑥4 𝑡   

𝑤 𝑡 = 𝑥1 𝑡 + 𝑥2 𝑡 + 𝑥3 𝑡 + 𝑥4 𝑡  

𝑐 𝑡 = 0 for 0 < 𝑡 ≤ 𝑡0                   (3)  

where 𝑡0 represents the time of beginning of treatment. Before the start of treatment, the concentration 

𝑐 𝑡  is equal to 0 and the model follows an unperturbed growth, with 𝑤(𝑡) = 𝑥1 𝑡 . After time 𝑡0, the 

model follows a perturbed growth and  𝑤 𝑡 = 𝑥1 𝑡 + 𝑥2 𝑡 + 𝑥3 𝑡 + 𝑥4 𝑡 . 

The parameters of the perturbed growth model therefore are: 𝜆0, 𝜆1, 𝑤0, and 𝑘1, 𝑘2, which are the 

system-related and drug-related parameters, respectively. 
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For each proposed experiment a PK model was used in order to predict the𝑐 𝑡  needed for the 

treatment arm in the TGI model. The PK model and its parameter values were taken from the literature 

(7,28). For experiments 1 to 7 of Table I a two-compartment model with intravenous (i.v.) bolus was 

used, whereas in experiment 8 a two-compartment model with continuous i.v. infusion was used. 

Figure 2 shows the simulated PK model and TGI model for experiments 1 and 9 of Table I.  

Statistical Model 

In standard nonlinear regression, the vector 𝑦𝑖  of observations 𝑦𝑖1 ,… ,𝑦𝑖𝑛 𝑖  measured from the subject 𝑖 

at times  𝜉𝑖 = (𝑡𝑖1 ,…𝑡𝑖𝑛 𝑖) is defined with  𝑦𝑖 = 𝑓 θ𝑖 , 𝜉𝑖 + 𝜀𝑖  where 𝑓 is the nonlinear structural model 

describing the tumor growth over time and 𝜉𝑖  is the elementary design composed of 𝑛𝑖  sampling times.  

θ𝑖  is the vector of 𝑝 individual parameters and 𝜀𝑖  is the vector of residual error following a normal 

distribution 𝜀𝑖~𝑁(0, Σ(θ, 𝜉𝑖)) with Σ θ, 𝜉𝑖 = diag(σinter + σslope × f(θ𝑖 , 𝜉𝑖))2. σinter  is the parameter 

for the additive error and σslope  for proportional error. The individual parameters vector is γ′ =

(θ𝑖 ,𝜎𝑖𝑛𝑡𝑒𝑟 ,σslope ). 

In NLMEMs all samples of all individuals are analyzed simultaneously. The individual parameters θ𝑖  for 

the 𝑖𝑡  subject is modeled as θ𝑖 = 𝜇𝑒𝜂𝑖  with a fixed effect 𝜇,which represents the median values of the 

parameter in the population, and a random effect 𝜂𝑖~𝑁 0,Ω , where Ω = diag(ω1
2 ,… ,ω𝑝

2 ) accounts for 

the between-subject variability. The population parameter vector is 

Φ′ = (𝜇1 ,… , 𝜇𝑝 ,ω1
2 ,…ω𝑝

2 ,𝜎𝑖𝑛𝑡𝑒𝑟 ,σslope ) . 

All parameter values used in this article are given in Table I and were estimated from real experiments in 

(7) for experiments 3 to 8, and in (28) for experiments 1,2,9 and 10. Moreover, experiments 1 and 2 have 

the same mean parameter values as experiments 9 and 10, respectively, and experiments A and B in 

Table II have same TGI model parameters as those of experiments 9 and 10 in Table I. 
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Optimal design strategy 

Criterion and optimization  

For optimal design we used the D-optimal criterion, which corresponds to the maximization of the 

determinant of the individual or population FIM, corresponding to the minimization of the confidence 

region associated with the individual or population parameter estimates. The reported optimality 

criterion is the determinant to the power 1/p, where p is the total number of estimated parameters in 

the model. A search for optimal measurement times was performed using the Fedorov-Wynn algorithm 

implemented in the R function PFIM, in the PFIM 4.0 program (19,29), in which both individual and 

population FIMs can be computed.  

