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Abstract
Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in

oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice,
often only during and shortly after treatment, thus preventing correct identification of some TGl model
parameters. Our aims were i) to evaluate the importance of including measurements during tumor
regrowth; ii) to investigate the proportions of mice included in each arm. For these purposes, optimal
design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published
xenograft experiments, involving different drugs, schedules and cell lines, were used to help optimize
experimental settings and parameters using the Simeoni TGl model. For each experiment, a two-arm
design, i.e. control vs treatment, was optimized with or without the constraint of not sampling during
tumor regrowth, i.e. “short” and “long” studies, respectively. In long studies, measurements could be
taken up to 6 grams of tumor weight, whereas in short studies the experiment was stopped three days
after the end of treatment. Predicted relative standard errors were smaller in long studies than in
corresponding short studies. Some optimal measurement times were located in the regrowth phase,
highlighting the importance of continuing the experiment after the end of treatment. In the four-arm
designs, the results showed that the proportions of control and treated mice can differ. To conclude,
making measurements during tumor regrowth should become a general rule for informative preclinical
studies in oncology, especially when a delayed drug effect is suspected.
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Introduction

The in vivo evaluation of antitumor effect is an important step of preclinical drug development in
oncology. Experimental models in rodents have been developed in recent decades to assess the
antitumor effect of a new compound (1). Among in vivo preclinical studies, the most popular is the
xenograft model (2), that is the human tumor transplanted into animals. Most recent xenograft
experiments have been performed on athymic nude mice (3), which are mice with reduced capacity to
reject foreign cells. The common practice is either to implant tumor fragments subcutaneously or to
inject tumor cells into the flank of athymic mice (4). When the tumor has reached the desired volume,
mice are randomized into control and treatment arms receiving either a vehicle (control arm) or the
compound to be tested at different dose levels or with different drug administration schedules
(treatment arms). Tumor sizes are measured at repeated time points during the study and specific
metrics are then calculated to assess tumor activity in the different arms (5). The main purpose of those
studies isto quantify the inhibition of tumor growth provided by the treatment, which depends on dose,
time and dosing regimen (4,6). For this reason, mathematical models able to dissect system-related
from drug-related parameters have been proposed to describe and predict the antitumor effect of a new
compound. We chose to use the Simeonitumor growth inhibition(TGl) model (7,8)for in vivo evaluation
of antitumor effect in xenografted mice. The Simeoni TGl model is a pharmacokinetic-pharmacodynamic
(PKPD) model in which the dose of an anticancer compound is linked, through concentration, to the
inhibition of tumor growth. By searching for papers that cite the model and looking at author affiliations,
we observed that the model is widely used in both industry andacademia. It has been used for analysis of
hundreds of single-agent experiments in preclinical studies in industry(4,9)and was recently used to
evaluate interaction effects when drugs are administered in combination (9). Xenograft data may be
analyzed by various methods. One method is the “naive pooled data” (NPD) approach (10) in which the

model can be fitted using standard nonlinear regression. In this approach parameter estimation is



straightforward but does not model all sources of variability, so no information about the differences
between subjects is considered. Nonlinear mixed effects models (NLMEMSs) (11-13)are a popular
alternative approach. This method is more complex than NPD, but has been increasingly used in the
biomedical field as it keeps all the data of all subjects.

Before performing the experiment, it is important to define an appropriate design, which implies there
has to be a good balance between the number of subjects, the number of samples per subject and the
timing of sampling, and the doses, in line with the experimental conditions. As reported in (4), until now
preclinical studies have been rarely designed using optimal design strategies. When planning a study it is
crucial to choose a good design as it can play an important part in parameter estimation (14), and poor
design can lead to inconclusive studies. As recommended in (4), designing experiments with optimal
design strategies would lead to more informative studies and ensure more precise parameter estimates
for the selected model.

There are two main approaches to design evaluation. The first, by trial simulation, involves parameter
estimation using numerous simulated datasets and thus is a time-consuming method (15). The second
approach, which avoids simulation, relies on the Cramer-Rao inequality, which states that the inverse of
the Fisher information matrix (FIM) is the lower bound of the variance-covariance matrix of any unbiased
parameter estimate. Several criteria based on FIM have been proposed. One is the D-optimality criterion,
which consists in maximizing the determinant of FIM, considering all model parameters. In NLMEMSs
there is no closed form of the likelihood and thus of FIM, therefore an approximation method must be
used. Mentréet al. (16) first introduced the first-order (FO) linearization method and further
approximations have been developed since. FIM is implemented in several optimal design software
programs for NLMEMs(17,18). These are: PFIM (19,20), PopED(21), PopDes(22) and POPT (23). These

tools allow for design evaluation/optimization by computing FIM and the D-optimality criterion (24), and



it was shown in (17) that they all provided the same answer when using the same FO approximation of
FIM.

