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Abstract  
 
The worldwide obesity epidemic has been mainly attributed to lifestyle changes. 
However, who becomes obese in an obesity-prone environment is largely determined by 
genetic factors. In the last twenty years, important progress has been made in the 
elucidation of the genetic architecture of obesity. In parallel with successful gene 
identifications, the number of gene-environment interaction (GEI) studies has grown 
rapidly. This paper reviews the growing body of evidence supporting gene-environment 
interactions in the field of obesity. Heritability, monogenic and polygenic obesity studies 
provide converging evidence that obesity-predisposing genes interact with a variety of 
environmental, lifestyle and treatment exposures. However, some skepticism remains 
regarding the validity of these studies based on several issues, which include statistical 
modelling, confounding, low replication rate, underpowered analyzes, biological 
assumptions and measurement precision. What follows in this review includes (1) an 
introduction to the study of GEI, (2) the evidence of GEI in the field of obesity, (3) an 
outline of the biological mechanisms that may explain these interaction effects, (4) 
methodological challenges associated with GEI studies and potential solutions, and (5) 
future directions of GEI research. Thus far, this growing body of evidence has provided a 
deeper understanding of GEI influencing obesity and may have tremendous applications 
in the emerging field of personalized medicine and individualized lifestyle 
recommendations. 
 
Summary statement 
Current research has identified several environmental exposures that can moderate the 
impact of genetic risk factors on obesity. This paper reviews these studies (gene-
environment interactions) in the obesity field and outlines the methodological challenges 
of these investigations.  
 
Short title: A review of gene-environment interaction studies in obesity 
Keywords: obesity; gene-environment interactions; heritability; monogenic; polygenic; 
methodology. 
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Abbreviations: EWAS (epigenome-wide association studies), genome-wide analysis of 
epigenetic modifications associated with disease phenotypes: SNP (single nucleotide 
polymorphism), a single nucleotide variation that is common in >1% of the population; 
eQTL (expression quantitative trait locus), a locus that influences the expression levels of 
mRNAs or proteins; GEWIS (genome-wide interaction studies), simultaneous testing of 
genetic variants theoretically covering the whole genome in interaction with an 
environmental factor; meQTL (methylation quantitative trait locus), a locus linked to 
different patterns of DNA methylation; pQTL (protein quantitative trait locus), a locus 
associated with variations in protein levels; QTL (quantitative trait locus), region of DNA 
containing or linked to genes that underlie a quantitative trait.  
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Introduction 
 

Over the past three decades, the prevalence of obesity has reached epidemic 
proportions throughout the world (1). This recent epidemic cannot be explained by 
sudden changes in the human population gene pool and has been mainly attributed to 
lifestyle modifications (2). Over-nutrition and decline in physical activity are the two 
“usual suspects”, but additional factors (reduced gut microflora diversity, sleep debt, 
endocrine disruptors, reduction in variability of ambient temperatures) have emerged as 
significant contributors to the escalating prevalence of obesity (3). If obesity is a 
multifactorial disorder that requires environmental influences to manifest, some 
individuals are more susceptible than others to weight gain in an obesity-prone 
environment, and who becomes obese at the individual level is largely determined by 
genetic factors (4). Technological and methodological breakthroughs in the last twenty 
years have led to important progress in the elucidation of the genetic architecture of 
obesity (5). The first two genes (LEP and MKKS) associated with a Mendelian non-
syndromic or syndromic form of obesity were identified in 1997 and 2000 (6, 7). Seven 
years later, the first common variant (located in the intron 1 of the FTO gene) 
reproducibly associated with polygenic obesity was identified (8, 9). At the time we are 
writing, over 40 monogenic obesity loci (with or without syndromic features) and 130 
polygenic obesity loci have been described, and this list is destined to grow over the 
coming years (5). In parallel with successful gene identification efforts, the number of 
studies on gene-environment interactions has grown rapidly (10). In the first segment of 
this review, we summarize the findings supporting gene-environment interaction in 
obesity from heritability, monogenic and polygenic studies and provide a biological 
hypothesis to explain these statistical interactions. The final section will outline 
methodological challenges associated with GEI studies, provide potential solutions to 
these issues based on existing evidence and highlight future directions of GEI research.  