Together with the optimal design, PFIM returns the predicted relative standard error (pRSE) in % for each 

model parameter, and pRSE is defined as: 

𝑝𝑅𝑆𝐸(p) =  
𝑆𝐸   φ  

φ
× 100                   (4)   

where 𝑆𝐸  φ   is the expected standard error of parameter φ. 

Two-arm designs  

All experiments described in Table I were used for the first objective of the present study, that is to 

assess quantitatively the difference in precision of parameter estimates in two-arm experiments, when 

taking 4 measurement samples only during and shortly after the treatment period, compared with taking 

measurements also later, in the tumor regrowth phase. In experiments 1 to 8 only one mouse per arm 

was included in order to perform individual design optimization. This can be viewed as an NPD approach 

where mean data are fitted, hence assuming that they come from a single mouse. In experiments 9 and 

10, 4 and 7 mice were assigned to each arm, respectively, such that population design optimization could 

be computed.  
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For each experiment two scenarios were thus considered: a “short study”, in which it was possible to 

measure only until three days after the end of the treatment period in order to mimic the frequently 

adopted setting of those preclinical studies, and a “long study”, in which measurements could be taken 

also later,after the end of the treatment period, during the tumor regrowth phase, but for ethical 

reasons only up to a tumor weight of 6 grams. Note that 6 grams is an overestimated threshold adopted 

to emphasize the impact on precision of parameter estimates in short versus long studies. See the 

discussion for more details. The two scenarios therefore only differ in the chosen range of allowed 

sampling times, in the optimal design settings. The parameters were used to simulate the tumor weight 

with and without treatment for each experiment, to define the time when a tumor weight of 6 grams 

was reached. Allowed sampling time ranges for the two scenarios are reported in Table I under the 

“Sampling window” column for both treatment and control arms, first line for the short study and 

second line for the long study. Note that in the long study treatment arms should have larger allowed 

sampling time windows compared with those for the corresponding control arms, as treated mice 

reached a tumor weight of 6 grams later, because of the treatment effect.  

The allowed sampling times were chosen based on the time ranges defined for each experiment. In short 

studies, a dense grid for each day in the range was set as the allowed sampling times, except for 

experiment 5 in which the allowed times were allocated every other day. In long studies the allowed 

sampling times were allocated every other day, if the last time in the range was before day 38, every 

three/four days if the last time in the range was before day 50 and every four or five days for the long 

studies of experiments 1 and 9, in which the last allowed time was day 68.  

Optimization of sampling times from the allowed sampling window was performed simultaneously in 

control and treatment arms for each selected experiment and for short and long studies. In the 

individual design optimization, for experiments 1 to 8, the model was implemented as a two responses 

model, each response corresponding to one arm. For experiments 9 and 10 and population design 
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optimization, as the Fedorov-Wynn algorithm would also optimize the proportion of subjects per arm, 

two steps were used to get the optimal times with a fixed number of mice per arm. The model was 

implemented as a single response model with a two-arm design. As currently in PFIM, the same allowed 

sampling window should be set for the two arms—the treatment arm window was chosen, as it includes 

all the possible times for both arms. Optimal design was performed and the optimal times obtained were 

stored. For the control arm, optimal times exceeding the allowed range were replaced by the last 

possible times. We then performed two-arm design evaluation of all possible combinations of 4 times 

among the optimal times found in the previous step for a fixed number of mice in each arm. The two-

arm design with the combination that led to the highest criterion was defined as the optimal design. 

pRSE (%) were used to compare long and short studies in all the experiments, knowing that the lower 

pRSE (%) would guarantee the more precise parameter estimates for the study considered. 

Graphs of sensitivity functions, i.e. partial derivatives of the Simeoni TGI model prediction with respect 

to each parameter, were used to visualize the impact of each model parameter through time. Sensitivity 

functions with respect to each parameter provide knowledge on the design values (e.g. tumor weight 

measurement time) leading to the greatest information, i.e. the times for which the square of the 

sensitivity function is maximal. Figure 3 displays the graph of sensitivity functions for experiments 1 and 

9. The PFIM input and output files for experiment 1 are reported in the supplementary material. 

Four-arm designs 

The second objective of this study was to apply optimal design in the context of four-arm designs, i.e. 

one control and three treatment arms, with i) different doses per arm or ii) different drug administration 

schedules per arm. The experiments used for this purpose were experimentsA and B reported in Table II, 

which were analyzed by an NLMEM. Experiment Ahad three different doses of 20, 30 and 40 mg/kg in 

each treatment arm, respectively, whereas experiment Bhad three different drug administration 

schedules: i.v. bolus bid, i.e. twice a day, in treatment arm 1, i.v. bolus tid, i.e. three times a day, in 
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treatment arm 2 and i.v. bolus qd, i.e. once daily, in treatment arm 3. The allowed sampling time ranges 

for treatment and control arms were defined as before, using the criterion of stopping the study when 

the tumor weight reached 6 grams.  