The aim of this study was thus to apply optimal design strategies to the xenograft experiments analyzed
with the Simeoni TGl model, to derive some general rules that could be used as guidelines for future
preclinical studies in this field, and to assess the impact of suboptimal design. More specifically, in vivo
tumor size measurements in xenograft experiments are often taken only duringand shortly after
treatment(25,26), possibly preventing correct identification of some parameters of TGl models(27). The
first objective of this study was to assess quantitatively in two-arm experiments, i.e. one control and one
treatment arm, the difference in terms of precision of parameter estimation of taking samples only
during and shortly after the treatment administration, or also later, during the tumor regrowth phase, by
using standard nonlinear regression or anNLMEM. The main idea behind this thought is that the time
efficacy index (TEl), which is a secondary parameter of the SimeoniTGI modelthat is linked to the drug
potency parameter, is estimated better when consideringregrowth(8). Although many institutionshave
already had the common intuition that sampling during tumor regrowth would allow for more
informative studies, to our knowledge this was never proven before.

The second objective of this work was to investigate the influence of including arms with different doses
or different drug administration schedules in the trials, as well as the number of treated and control mice

to be used in the experiments, when using NLMEMs.

Materials and Methods

Experimental Settings

Several xenograft experiments were selected from the literature (7,28) involving various drugs with
various modes of action, different drug administration schedules and cell lines. The compounds tested in
the experiments considered were paclitaxel and 5-fluorouracil (5-FU), which are available on the market,

and two drugs (Drug A and Drug B) synthesized by Pharmacia (7). The A2780 human ovarian carcinoma



and HCT116 colon carcinoma cell lines were used. Tumor fragments were subcutaneously implanted into
the left flank of athymic nude mice and, one week after tumor inoculation, mice bearing a palpable
tumor were randomized into control and treatment arms. Tumor dimensions were measured using
calipers and the tumor masses w were calculated at each time t with the following formula reported in
(7):

w="=p (1)

2

where [ is the length of the tumor measured in mm and z is the tumor squared width expressed inmm?.
It was assumed that the density p was equal to 1 mg/mm? for tumor tissue such that the tumor weight w
is expressed in mg.

A schematic description of selected experiments is reported in Table I. Experimental settings for

experiments 1, 2, 9 and 10 were taken from (28), whereas the information for the other experiments

was found in (7).

Tumor Growth Inhibition Model
The Simeoni TGl model is built based on the assumption that tumor growth follows an exponential curve
in the early phases followed by linear growth (5,7). The unperturbed growth model for untreated mice is

expressed with the following differential equation (7):

dw(t) _ Agw(t)
dt W 1/¢
1+(j—(1)-w(t)> ]
w(0) = wy (2)

where wy is the tumor weight at inoculation time, and1; and A; are parameters describing the rate of
exponential and linear growth, respectively. The parameter 1 is set to 20 ensuring a sharp system
transfer from first-order growth (exponential) to zero-order growth (linear) (7). With this model, if the
tumor weight w(t) is small the denominator of equation 2 can be approximated to 1 and then the tumor

growth is given by A, - w(t); whereas when w(t) is large, 1 can be neglected in the denominator and
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the tumor growth is approximated by 4,. The system-related parameters of the unperturbed model are
therefore: 4y, 41 and wy.

In the treatment arms the action of the antitumor compound prevents the proliferation of a proportion
of tumor cells, which go through a three-stage chain at a constant rate of damage k4, with different
levels of impairment, and then, eventually, die. The antitumor potency is characterized by the constant
parameter k,,which is proportional to c(t) - x1(t), where c(t) is the drug concentration, which can be
predicted with a PK model, and x;(t) are the proliferating cells in w(t). A schematic representation of
the perturbed growth model is reported in Figure 1.