 
Definitions 
 

The genetic etiology of obesity can be classified into two categories. First, 
Mendelian (or monogenic) obesity describes individuals who carry a rare gene variant 
with a dramatic impact on adiposity (11). These variants are associated with a high 
lifetime risk of disease and exhibit a near one-to-one relationship between genotype and 
phenotype (12-14). Monogenic obesity can be classified as syndromic or non-syndromic. 
Syndromic obesity refers to Mendelian obesity that co-occurs with a distinct set of 
clinical phenotypes, such as mental retardation, dysmorphic features and organ-specific 
developmental abnormalities (15). Syndromic forms of obesity result from chromosomal 
abnormalities or point mutations, which can be autosomal or X-linked disorders (16). 
Non-syndromic forms are caused by pathogenic mutations or structural variations in 
genes involved in the leptin/melanocortin pathway, and are mainly characterized by 
hyperphagic obesity (17). Homozygous/compound heterozygous carriers of pathogenic 
mutations in genes from the leptin/melanocortin pathway are exceedingly rare and lead to 
a fully penetrant form of early-onset extreme obesity. In contrast, heterozygous 
incomplete penetrant mutations in the same pathway account for a greater proportion of 
oligogenic obesity cases in population (5). Heterozygous loss-of-function mutation 
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carriers in MC4R display mild obese phenotypes, which can be moderated by 
environmental factors that increase the risk of obesity (18, 19). Second, other cases of 
obesity can be attributed to the concerted presence of DNA variation in several genes 
(each with a relatively small effect), known as polygenic obesity (12). With respect to 
body weight regulation, recent simulations estimated that hundreds of variants with small 
to modest effect may account for the genetic architecture of complex traits such as 
obesity (20).  

The concept of gene-environment interaction in the context of human diseases is 
not recent and has been discussed since proposed by J.B. Haldane in 1946 (21). The 
statistical definition of an interaction between two or more risk factors is simply the 
coefficient of the product term of the risk factors, also known as effect modification or 
effect modulation. Interaction is thus measured in terms of departure from a 
multiplicative or an additive model (22, 23). Alternatively, biological interaction between 
two factors is defined as their co-participation in the same causal mechanism to disease 
development (24). For statistical evidence of gene-environment interaction to be 
convincing, it is typically necessary to replicate the findings in additional samples and / 
or support the evidence with plausible underlying biological mechanisms (22).  

 
The importance of gene-environment interactions in obesity: evidence from 
heritability, monogenic and polygenic studies 
 
Heritability estimates are influenced by the environment 
 

Early indications of the shared influence of genetics and the environment in 
shaping obesity originated from heritability studies involving environmental exposures 
among twins. Heritability is the proportion of total phenotypic variability caused by 
genetic variance in a population. Large pedigree, twin and adoption studies allow the 
calculation of heritability and they all evidence a strong genetic component in human 
obesity (25-27). Before the first obesity gene identification reports, scientists considered 
the possibility that heritability, a global estimate of genetic predisposition to obesity, may 
be modulated by specific environments (28). Specific environmental exposures known to 
mediate heritability estimates include biological, socio-economic factors and lifestyle 
factors.  

In utero factors have been proposed to modulate offspring’s future risk for obesity 
(29). The higher estimates of heritability for BMI observed in mother-offspring pairs in 
comparison with father-offspring pairs suggest a possible modification effect of maternal 
in utero environment on the offspring’s genetic predisposition to obesity (30). Maternal 
weight gain during pregnancy may interact with genetic factors to render the offspring 
more susceptible to develop obesity in young adulthood (31).  