In a first scenario, 6 sampling times from the allowed sampling times were optimized with the Fedorov-

Wynn algorithm. The initial design for experiment A consisted of 4 mice per arm at 6 times; 8, 17, 20, 26, 

29, 35 days, arbitrarily chosen. The same was true for experiment B, where the initial design consisted of 

7 mice per arm at the 6 times: 11, 13, 15, 17, 19, 21 days. Using the Fedorov-Wynn algorithm in PFIM for 

optimization could lead to some arms being dropped from the experiment. The model was implemented 

as a one-response model and in a first scenario the four-arm design was optimized using the same 

approach that was applied to optimize the two-arm design for experiments 9 and 10 of Table I, with the 

exception that the arms and number of mice per arm were those found to be optimal with the Fedorov-

Wynn algorithm instead of being fixed.     

As it might be useful to keep all the arms, in a second scenario a different approach was used. First, 3 

two-arm designs were optimized (control and treatment arms 1, 2 or 3) with 4 mice and 7 mice in each 

arm of experiments A and B, respectively. Optimal design of the 3 two-arm designs was obtained using 

the same approach as that used for experiments 9 and 10 of Table I. The four-arm design with the 

previously obtained optimal times for each arm could then be evaluated, keeping fixed the number of 

mice per arm. 

Results 

Two-arm designs 

Optimal sampling times obtained simultaneously in control and treatment arms of all the selected 

experiments in short and long studies are reported in Table I. In long studies, some optimal times were 

located in the regrowth phase of treatment arms, highlighting the importance of continuing the 

experiment after the end of the treatment. These results were obtained for all two-arm experiments, i.e. 
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one treatment and one control arm, either when only one subject was assigned per arm, as for 

experiments 1 to 8, or when more mice were included in each arm, as for experiments 9 and 10, using a 

population approach.  

Graphs showing results for experiment 1 are reported in Figure 4. In the graph on the left it is noticeable 

that two out of four optimal sampling times obtained in the long study lie on the last times of the curve. 

In the graph on the right it is evident that pRSE (%) of the Simeoni TGI model parameters obtained in 

long studies (blue bars) were better than those obtained in the short study (red bars) of the 

corresponding experiment. Sensitivity graphs related to experiments 1 and 9 (Figure 3) provide a visual 

check of the impact of model parameters through time for those experiments. When focusing on the 

fixed effects of the drug-related parameters 𝑘1 and 𝑘2 , it is noticeable that they start to be informative, 

i.e. the curve stops being constant at 0, when the treatment is given (day 8), and they both reach an 

optimum after the end of treatment, at around day 25 and day 35, respectively. Similar reasoning 

regarding sensitivity graphs was possible for the other experiments, but it was chosen not to report all 

the graphs in the article.  

Ratios of pRSE (%) from short to long studies (Figure 5) were calculated for all experiments reported in 

Table I for the treatment-related parameters 𝑘1 and 𝑘2. The ratio was greater than 1 in all experiments, 

proving that pRSE (%) in long studies were better than the corresponding pRSE (%) in short studies.  

Four-arm designs 

For experiment A in Table II, not surprisingly it was found that the highest dose (40 mg/kg) gave the 

greatest information, indeed although the initial design had four arms with 4 mice per arm, the design 

obtained after the optimization of FIM was a two-arm design with 6 control mice, 37.5% of the total 

number, and 10 treated mice, 62.5% of the total number, at the highest dose (40 mg/kg). The criterion 

obtained for the optimal design was 2100, which is much higher than the criterion obtained for the initial 

design of 1255, i.e. an increase of efficiency of 1.67. The criterion obtained for the four-arm design with 



13 
 

4 mice per arm was 1924, i.e. a small loss of efficiency of 0.92 from the optimal design, but a gain of 

efficiency of 1.53 from the initial design. An evaluation of the first optimal two-arm design was 

performed including 8 mice in each arm to investigate the loss of having 50% of control and treated mice 

instead of 37.5% and 62.5%, respectively. The criterion found was 2049, i.e. a small loss of efficiency of 

0.98. Graphs showing the initial design, the two-arm design and the four-arm design are in Figure 6, top 

panel.  