The perturbed growth model for treated mice is described with the following system of differential

equations(7):

dxi(t) Ao = x1(t) ) _
b ) 1/¢—k2 c(t) - x1(¢)
1+ <j—;-w(t)> ]
P20 e 10~ laa®

d
9O @ ~ x0)

d
0 bl ® -~ x0)

w(t) = x1(£) + x2(8) + x3(8) + x4 ()
c(t)=0for0<t<t (3)
where t, represents the time of beginning of treatment. Before the start of treatment, the concentration
c(t) is equal to 0 and the model follows an unperturbed growth, with w(t) = x;(t). After time t, the
model follows a perturbed growth and w(t) = x1(t) + x,(t) + x3(t) + x4(t).
The parameters of the perturbed growth model therefore are: Ay, 41, wy, and kq, k,, which are the

system-related and drug-related parameters, respectively.



For each proposed experiment a PK model was used in order to predict thec(t) needed for the
treatment arm in the TGl model. The PK model and its parameter values were taken from the literature
(7,28). For experiments 1 to 7 of Table | a two-compartment model with intravenous (i.v.) bolus was
used, whereas in experiment 8 a two-compartment model with continuous i.v. infusion was used.

Figure 2 shows the simulated PK model and TGl model for experiments 1 and 9 of Table I.

Statistical Model

In standard nonlinear regression, the vector y; of observations y;y, ..., ¥;,, measured from the subject i
at times &; = (1, ... typ,,) is defined with y; = f(8;,¢;) + & where f is the nonlinear structural model
describing the tumor growth over time and ¢; is the elementary design composed of n; sampling times.
0; is the vector of p individual parameters and ¢; is the vector of residual error following a normal
distribution &,~N(0,2(6,¢;)) with 2(6,¢;) = diag(ointer + Osiope X £(0;,€))?. Ointer is the parameter
for the additive error and ogope for proportional error. The individual parameters vector is y' =
(0i) Tinter » Oslope )

In NLMEMs all samples of all individuals are analyzed simultaneously. The individual parameters 8; for
the i*" subject is modeled as 0; = pe with a fixed effect u,which represents the median values of the
parameter in the population, and a random effect 7;~N (0, Q), where Q = diag(w?, ...,oof,) accounts for
the between-subject variability. The population parameter vector is
D' = (1, oo lyy, OF, o ©F, Tinger » Telope ) -

All parameter values used in this article are given in Table | and were estimated from real experiments in
(7) for experiments 3 to 8, and in (28) for experiments 1,2,9 and 10. Moreover, experiments 1 and 2 have
the same mean parameter values as experiments 9 and 10, respectively, and experiments A and B in

Table Il have same TGl model parameters as those of experiments 9 and 10 in Table I.



Optimal design strategy

Criterion and optimization

For optimal design we used the D-optimal criterion, which corresponds to the maximization of the
determinant of the individual or population FIM, corresponding to the minimization of the confidence
region associated with the individual or population parameter estimates. The reported optimality
criterion is the determinant to the power 1/p, where p is the total number of estimated parameters in
the model. A search for optimal measurement times was performed using the Fedorov-Wynn algorithm
implemented in the R function PFIM, in the PFIM 4.0 program (19,29), in which both individual and
population FIMs can be computed.

Together with the optimal design, PFIM returns the predicted relative standard error (pRSE) in % for each

model parameter, and pRSE is defined as:

SE (§)
)

pRSE(p) = x 100 (4)

where SE () is the expected standard error of parameter .

Two-arm designs

All experiments described in Table | were used for the first objective of the present study, that is to
assess quantitatively the difference in precision of parameter estimates in two-arm experiments, when
taking 4 measurement samples only during and shortly after the treatment period, compared with taking
measurements also later, in the tumor regrowth phase. In experiments 1 to 8 only one mouse per arm
was included in order to perform individual design optimization. This can be viewed as an NPD approach
where mean data are fitted, hence assuming that they come from a single mouse. In experiments 9 and
10, 4 and 7 mice were assigned to each arm, respectively, such that population design optimization could

be computed.



For each experiment two scenarios were thus considered: a “short study”, in which it was possible to
measure only until three days after the end of the treatment period in order to mimic the frequently
adopted setting of those preclinical studies, and a “long study”, in which measurements could be taken
also later,after the end of the treatment period, during the tumor regrowth phase, but for ethical
reasons only up to a tumor weight of 6 grams. Note that 6 grams is an overestimated threshold adopted
to emphasize the impact on precision of parameter estimates in short versus long studies. See the
discussion for more details. The two scenarios therefore only differ in the chosen range of allowed
sampling times, in the optimal design settings. The parameters were used to simulate the tumor weight
with and without treatment for each experiment, to define the time when a tumor weight of 6 grams
was reached. Allowed sampling time ranges for the two scenarios are reported in Table | under the
“Sampling window” column for both treatment and control arms, first line for the short study and
second line for the long study. Note that in the long study treatment arms should have larger allowed
sampling time windows compared with those for the corresponding control arms, as treated mice
reached a tumor weight of 6 grams later, because of the treatment effect.