Genetic influence on BMI may also interact with sex and age. Sex-specific 
genetic effects on BMI have been observed in adolescents as well as in adults (32, 33). 
Heritability of obesity also varies with age. A previous study of over 12,000 twin pairs 
reported a heritability of 4-9% for BMI at birth, which increased to more than 50% at 5 
months of age (34).  Heritability estimates increase from infancy to childhood (35), from 
childhood to pre-adolescence (36), from preadolescence to adolescence (37), and reach a 
plateau  during adolescence and adulthood, and then slightly decrease in late adulthood 
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(38). Longitudinal BMI change from adolescence to young adulthood and from young 
adulthood to adulthood is a heritable trait, but genetic variants for change in BMI 
partially overlap with those affecting the level of BMI (39, 40). Moreover, heritability 
estimates of obesity increase with the severity of obesity status (41).  

The investigation of socio-economic factors and lifestyle behaviours has revealed 
many additional conditions that impact heritability estimates. One may presume that the 
emergence of a society characterized by food abundance and physical inactivity may 
increase the impact of environment (and therefore decrease the impact of genes) in the 
determination of the obese phenotypes. Counter intuitively, the proportion of variability 
in BMI attributable to genetic variation is increased among people born after the 
establishment of a modern ‘obesogenic’ environment (42-44). These results are 
congruent with the seminal work by Claude Bouchard and colleagues showing that the 
BMI response to long-term overfeeding in young adult male twins is mainly influenced 
by genetic factors (28). Twin studies have shown that a high level of physical activity can 
substantially reduce the influence of genetic factors on BMI in both young and older 
adults (45, 46). PT. Williams studied the parental contribution to offspring’s BMI in 
47,691 adult runners and showed that vigorous physical activity (running distance ≥ 9 
km/day) decreased the parental contribution to BMI, by 48-58 %, in comparison with 
runners with moderate physical activity (running distance < 3 km/day)(47). Socio-
economic research indicates that higher educational status is associated with decreased 
risk of obesity (48), but heritability estimates for BMI in late childhood/adolescence are 
positively correlated with the level of education of parents (49). Sleep duration is 
negatively associated with obesity (50). In a twin study, the heritability of BMI (h² = 
70%) in short-sleepers (< 7 hours/day) was more than twice the heritability of BMI (h² = 
32%) when sleep duration was longer (≥ 9 h/day) (51). Weight gain is a well-known 
adverse effect of antipsychotic medication (52), but a considerable degree of inter-
individual variability has been described in literature (53). Two pilot twin/sibs 
comparison studies have reported heritability estimates of 60-80% for body weight gain 
in response to antipsychotics in adolescents and adults (54, 55). Weight loss in response 
to vigorous exercise, diet restriction or bariatric surgery is also highly variable which 
suggests a heritable component (56-58).  

A recent analysis of the Framingham Heart Study analysed how the heritability of 
BMI was influenced by historical period, life course and physical activity (59). These 
authors reported that: 1) the heritability estimates of BMI were considerably larger after 
the mid 1980’s compared to the 3 preceding decades; 2) the genetic influence on BMI 
appears to decrease across the lifespan, with the greatest genetic influence observed 
during reproductive ages across historical period and 3) the heritability of BMI was 
considerably smaller among physically active individuals aged 21-50 years, but not 
among those >50 years old (59).  
 
Obesity predisposing gene variants interact with the environment  
 

Although heritability studies provided early evidence for the genetic contribution 
to obesity, recent efforts have focused on the identification of specific gene variants that 
impact obesity risk. Our knowledge about the genetic architecture of Mendelian 
(syndromic and non-syndromic) and polygenic forms of obesity has greatly expanded in 
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the last 20 years (17). It is noteworthy that even some forms of Mendelian (syndromic 
and non-syndromic) obesity can display a somewhat variable phenotype (60-63). This 
can be attributed not only to genetic heterogeneity, gene-gene interactions and inheritance 
model (64, 65), but interactions with environmental factors should be considered as one 
of the causes for the variability in obese phenotypes (23). Since the rapid increase in 
obesity prevalence over the last few decades indicates a strong environmental influence 
on BMI (e.g. physical activity, diet, educational status, age, sex) (3), many researchers 
have worked on the identification of specific environmental factors that interact with 
monogenic and polygenic obesity predisposing genes. The existing evidence regarding 
the study of obesity indicates that lifestyle factors can significantly modify the impact of 
obesity predisposing gene variants.  