For experiment B the criterion obtained with the initial design was 2765 and the optimal design obtained 

was a three-arm design, thus only one arm was “excluded” from the optimal design: treatment arm 2 

with tid treatment. The proportions of treated and control mice were approximately the same as for the 

first example: 64% treated, of which 9 mice in both treatment arms 1 and 3, and 36% controls, which is 

10 mice. The criterion obtained was 4708, i.e. an increase of efficiency of 1.70. The criterion obtained for 

the four-arm design with 7 mice per arm was 4643, i.e. a small loss of efficiency of 0.99 from the optimal 

design, but a gain of efficiency of 1.68 from the initial design. Graphs showing the initial design, the 

three-arm design and the four-arm design are in Figure 6, bottom panel. 

Discussion 

Optimal design strategies have rarely been applied to experiments concerning thein vivo evaluation of 

antitumor effect in xenografted mice (4), and none of them, to our knowledge, have approached the 

question using optimal design theory. Some work on design of xenograft experimentshas been 

published(30), but the focus was on comparing treatment and control groups, disregarding the correct 

estimation of drug-related parameters.The use of optimal design will ensure more informative studies 

and provide measurement times that guarantee the smallest pRSE for the model parameters. In the 

present work, optimal design was performed for the Simeoni TGI model, for different sets of 

experiments, in order to answer some important questions arising from these studies.  
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Optimal design strategies applied in two-arm design experiments, i.e. control vs treatment, showed that 

studies curtailed three days after the end of treatment administration led to much higher pRSE of the 

drug-related parameters 𝑘1 and 𝑘2, compared with those obtained in longer studies, where for ethical 

reasons tumor growth measurements could only be taken until tumor weight reached 6 grams. This 

result proved that short studies would likely prevent correct identification of parameters 𝑘1 and 𝑘2, 

whereas long studies should ensure more precise estimates of Simeoni TGI model parameters, leading to 

a more informative study. This can be considered as a proof-of-concept study, where thehypothesishas 

beenstated in the past by many laboratories and in(27), but has never been proved before, to our 

knowledge. Graphs of sensitivity functions through time (Figure 3) showed the time points in 

whichSimeoni TGI model parameters were more informative in each experiment, underlying the fact that 

parameters 𝑘1 and 𝑘2 increase their impact starting from the treatment period, and continuing also 

afterwards, during the regrowth phase. These results were observed in all the experiments of Table I, 

where either individual or population approaches were used. Moreover, those experiments were 

performed for different cell lines, drugs and drug administration schedules. Furthermore, the optimal 

sampling times reported in Table I were located in the last part of the regrowth phase at least two out of 

four times, which partially supports the initial intuition that sampling during the tumor regrowth phase 

would ensure more informative studies.  

In some laboratories experiments stop when the tumor reaches 2 grams (5), disregarding the fact that 

the regrowth rate may be well visible and then model parameters could be well estimated. Furthermore, 

other researchers stop analyzing when the tumor weight in the control group reaches the maximum 

allowed by the Institutional Animal Care and Use Committee (IACUC) (31), which corresponds to 4 grams. 

This may be an issue for the estimation of drug-related parameters, in cases where the tumor in 

treatmentgroup has not started regrowing by the time the control group has reached a tumor weight of 

4 grams. Note that 6 grams is an overestimated thresholdadopted to emphasize the impact on precision 

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0ahUKEwiP1ZWfwPTLAhWLExoKHQ9LAOMQFgg7MAQ&url=http%3A%2F%2Fwww.iacuc.pitt.edu%2F&usg=AFQjCNGezNYZXvhn4CqGaoLtXuBPygP3cw&sig2=wpRyyFKTD_Nj2wYrH6qrAQ
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of parameter estimates in short versus long studies. However, results are substantially confirmed also 

choosing lower limits.It should also be considered that longer studies may cost more than short studies. 