The allowed sampling times were chosen based on the time ranges defined for each experiment. In short
studies, a dense grid for each day in the range was set as the allowed sampling times, except for
experiment 5 in which the allowed times were allocated every other day. In long studies the allowed
sampling times were allocated every other day, if the last time in the range was before day 38, every
three/four days if the last time in the range was before day 50 and every four or five days for the long
studies of experiments 1 and 9, in which the last allowed time was day 68.

Optimization of sampling times from the allowed sampling window was performed simultaneously in
control and treatment arms for each selected experiment and for short and long studies. In the
individual design optimization, for experiments 1 to 8, the model was implemented as a two responses

model, each response corresponding to one arm. For experiments 9 and 10 and population design



optimization, as the Fedorov-Wynn algorithm would also optimize the proportion of subjects per arm,
two steps were used to get the optimal times with a fixed number of mice per arm. The model was
implemented as a single response model with a two-arm design. As currently in PFIM, the same allowed
sampling window should be set for the two arms—the treatment arm window was chosen, as it includes
all the possible times for both arms. Optimal design was performed and the optimal times obtained were
stored. For the control arm, optimal times exceeding the allowed range were replaced by the last
possible times. We then performed two-arm design evaluation of all possible combinations of 4 times
among the optimal times found in the previous step for a fixed number of mice in each arm. The two-
arm design with the combination that led to the highest criterion was defined as the optimal design.
PRSE (%) were used to compare long and short studies in all the experiments, knowing that the lower
PRSE (%) would guarantee the more precise parameter estimates for the study considered.

Graphs of sensitivity functions, i.e. partial derivatives of the Simeoni TGl model prediction with respect
to each parameter, were used to visualize the impact of each model parameter through time. Sensitivity
functions with respect to each parameter provide knowledge on the design values (e.g. tumor weight
measurement time) leading to the greatest information, i.e. the times for which the square of the
sensitivity function is maximal. Figure 3 displays the graph of sensitivity functions for experiments 1 and

9. The PFIM input and output files for experiment 1 are reported in the supplementary material.

Four-arm designs

The second objective of this study was to apply optimal design in the context of four-arm designs, i.e.
one control and three treatment arms, with i) different doses per arm or ii) different drug administration
schedules per arm. The experiments used for this purpose were experimentsA and B reported in Table Il,
which were analyzed by an NLMEM. Experiment Ahad three different doses of 20, 30 and 40 mg/kg in
each treatment arm, respectively, whereas experiment Bhad three different drug administration

schedules: i.v. bolus bid, i.e. twice a day, in treatment arm 1, i.v. bolus tid, i.e. three times a day, in
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treatment arm 2 and i.v. bolus qd, i.e. once daily, in treatment arm 3. The allowed sampling time ranges
for treatment and control arms were defined as before, using the criterion of stopping the study when
the tumor weight reached 6 grams.

In a first scenario, 6 sampling times from the allowed sampling times were optimized with the Fedorov-
Wynn algorithm. The initial design for experiment A consisted of 4 mice per arm at 6 times; 8, 17, 20, 26,
29, 35 days, arbitrarily chosen. The same was true for experiment B, where the initial design consisted of
7 mice per arm at the 6 times: 11, 13, 15, 17, 19, 21 days. Using the Fedorov-Wynn algorithm in PFIM for
optimization could lead to some arms being dropped from the experiment. The model was implemented
as a one-response model and in a first scenario the four-arm design was optimized using the same
approach that was applied to optimize the two-arm design for experiments 9 and 10 of Table I, with the
exception that the arms and number of mice per arm were those found to be optimal with the Fedorov-
Wynn algorithm instead of being fixed.

As it might be useful to keep all the arms, in a second scenario a different approach was used. First, 3
two-arm designs were optimized (control and treatment arms 1, 2 or 3) with 4 mice and 7 mice in each
arm of experiments A and B, respectively. Optimal design of the 3 two-arm designs was obtained using
the same approach as that used for experiments 9 and 10 of Table I. The four-arm design with the
previously obtained optimal times for each arm could then be evaluated, keeping fixed the number of

mice per arm.