 
Obesity predisposing gene variants interact with non-modifiable biological factors 
 
Obesity predisposing gene variants interact with pregnancy and in utero factors 

Pre-pregnancy maternal obesity and excessive weight gain during pregnancy are 
both associated with increased birth weight, higher rate of macrosomia in the offspring 
(66, 67) and higher risk of adiposity in offspring during childhood, adolescence and 
adulthood (29, 68, 69).  Recently, a morbidly obese female patient with a rare 
homozygous LEPR mutation was reported to gain 110 lbs during pregnancy, far beyond 
the 11-40 lbs gestational weight gain range recommended by the Institute of Medicine, 
and gave birth to a baby with macrosomia (70). These data suggest that a Mendelian 
predisposition for obesity increases gestational weight gain and offspring’s birth weight. 

However, no such effect on gestational weight gain was observed for a polygenic 
gene score composed of four common obesity-predisposing common variants in or near 
FTO, MC4R, TMEM18 and GNPDA2 (71). Studies with gene scores including more 
SNPs are needed to further investigate this hypothesis. 

Prenatal exposure to maternal cigarette smoking was found to interact with 
genetic variation in OPRM1 to modulate fat intake in offspring (72). Among 956 
adolescents, the T allele in OPRM1 was associated with lower fat intake but only in those 
without prenatal exposure to cigarette smoke (72). DNA methylation was significantly 
reduced within several CpGs across OPRM1 among adolescents exposed to prenatal 
maternal cigarette smoking compared to those not exposed (72). 

 
Obesity predisposing gene variants interact with sex 

Females are generally more likely to develop morbid obesity than males (73) and 
these discrepancies may be explained in part by sex-specific genetic effects. In line with 
this hypothesis, pathogenic monogenic mutations in MC4R have an effect on BMI about 
twice as strong in females as in males (18, 74).  

Seven out of 14 polygenic loci convincingly associated with waist-to-hip ratio 
displayed sexual dimorphism, all with a stronger effect on the phenotype in women than 
in men (75, 76). A recent genome-wide interaction meta-analysis did not report any sex-
specific for variants associated with BMI, but found 44 loci with sex-specific effects on 
waist-to-hip ratio adjusted for BMI (28 of the 44 loci displayed larger effects in women 
than men) (77).  
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Obesity predisposing gene variants interact with age 
The syndrome of Prader-Willi has two distinct phenotypic stages. In infancy, it is 

characterized by poor suck, feeding problems and failure to thrive, followed by 
hyperphagia in later childhood that leads to excessive weight gain (78). Rare deletions in 
the region p11.2 of the chromosome 16 have been associated with a highly penetrant 
mendelian form of obesity with additional developmental features (79). These individuals 
generally have early feeding and growth difficulties, and start to gain excessive weight 
around 5-6 years of age. As a result, an incomplete penetrance for childhood obesity but a 
complete penetrance for adult obesity has been observed for the carriers of the 
chromosome 16p11.2 deletion (79, 80). The longitudinal study of adult MC4R mutation 
carriers shows an increasing age-dependent penetrance (18).  