A cost-efficacy analysis could be performed in order to define a good balance between information 

acquisition and cost, as envisaged in our study. 

The conclusion drawn from the results discussed in this first part is that making measurements during 

tumor regrowth should become a general rule for informative preclinical studies in oncology, 

independently of adopting standard nonlinear regression or an NLMEM approach. 

Using a population approach, we further investigated the application of optimal design strategies to 

four-arm designs in two experiments with several mice included in each arm, considering for the three 

treatment arms either three different doses or three different drug administration schedules and the 

same dose. The former optimal design experiment led to the expected conclusion that the treatment 

arm with the highest dose would provide the greatest information, and the other treatment arms were 

excluded from the optimal design. We may suspect that in cases where the relationship between drug 

concentration and cell killing effect is not linear, intermediate doses might be selected by the optimal 

design, but these analyses were not performed in this work. In preclinical trials intermediate doses are 

often studied to answer other experimental questions, e.g. toxicology studies. We therefore evaluated 

an optimal four-arm design including also intermediate doses and using same number of mice in each 

arm. We found that keeping the intermediate doses did not lead to a large loss of information, compared 

with the optimal two-arm design obtained with the highest doses. For the latter experiment with 

different dosing regimens, the same optimal design strategy was employed. In the optimal design one 

treatment arm with a “poor” drug administration schedule was excluded, but in the optimal four-arm 

design evaluation with same number of mice per arm it was again found that this experiment did not 

greatly reduce the information yielded by the study. For both experiments the proportions of mice were 

approximately 63% treated mice (divided in the treatment arms) and 37% control mice. As computation 
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of FIM is independent of the number of subjects, these proportions should remain the same when 

performing the same experiment with a different number of mice in the initial design.  

In this work, thedesign variable to be optimized was thesampling time, but dose and dosing regimen 

could also be considered as design variables. It would be interesting for future studies to investigate the 

impact of dosing for longer compared with shorter times. 

In optimizing design, it is necessary to define the model and parameter values for the model at the 

beginning of the analysis. In practice, the values for the parameters can be taken from previous 

experiments. The estimation of parameters from well-planned experiments based on these D-optimal 

designs provides better estimates than the initial ones and optimal design can be generated with this 

new set of parameters for subsequent studies. For laboratories in which xenograft experiments are 

routinely performed, optimal design could be applied in a sequential manner, to fine-tune the 

experimental design. A limitation of this work is that the model parameters were assumed to be true and 

error-free. Indeed,the D-optimality used here does not handle uncertainty in parameters. To introduce 

uncertainty in the parameters, several robust design criteria (32–34)have been developed in recent 

years, based on the assumption of assigning prior distributions for the parameters, rather than 

constraining them to a fixed value. An alternative to robust design methods could be to apply two-stage 

adaptive design (35), e.g. starting the experiment with a small number of mice in the first cohort, and 

then performing a second part of the experiment with a better design. Moreover, considering the model 

as true could also be a limitation. The concept of robustness could be extended across models, leading to 

model averaging criteria (36), which could be considered for application in future studies. 

We would like to stress the fact that in the present work the performance of the optimal designs in long 

and short studies was compared based on the predicted precision of the model parameters. 

Complementary to this analysis, Monte Carlo simulations could be performed to obtain the empirical 

precision and biases of the parameter estimates, considering that parameter estimation would be 
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computed for a certain number of simulated datasets, for which responses are simulated at the optimal 

times found in the optimal design analysis. The Monte Carlo approach could thus be considered for use 

in future studies.  

An additional limitation of this work is that the number of sampling times to be optimized was kept low, 

i.e. either 4 or 6 times for each experiment described in Table I and Table II, respectively. But it may be 

important for researchers to take more measurements in long studies, to keep track of tumor size more 

frequently. In practice, measurements are taken at a higher frequency, also considering the fact that 

caliper readings are relatively inexpensive. 

Another limitation of our work relates to software limitations. It would be interesting to introduce more 

flexibility into the design optimization settings by requiring optimal time ranges instead of optimal fixed 

times. 