Results

Two-arm designs

Optimal sampling times obtained simultaneously in control and treatment arms of all the selected
experiments in short and long studies are reported in Table I. In long studies, some optimal times were
located in the regrowth phase of treatment arms, highlighting the importance of continuing the

experiment after the end of the treatment. These results were obtained for all two-arm experiments, i.e.
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one treatment and one control arm, either when only one subject was assigned per arm, as for
experiments 1 to 8, or when more mice were included in each arm, as for experiments 9 and 10, using a
population approach.

Graphs showing results for experiment 1 are reported in Figure 4. In the graph on the left it is noticeable
that two out of four optimal sampling times obtained in the long study lie on the last times of the curve.
In the graph on the right it is evident that pRSE (%) of the Simeoni TGl model parameters obtained in
long studies (blue bars) were better than those obtained in the short study (red bars) of the
corresponding experiment. Sensitivity graphs related to experiments 1 and 9 (Figure 3) provide a visual
check of the impact of model parameters through time for those experiments. When focusing on the
fixed effects of the drug-related parameters k; and k, , it is noticeable that they start to be informative,
i.e. the curve stops being constant at 0, when the treatment is given (day 8), and they both reach an
optimum after the end of treatment, at around day 25 and day 35, respectively. Similar reasoning
regarding sensitivity graphs was possible for the other experiments, but it was chosen not to report all
the graphs in the article.

Ratios of pRSE (%) from short to long studies (Figure 5) were calculated for all experiments reported in
Table | for the treatment-related parameters k; and k,. The ratio was greater than 1 in all experiments,

proving that pRSE (%) in long studies were better than the corresponding pRSE (%) in short studies.

Four-arm designs

For experiment A in Table Il, not surprisingly it was found that the highest dose (40 mg/kg) gave the
greatest information, indeed although the initial design had four arms with 4 mice per arm, the design
obtained after the optimization of FIM was a two-arm design with 6 control mice, 37.5% of the total
number, and 10 treated mice, 62.5% of the total number, at the highest dose (40 mg/kg). The criterion
obtained for the optimal design was 2100, which is much higher than the criterion obtained for the initial

design of 1255, i.e. an increase of efficiency of 1.67. The criterion obtained for the four-arm design with

12



4 mice per arm was 1924, i.e. a small loss of efficiency of 0.92 from the optimal design, but a gain of
efficiency of 1.53 from the initial design. An evaluation of the first optimal two-arm design was
performed including 8 mice in each arm to investigate the loss of having 50% of control and treated mice
instead of 37.5% and 62.5%, respectively. The criterion found was 2049, i.e. a small loss of efficiency of
0.98. Graphs showing the initial design, the two-arm design and the four-arm design are in Figure 6, top
panel.

For experiment B the criterion obtained with the initial design was 2765 and the optimal design obtained
was a three-arm design, thus only one arm was “excluded” from the optimal design: treatment arm 2
with tid treatment. The proportions of treated and control mice were approximately the same as for the
first example: 64% treated, of which 9 mice in both treatment arms 1 and 3, and 36% controls, which is
10 mice. The criterion obtained was 4708, i.e. an increase of efficiency of 1.70. The criterion obtained for
the four-arm design with 7 mice per arm was 4643, i.e. a small loss of efficiency of 0.99 from the optimal
design, but a gain of efficiency of 1.68 from the initial design. Graphs showing the initial design, the

three-arm design and the four-arm design are in Figure 6, bottom panel.

Discussion

Optimal design strategies have rarely been applied to experiments concerning thein vivo evaluation of
antitumor effect in xenografted mice (4), and none of them, to our knowledge, have approached the
guestion using optimal design theory. Some work on design of xenograft experimentshas been
published(30), but the focus was on comparing treatment and control groups, disregarding the correct
estimation of drug-related parameters.The use of optimal design will ensure more informative studies
and provide measurement times that guarantee the smallest pRSE for the model parameters. In the
present work, optimal design was performed for the Simeoni TGl model, for different sets of