The life-course analysis of the intronic FTO gene variant and BMI in longitudinal 
studies indicates that this polygenic obesity-predisposing variant is negatively associated 
with BMI during infancy (age: 0-2.5 years) but positively associated with BMI from the 
age of 4 years, with an age-dependent increase during childhood, adolescence and young 
adulthood (36, 81-84). Most of the effect of the FTO intron 1 SNP on BMI gain occurs 
during this period, and no appreciable effect of FTO on BMI increase is observed during 
adulthood and agedness (83, 85-88). Studying the association of an obesity gene score 
from multiple markers in longitudinal cohorts provided similar results: the genetic 
predisposition score displayed a moderately positive association with birth weight, and 
more strongly associated with BMI gain during early infancy and childhood, but no 
association with BMI change during adulthood was observed (89-91). A negative 
genotype x age interaction between the PCSK1 rs6232 SNP and obesity traits was 
observed in two independent studies, and a recent meta-analysis of up to 331,175 
individuals confirmed this result and identified a similar interaction between age and the 
PCSK1 rs6235 SNP on obesity (92-94). A genome-wide interaction meta-analysis also 
identified 15 BMI loci with age specific effects, 11 of which showed greater effect sizes 
in younger (<50 years) compared to older (≥ 50 years) adults (77).  
 
Obesity predisposing gene variants interact with lifestyle factors 
 
Obesity predisposing gene variants interact with an obesity-prone environment 
    The promotion and globalization of societal changes leading to an imbalance 
between calorie intake and calorie expenditure partly explain the current obesity 
epidemic, but interactions between genes and this obesity-prone environment also 
contribute to the development of obesity. Dudley et al. reported a significant cohort effect 
on the prevalence of obesity in Prader-Willi syndrome (62). Prevalence of obesity was 
higher in patients born after 1990 than before (62). A generation-dependent penetrance of 
MC4R pathogenic monogenic mutations on obesity was also found in multigenerational 
pedigrees, with the effect of mutations on the obesity phenotype being amplified by the 
emergence of an "obesogenic" environment (18, 95).  

This trend is supported by a recent analysis of the Framingham Heart Study 
(FHS), which demonstrated that risk allele carriage in FTO rs9939609 was associated 
with a greater increase in BMI among individuals born after 1942 compared to those who 
were born before 1942 (96). The FTO intron 1 variant is weakly associated with BMI in 
South Asian Indian populations, but its effect on weight is stronger in urban compared to 



 8

rural dwellers (97, 98). A lack of association of FTO with obesity-related traits was also 
observed in a Gambian rural population (99). The authors speculate that the impact of 
genetic variance in FTO rs9939609 on BMI may be marginal in lean populations where 
excess food is scarce, compared to populations where food is abundant (99).  Lastly, the 
growing influence of obesity predisposing genes in ‘obesogenic’ environments has also 
been supported by the positive interaction between birth year and the impact of 32 
obesity predisposing genes (100). Together, these data suggest a stronger influence of 
genetic factors on obesity in obesity-prone environments. 
 
Obesity predisposing gene variants interact with physical activity 

Recent data indicate that genetic predisposition to obesity can be blunted in part 
through physical activity. Over twenty independent studies reported an interaction 
between the FTO obesity risk genotype and physical activity on BMI variation or obesity 
in children, adolescents and adults (47, 101-122). An interaction between FTO intron 1 
variant and the level of physical activity on obesity was recently confirmed in a meta-
analysis of 218,166 adults where physical activity attenuated the odds of obesity by 27% 
conferred by the variant (123). No such interaction was found in 19 268 children and 
adolescents (123). We recently studied more accurate surrogates of physical activity and 
adiposity in a multi-ethnic study of 17 423 participants recruited in 17 low-, middle- and 
high-income countries and we observed that the effect of FTO rs1421085 on the variation 
of body adiposity index was reduced by 56% in the higher versus lower metabolic 
equivalent score tertiles (121). Similar results were obtained for a genetic predisposition 
score combining the information of 12 obesity-associated SNPs, and a high level of 
physical activity was associated with a 40% reduction in the genetic predisposition to 
obesity in adults (N=20 430), as well as for BMI level and BMI change across time 
(110). Physical activity was also found to attenuate the effect of a 28 SNP obesity gene 
score on BMI among a sample of East Asians and Europeans (124). We did not evidence 
any significant interaction between the quantitative level of physical activity and a 14 
SNP obesity gene score on BMI or body adiposity index in an international multi-ethnic 
study of 17 423 participants (121). Our data, consistent with the conclusions of a recent 
meta-analysis in participants of European ancestry living in North America and Europe, 
suggest that the benefits of being physically active may be optimal in genetically 
predisposed people living in the more sedentary countries (121, 125). 