Conclusion 

To conclude, this work was a first attempt to provide some general guidelines for preclinical xenograft 

experiments and proved that optimal design can help us perform more informative preclinical tumor 

growth inhibition studies, by measuring tumor growth for longerafter the end of treatment, thus 

ensuring more precise model parameter estimation and hence better translation into clinical studies. 
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Table I.Experimental and optimal designs settings, and results for “long” (first row) and “short” (second row) studies in the two-arm experiments, 
i.e. control and treatment arm, selected from reference (7) and (28) 

Experimental settings Optimal designsettings and results 

Exp Drug 
Daily 
Dose 

(mg/kg) 

Treatment 

Dosing 
frequency 

TGI Parameters
a
 

Ref n 
Sampling window 

treatment/controla
rms (days) 

Optimal  
designs in 
 treatment 
arm (days) 

Optimal 
 design 

 in control  
arm (days) 

Starting 
day 

Last 
day 

Fixed effects 
(𝛌𝟎,𝛌𝟏,𝐰𝟎, 
𝐤𝟏,𝐤𝟐) 

Variance of 
random effects 

(𝛚𝛌𝟎
𝟐 ,𝛚𝛌𝟏

𝟐 ,  

𝛚𝐤𝟏
𝟐 ,𝛚𝐤𝟐

𝟐 ) 

St. deviation 
of residual 

error 
(𝝈𝒊𝒏𝒕𝒆𝒓,𝛔𝐬𝐥𝐨𝐩𝐞)

b
 

1 paclitaxel 30  8 16 every 4 days 
0.238, 0.14, 0.049, 
0.117, 6.3910

-4
 

 
0.138,0.063 (28) 1 

8-68/8-48 8, 28, 63, 68 8, 12, 44, 48 

8-19/8-19 8, 12, 18, 19 8, 11, 18, 19 

2 drug B 120  9 12 bid 
0.269, 0.397, 0.022, 
0.631, 2.7210

-4
 

 
0.118,0.07 (28) 1 

9-33/9-27 9, 15, 23, 33 9, 15, 25, 27 

8-15/8-15 8, 13, 14, 15 8, 9, 14, 15 

3 paclitaxel 30  13 21 every 4 days 
0.311, 0.656, 0.033, 
0.968, 6.2910

-4
 

 
0,0.063 (7) 1 

9-31/9-19 9, 15, 23, 27 9, 13, 18, 19 

9-24/9-19 9, 16, 22, 24 9, 13, 18, 19 

4 paclitaxel 30  8 16 every 4 days 
0.273,0.814, 0.055, 
0.968, 6.2910

-4
 

 
0.138,0.063 (7) 1 

8-30/8-18 14, 18, 26, 30 8, 9, 15, 18 

8-19/8-18 8, 11, 12, 19 8, 9, 15, 18 

5 5-FU 50  8 29 every 4 weeks 
0.215,0.412, 0.065, 
0.056, 20.2110

-4
 

 
0.138,0.063 (7) 1 

8-47/8-24 8, 23, 41, 47 8, 12, 22, 24 

8-32/8-24 8, 24, 28, 32 8, 12, 22, 24 

6 drug A 15  9 19 qd 
0.349,0.363,0.010, 
0.405, 3.4510

-4
 

 
0.118,0.07 (7) 1 

9-37/9-26 9, 21, 35, 37 9, 13, 25, 26 

9-22/9-22 9, 10, 19, 22 9, 13, 21, 22 

7 drug B 30  13 17 bid 
0.309, 0.796, 0.034, 
0.517, 2.8910

-4
 

 
0,0.07 (7) 1 

9-23/9-18 9, 15, 19, 23 9, 14, 17, 18 

9-20/9-18 9, 15, 19, 20 9, 14, 17, 18 

8 drug B 83  9 15 7-day infusion 
0.369, 0.511, 0.016, 
0.615, 2.9310

-4
 

 
0,0.063 (7) 1 

8-32/8-20 8, 18, 22, 24 8, 12, 18, 20 

8-18/8-18 8, 16, 17, 18 8, 12, 17, 18 

9 paclitaxel 30  8 16 every 4 days 
0.238, 0.14, 0.049, 
0.117, 6.3910

-4
 

0.002, 0.177,  

0.053, 1.580 
0.138,0.063 (28) 4 

8-68/8-48 27, 44, 48, 68 8, 11, 12, 49 

8-19/8-19 11, 12, 18, 19 11, 12, 18, 19 

10 drug B 120  9 12 bid 
0.269, 0.397, 0.022, 
0.631, 2.7210

-4
 

0.014,0.017,2.0
80,0.360 

0.118,0.07 (28) 7 
9-33/9-27 10, 16, 22, 33 10, 16, 26, 27 

8-15/8-15 11, 13, 14, 15 11, 13, 14, 15 

For experiments 1-8 an individual approach was used therefore n=1 mouse was included in each arm. For the population experiments 9 and 10, 
n=4 and n=7 mice were included in each arm, respectively. The route was i.v. bolus for all experiments except for experiment 8, which was i.v. 