experiments, in order to answer some important questions arising from these studies.
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Optimal design strategies applied in two-arm design experiments, i.e. control vs treatment, showed that
studies curtailed three days after the end of treatment administration led to much higher pRSE of the
drug-related parameters ki and k,, compared with those obtained in longer studies, where for ethical
reasons tumor growth measurements could only be taken until tumor weight reached 6 grams. This
result proved that short studies would likely prevent correct identification of parameters k; and k;,
whereas long studies should ensure more precise estimates of Simeoni TGl model parameters, leading to
a more informative study. This can be considered as a proof-of-concept study, where thehypothesishas
beenstated in the past by many laboratories and in(27), but has never been proved before, to our
knowledge. Graphs of sensitivity functions through time (Figure 3) showed the time points in
whichSimeoni TGl model parameters were more informative in each experiment, underlying the fact that
parameters k; and k, increase their impact starting from the treatment period, and continuing also
afterwards, during the regrowth phase. These results were observed in all the experiments of Table |,
where either individual or population approaches were used. Moreover, those experiments were
performed for different cell lines, drugs and drug administration schedules. Furthermore, the optimal
sampling times reported in Table | were located in the last part of the regrowth phase at least two out of
four times, which partially supports the initial intuition that sampling during the tumor regrowth phase
would ensure more informative studies.

In some laboratories experiments stop when the tumor reaches 2 grams (5), disregarding the fact that
the regrowth rate may be well visible and then model parameters could be well estimated. Furthermore,
other researchers stop analyzing when the tumor weight in the control group reaches the maximum
allowed by the Institutional Animal Care and Use Committee (IACUC) (31), which corresponds to 4 grams.
This may be an issue for the estimation of drug-related parameters, in cases where the tumor in
treatmentgroup has not started regrowing by the time the control group has reached a tumor weight of

4 grams. Note that 6 grams is an overestimated thresholdadopted to emphasize the impact on precision
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of parameter estimates in short versus long studies. However, results are substantially confirmed also
choosing lower limits.It should also be considered that longer studies may cost more than short studies.
A cost-efficacy analysis could be performed in order to define a good balance between information
acquisition and cost, as envisaged in our study.

The conclusion drawn from the results discussed in this first part is that making measurements during
tumor regrowth should become a general rule for informative preclinical studies in oncology,
independently of adopting standard nonlinear regression or an NLMEM approach.

Using a population approach, we further investigated the application of optimal design strategies to
four-arm designs in two experiments with several mice included in each arm, considering for the three
treatment arms either three different doses or three different drug administration schedules and the
same dose. The former optimal design experiment led to the expected conclusion that the treatment
arm with the highest dose would provide the greatest information, and the other treatment arms were
excluded from the optimal design. We may suspect that in cases where the relationship between drug
concentration and cell killing effect is not linear, intermediate doses might be selected by the optimal
design, but these analyses were not performed in this work. In preclinical trials intermediate doses are
often studied to answer other experimental questions, e.g. toxicology studies. We therefore evaluated
an optimal four-arm design including also intermediate doses and using same number of mice in each
arm. We found that keeping the intermediate doses did not lead to a large loss of information, compared
with the optimal two-arm design obtained with the highest doses. For the latter experiment with
different dosing regimens, the same optimal design strategy was employed. In the optimal design one
treatment arm with a “poor” drug administration schedule was excluded, but in the optimal four-arm
design evaluation with same number of mice per arm it was again found that this experiment did not
greatly reduce the information yielded by the study. For both experiments the proportions of mice were

approximately 63% treated mice (divided in the treatment arms) and 37% control mice. As computation
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of FIM is independent of the number of subjects, these proportions should remain the same when
performing the same experiment with a different number of mice in the initial design.

In this work, thedesign variable to be optimized was thesampling time, but dose and dosing regimen
could also be considered as design variables. It would be interesting for future studies to investigate the
impact of dosing for longer compared with shorter times.

In optimizing design, it is necessary to define the model and parameter values for the model at the
beginning of the analysis. In practice, the values for the parameters can be taken from previous
experiments. The estimation of parameters from well-planned experiments based on these D-optimal
designs provides better estimates than the initial ones and optimal design can be generated with this
new set of parameters for subsequent studies. For laboratories in which xenograft experiments are
routinely performed, optimal design could be applied in a sequential manner, to fine-tune the
experimental design. A limitation of this work is that the model parameters were assumed to be true and
error-free. Indeed,the D-optimality used here does not handle uncertainty in parameters. To introduce
uncertainty in the parameters, several robust design criteria (32—34)have been developed in recent
years, based on the assumption of assigning prior distributions for the parameters, rather than
constraining them to a fixed value. An alternative to robust design methods could be to apply two-stage
adaptive design (35), e.g. starting the experiment with a small number of mice in the first cohort, and
then performing a second part of the experiment with a better design. Moreover, considering the model
as true could also be a limitation. The concept of robustness could be extended across models, leading to
model averaging criteria (36), which could be considered for application in future studies.