A number of recent studies have analysed the interaction between sedentary 
behaviours and genetic risk for BMI, independent of physical activity level (111, 126, 
127). The initial report by Qi et al demonstrated that prolonged television watching 
accentuated the impact of a 32 SNP genetic risk score on BMI (111), and a second study 
of an adolescent sample reported that screen time increased the impact of two SNPs 
(FLJ35779, GNPDA2), although these interactions were ethnic specific and of nominal 
significance (126). The most recent study of this interaction analyzed how total sitting 
time impacted the association between FTO rs9939609 and BMI among the Framingham 
Heart Study (FHS) and the Women’s Health Initiative Study (WHI), but the results were 
not significant (127).  
 
Obesity predisposing gene variants interact with diet 
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Rouskas et al. reported that the penetrance of MC4R loss-of-function 
heterozygous mutations on obesity is exceptionally low (6.3 %) in the Greek population, 
in comparison with those observed in other European countries (60-100%)(128). A 
possible explanation of this ‘Greek paradox’ may be a protective effect of the 
Mediterranean diet against MC4R deficiency-induced obesity (128).  

Several studies have characterized the impact of diet patterns on genetic 
predisposition to obesity. Independent cross-sectional and longitudinal samples of 
Caucasians and Latin Americans, suggest that a high daily energy intake, high fat intake 
or high saturated fat intake can amplify the effect of the FTO genotype on obesity risk in 
children, adolescents and adults (105, 114, 129-132). Higher intake of fried foods has 
also been shown to increase the impact of a 32 SNP gene score (and an FTO variant 
individually) on BMI over follow-up (133). These interactions were replicated in an 
independent cohort of 21 421 women (133). A recent 25 year follow-up study in 
Australia reported an interaction between rs9939609 in FTO and diet on BMI change 
(134). The prudent/healthy diet was associated with a greater BMI change among AA 
compared to TT genotypes. This interaction was observed at 17 years of follow-up, but 
was restricted to females (134). Increased intake of sugar-sweetened beverages has also 
been shown to increase the impact of a 32 SNP genetic risk score on BMI (135). This 
interaction effect was also observed for incident obesity cases and replicated in an 
independent cohort (N=21 740) (135).  

Despite the many studies demonstrating that diet patterns can moderate the 
genetic risk for obesity, two recent meta-analyses did not detect significant interactions 
between diet patterns and obesity-associated gene variants (136, 137).  Data from 177 
330 adults (87% Whites, 10% Asian, 3% African American) did not indicate any 
significant interactions between the FTO variant and dietary intake of total energy, fat, 
protein or carbohydrate on BMI(137). A second meta-analysis of 68 317 Europeans did 
not detect an interaction between a 32 SNP genetic risk score and a multifactorial diet 
score on BMI (136). The diet score moderated the impact of two SNPs on BMI (LRRN6C 
and MTIF3), although these effects were nominal and the impact of these risk variants 
appeared to be greater among those consuming healthier diets (136). The authors 
speculate that the broad diet assessment in their analysis may have masked interactions of 
varying directions and magnitudes that were identified in previous studies (136).  