infusion. Inter individual variability on parameter w0was set to 0. 
a. TGI parameters units are as following: λ0(day−1), λ1(g ∙ day−1), w0(g), k1(day−1), 𝑘2(𝑛𝑔−1 ∙  𝑚𝑙 ∙ 𝑑𝑎𝑦−1) 

b. Parameter values for σinter  and σslope  were only available for the experiments in reference (28), therefore they were arbitrarily defined for 

the experiments from (7) 
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Table II.Experimental and optimal designs settings and results in four-arm design experiments from reference (28) 

Experimental settings Optimal designsettings and results 

Exp Drug 
Daily 
Dose 

(mg/kg) 

Treatment 
Dosing frequency 
(Route: i.v. bolus) 

Allowed 
sampling 
window  
(days) 

Optimal design (Scenario 1) Optimal design (Scenario 2) 
 

Starting 
day 

Last 
day 

Optimized times 
(days)  

n 
(optimized) 

D-optimal 
criterion 

Optimized times 
(days)  

n 
(fixed) 

D-optimal 
criterion 

  0    8-48 11, 26, 29, 41, 47, 68 6 

2100 

8, 11, 14, 17, 47, 49 4  

1924 
A paclitaxel 

20  8 16 every 4 days 8-68 
 
 

0 8, 11, 14, 32, 56, 68 4 

30  8 16 every 4 days 8-68 
 
 

0 8, 11, 23, 44, 47, 68 4 

40  8 16 every 4 days 8-68 8, 11, 14, 17, 47, 49 10 11, 23, 26, 29, 41, 68 4 

  0    9-27 9, 11, 17, 23, 25, 27 10 

4708 

9, 10, 11, 16, 26, 27 7 

4643 
B drug B 

60 9 12 bid 9-33 9, 11, 15, 23, 31, 33 9 10, 11, 16, 22, 32, 33 7 

60  9 9 tid 9-29 
 

 
0 9, 12, 14, 20, 28, 29 7 

60  9 19 qd 9-35 9, 11, 13, 21, 27, 35 9 11, 14, 22, 27, 34, 35 7 

TGI parameters for experiment A and B are those of experiment 9 and 10 of Table I, respectively. 
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Figures 
 

Fig.1Schematic representation of SimeoniTGI model. The first box represents the proliferating cells for 
which the tumor growth is characterized by an exponential growth followed by a linear growth. k2 is the 
parameter related to drug potency, C is the plasma concentration of the anticancer agent and k1 is the 
parameter related to the rate of death of the tumor cells. 
 
Fig.2 Simulated PK (left) and PD (right) for experiments 1 and 9 of Table I. The PK is a two compartment 
model i.v. bolus with multiple doses administration (of 30 mg/kg given every 4 days for 3 times). The PD 
is the TGI model for a two-arm experiment with control arm (black curve) and treatment arm (purple 
curve).   

 
Fig.3 Graphs of sensitivity functions of tumor weight (w) versus time for TGI parameters in treatment 
arm and control arm obtained for experiments 1 and 9 of Table I. 
 
Fig.4 Optimal times (left) in the long study (dark blue symbols) and short study (red symbols) and 
predicted RSE (%) in TGI model parameters (right) for experiment 1 of Table I. In the left panel red 
dashed lines define the end of the short study; dashed black and purple lines define the end of the long 
study for control and treatment arm, respectively. 
 
Fig.5 Ratio of predicted RSE (%) of short study to long study in two-arm designs for drug related 
parameters k1 (blue bars) and k2 (pink bars) for the experiments listed in Table I. 
 
Fig.6 From left to right, initial design, optimal design for first scenario and optimal design for second 
scenario (i.e. with fixed proportions of mice per arm) for ExpA(top panel) and ExpB (bottom panel). D-
optimal criteria (“Crit”) obtained for each designare specified inside each corresponding graph. 
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