We would like to stress the fact that in the present work the performance of the optimal designs in long
and short studies was compared based on the predicted precision of the model parameters.
Complementary to this analysis, Monte Carlo simulations could be performed to obtain the empirical

precision and biases of the parameter estimates, considering that parameter estimation would be

16



computed for a certain number of simulated datasets, for which responses are simulated at the optimal
times found in the optimal design analysis. The Monte Carlo approach could thus be considered for use
in future studies.

An additional limitation of this work is that the number of sampling times to be optimized was kept low,
i.e. either 4 or 6 times for each experiment described in Table | and Table I, respectively. But it may be
important for researchers to take more measurements in long studies, to keep track of tumor size more
frequently. In practice, measurements are taken at a higher frequency, also considering the fact that
caliper readings are relatively inexpensive.

Another limitation of our work relates to software limitations. It would be interesting to introduce more
flexibility into the design optimization settings by requiring optimal time ranges instead of optimal fixed

times.

Conclusion

To conclude, this work was a first attempt to provide some general guidelines for preclinical xenograft
experiments and proved that optimal design can help us perform more informative preclinical tumor
growth inhibition studies, by measuring tumor growth for longerafter the end of treatment, thus

ensuring more precise model parameter estimation and hence better translation into clinical studies.
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i.e. control and treatment arm, selected from reference (7) and (28)

Table I.Experimental and optimal designs settings, and results for “long” (first row) and “short” (second row) studies in the two-arm experiments,

Experimental settings

Optimal designsettings and results

Treatment

TGI Parameters®

Optimal

Optimal

Dail . Sampling window . . .
v Dosing Fixed effects Variance of St. deviation pling designs in design
Exp Drug Dose . .y . Ref n treatment/controla .
(mg/kg) Starting  Last frequency ( o ll(rWo: random effects of residual rms (days) treatment in control
day day vkz) (0}, 05, error arm (days) arm (days)
‘”ﬁ,:mﬁz) (UinterJ lTslope)h
0.238, 0.14, 0.049 8-68/8-48 8,28, 63,68 8,12,44,48
1 aclitaxel 30 8 16 every 4 days ! e 0.138,0.063 28 1
P y ¥ 0.117, 6.3910 4 (28) 8-19/8-19 8,12,18, 19 8,11, 18,19
0.269, 0.397, 0.022 9-33/9-27 9,15,23,33 9,15, 25,27
2 drug B 120 9 12 bid ! - ! 0.118,0.07 28 1
g 0.631, 2.7210 4 (28) 8-15/8-15 8, 13,14, 15 8,9, 14,15
0.311, 0.656, 0.033 9-31/9-19 9,15, 23,27 9,13,18,19
3 aclitaxel 30 13 21 every 4 days ! - ! 0,0.063 7 1
P Y2A8YS 0,968, 6.2910" ) 9-24/9-19 9,16,22,24  9,13,18,19
0.273,0.814, 0.055 8-30/8-18 14,18, 26, 30 8,9,15,18
4 aclitaxel 30 8 16 every 4 days ! ' ! 0.138,0.063 7 1
P y ¥ 0.968, 6.2910 4 ) 8-19/8-18 8,11,12,19 8,9, 15,18
0.215,0.412, 0.065 8-47/8-24 8, 23,41, 47 8,12,22,24
5 5-FU 50 8 29 every 4 weeks ! ' 0.138,0.063 7 1
y 0.056, 20.2110 4 ) 8-32/8-24 8, 24, 28, 32 8,12,22,24
0.349,0.363,0.010 9-37/9-26 9,21, 35,37 9,13, 25,26
6 drug A 15 9 19 d ! o8 ! 0.118,0.07 7 1
g q 0.405, 3.4510 4 ) 9-22/9-22 9, 10, 19, 22 9,13, 21,22
0.309, 0.796, 0.034 9-23/9-18 9,15, 19, 23 9,14,17,18
7 drug B 30 13 17 bid ! - ! 0,0.07 7 1
g 0.517, 2.8910™ ) 9-20/9-18 9,15,19,20 9, 14,17, 18
0.369, 0.511, 0.016 8-32/8-20 8,18, 22,24 8,12, 18, 20
8 drug B 83 9 15 7-day infusion ! - ! 0,0.063 7 1
g y 0.615, 2.9310 4 ) 8-18/8-18 8,16,17,18 8,12,17,18
0.238, 0.14, 0.049 0.002,0.177, 8-68/8-48 27,44, 48, 68 8,11, 12,49
9 aclitaxel 30 8 16 every 4 days ! s 0.138,0.063 28) 4
P yadays 9117, 6.3910" 0.053, 1.580 (28) 8-19/8-19 11,12,18,19  11,12,18, 19
0.269,0.397,0.022, 0.014,0.017,2.0 9-33/9-27 10,16,22,33 10, 16, 26, 27
10 drug B 120 9 12 bid ! - ! ! ! 0.118,0.07 28 7
g 0.631,2.7210" 80,0.360 (28) 8-15/8-15 11,13,14,15 11,13, 14,15