The Apolipoprotein A-II (APOA2) -265 T>C promoter functional polymorphism 
appears to interact with high-saturated fat to increase BMI and obesity risk in several 
independent populations (Mediterranean, Asian, Caucasian, Hispanic and Carribean) 
(138, 139). High saturated fat intake was associated with significant increases in the 
genetic risk for obesity across populations (139). Specifically, the C allele homozygotes 
with high saturated fat intake displayed a 1.84 (95% CI, 1.38-2.47) odds of obesity 
compared to a 0.81 (95% CI, 0.59-1.11) odds in those with low saturated fat intake (139). 
A separate analysis of 1 225 obese adults demonstrated the C allele homozygotes with a 
high saturated fat intake (> 20.7 g/day) had higher waist circumference values than 
individuals with any other genotype in the high saturated fat intake group (140). While 
the underlying biological mechanism explaining this association is not fully understood, 
the APOA2 -265 T>C SNP has been associated with obesity risk eating behaviours such 
as meal skipping, and dietary modulation of plasma ghrelin (140).  
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The Apolipoprotein A5 protein influences plasma triglyceride concentrations in 
humans and regulators of the APOA5 gene (peroxisome proliferator-activated receptors, 
insulin, thyroid hormone) have been implicated in obesity risk (141, 142). In a weight 
loss study of 606 men with hyperlipidemia, C allele carriers of the -1131 T>C variant in 
the APOA5 gene displayed significantly greater BMI reduction while on a fat restriction 
diet (143). Additional evidence from the Framingham risk study suggests that carriers of 
the mutant C allele may have a lower risk of obesity compared to T allele homozygotes 
when consuming a diet high in monounsaturated fats (144). This interaction was also 
tested in a Mediterranean sample and greater fat intake was associated with obesity 
among T allele homozygotes while no association was observed among carriers of the 
mutant C allele (145). These studies suggest that the C allele in APOA5 may have a 
protective effect against obesity among individuals consuming a high fat diet.  

Several studies have examined the interaction between diet patterns and PPARG 
Pro12Ala polymorphism with regards to obesity (146), (147). The risk allele 12Ala has 
been linked to increased obesity risk through meta-analysis, although some 
heterogeneous effects of this mutation have also been observed in interaction studies 
(148-150). Lamri et al analysed the interaction between PPARG Pro12Ala polymorphism 
and fat intake, and observed that AlaAla individuals displayed greater BMI values than 
Pro carriers among high fat consumers (151). In contrast, a study of 720 French 
Canadians found that higher amounts of saturated or total fat consumption were 
associated with greater waist circumference in Pro allele homozygotes but not in 12Ala 
carriers (147). Similar results were observed from studies analysing BMI. An 
investigation of the Health Nurses’ Study demonstrated that high total fat intake was 
associated with greater BMI among participants homozygous for the Pro allele but not 
among 12Ala carriers (152). This study also reported that monounsaturated fat intake was 
associated with decreased BMI among 12Ala allele carriers and this interaction was 
replicated in an independent weight loss study (153). Additional interaction studies of 
PPARG related to body composition have shown sex-specific effects (154, 155) and 
weight change analyses have reported inconsistent results (153, 156-159).  

A more recent analysis found an interaction between an eight SNP obesity gene 
score and mono and polyunsaturated fatty acid intake (160). Among 2 346 children with 
low unsaturated fat intake, the gene score was associated with increased body fat mass 
index yet no association was present among unexposed children (160).  
 
Obesity predisposing gene variants interact with psychosocial stress 
 A recent genome-wide interaction analysis identified a significant interaction 
between psychosocial stress and five SNPs within the Early B-cell Factor 1 (EBF1) gene 
and hip circumference (161). The interaction reached genome-wide significance among 
the subset of 2460 Whites in the Multi-Ethnic Study of Atherosclerosis (MESA) but was 
not significant among Chinese Americans, Blacks or Hispanics. This study reported that 
the impact of risk allele carriage in EBF1 on hip circumference was greater among 
participants with a greater chronic stress burden (161). The authors also replicated the 
interaction between psychosocial stress and three of the original five SNPs (rs17056278 
C>G, rs17056298 C>G, and rs17056318 T>C) in EBF1 in the Framingham Offspring 
cohort(161). A subsequent analysis by the same research group replicated the EBF1 x 
psychosocial stress interaction on obesity (waist circumference or BMI) in the Family 
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Heart Study Whites and at trend level in the Duke Caregiver study (162). The direction of 
the interaction effect was consistent across each of the studies: chronic psychosocial 
stress amplified the effect of EBF1 variation on BMI (162).  
 