infusion. Inter individual variability on parameter wywas set to 0.
a. TGl parameters units are as following: Ao (day ™), A; (g - day ™), wo(g), k1 (day ™), ko (ng™! - ml - day™1)

the experiments from (7)

For experiments 1-8 an individual approach was used therefore n=1 mouse was included in each arm. For the population experiments 9 and 10,
n=4 and n=7 mice were included in each arm, respectively. The route was i.v. bolus for all experiments except for experiment 8, which was i.v.

b. Parameter values for i, and ogope Were only available for the experiments in reference (28), therefore they were arbitrarily defined for
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Table Il.Experimental and optimal designs settings and results in four-arm design experiments from reference (28)

Experimental settings

Optimal designsettings and results

Allowed Optimal design (Scenario 1) Optimal design (Scenario 2)
Daily Treatment Dosing f sampling
Exp Drug Dose Rosmg. _req;lelncy window — - - —— - -
(mg/kg) Starting Last (Route: i.v. bolus) (days) Optimized times n D-optimal Optimized times n D-optimal
day day (days) (optimized) criterion (days) (fixed) criterion
0 8-48 11, 26, 29, 41, 47, 68 6 8,11, 14,17,47,49 4
20 8 16 every 4 days 8-68 0 8,11, 14, 32, 56, 68 4
2100 1924
A paclitaxel 30 8 16 every 4 days 8-68 0 8,11, 23,44,47,68 4
40 8 16 every 4 days 8-68 8,11, 14,17,47,49 10 11, 23, 26, 29,41, 68 4
0 9-27 9,11, 17, 23, 25, 27 10 9, 10, 11, 16, 26, 27 7
60 9 12 bid 9-33 9,11, 15, 23,31, 33 9 10, 11, 16, 22, 32, 33 7
4708 4643
B drug B 60 9 9 tid 9-29 0 9,12, 14, 20, 28, 29 7
60 9 19 qd 9-35 9,11, 13, 21, 27,35 9 11, 14, 22,27, 34,35 7

TGl parameters for experiment A and B are those of experiment 9 and 10 of Table I, respectively.
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Figures

Fig.1Schematic representation of SimeoniTGl model. The first box represents the proliferating cells for
which the tumor growth is characterized by an exponential growth followed by a linear growth. k, is the
parameter related to drug potency, C is the plasma concentration of the anticancer agent and k; is the
parameter related to the rate of death of the tumor cells.

Fig.2 Simulated PK (left) and PD (right) for experiments 1 and 9 of Table I. The PK is a two compartment
model i.v. bolus with multiple doses administration (of 30 mg/kg given every 4 days for 3 times). The PD
is the TGl model for a two-arm experiment with control arm (black curve) and treatment arm (purple
curve).

Fig.3 Graphs of sensitivity functions of tumor weight (w) versus time for TGl parameters in treatment
arm and control arm obtained for experiments 1 and 9 of Table I.

Fig.4 Optimal times (left) in the long study (dark blue symbols) and short study (red symbols) and
predicted RSE (%) in TGl model parameters (right) for experiment 1 of Table I. In the left panel red
dashed lines define the end of the short study; dashed black and purple lines define the end of the long
study for control and treatment arm, respectively.

Fig.5 Ratio of predicted RSE (%) of short study to long study in two-arm designs for drug related
parameters kj (blue bars) and k; (pink bars) for the experiments listed in Table I.

Fig.6 From left to right, initial design, optimal design for first scenario and optimal design for second

scenario (i.e. with fixed proportions of mice per arm) for ExpA(top panel) and ExpB (bottom panel). D-
optimal criteria (“Crit”) obtained for each designare specified inside each corresponding graph.
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