Obesity predisposing gene variants interact with educational status 

Epidemiological studies have shown an association between a low level of 
education and higher risk of overweight and obesity (48). A significant negative 
association between BMI and educational status was found in non- carriers of MC4R 
mutations but not in MC4R loss-of function mutation carriers issued from the same 
pedigrees (18). These results show that a high level of education has no protective effect 
on obesity risk in presence of MC4R pathogenic mutations.  

On the contrary, a significant gene x education interaction has been found in the 
intron 1 variant in FTO, the significant effect of the SNP on BMI and obesity risk 
restricted to subjects with no university education (163).  This finding is supported by a 
recent study of European children (N=16 228) indicating that favourable socioeconomic 
status is protective against obesity, yet this effect was only observed in participants with 
the low risk genotype TT in FTO rs9939609 (164).  
 
Obesity predisposing gene variants interact with smoking status 
 A meta-analysis of nine European study samples (N=24 198) demonstrated that 
smoking status moderated the association between genetic variation at the CHRNA5-
CHRNA3-CHRNB4 locus (rs1051730) and BMI (165). While there was no evidence of 
association between variation at rs1051730 and BMI in never smokers, each additional 
risk allele (T) was associated with a BMI decrease of 0.16 and 0.33 kg/m2 among former 
and current smokers, respectively (165). A separate study of 14 131 Pakistani adults 
reported another gene x smoking interaction: the minor allele (T) in FLJ33534 was 
associated with lower BMI in current smokers and positively associated with BMI among 
adults who had never smoked (166). A number of gene x smoking interactions were 
identified when African Americans and Caucasians were analysed separately, but no 
significant interactions were observed in the overall sample from the Southern 
Community Cohort Study (167). Four nominally significant gene x smoking interactions 
were reported in a recent study of 16 157 Pakistani adults, with current smoking status 
amplifying the effect of PTBP2 rs11165643, HIP1 rs1167827 and GRID1 rs7899106 
SNPs, and decreasing the effect of C6orf106 rs205262 SNP (120).  
 
Obesity predisposing gene variants interact with alcohol consumption 

Among a sample of 3 522 East Asians, increased alcohol consumption was 
associated with an increase in the effect of a 29 SNP GRS on BMI (122). Increased 
alcohol intake was also reported to increase the impact of PPARGC1A rs4619879 among 
African Americans, but this interaction was not significant in Caucasians or in the 
combined sample (167).  

 
 

Obesity predisposing gene variants interact with disease status/response to 
treatment 
Obesity predisposing gene variants interact with specific health conditions 
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Beyerlein et al suggest that pre-existent overweight may double the effect of an 
obesity genetic predisposition score on body fat mass in 4 837 European children (168). 
This association is supported by an independent study of 7 225 children of European 
ancestry which found that previously identified obesity predisposing loci had a greater 
impact on BMI among obese children compared to their non-obese counterparts (169). 
Similar results were observed in 1 930 adults of European descent (170). If true, it 
signifies that obesity predisposing genes may have an even more detrimental effect on 
weight gain once overweight/obesity is established. Depression predicts subsequent 
development of obesity (171) and depression status has been shown to amplify the effect 
of FTO SNPs on BMI (172). Moreover, obesity has an important role in the etiology of 
polycystic ovary syndrome (173) and FTO intronic SNP has larger effects on BMI in 
patients with polycystic ovary syndrome than in subject from the general population 
(174, 175).  
 
Obesity predisposing gene variants interact with lifestyle modifications 

A strict, fat-reduced, and carbohydrate-modified diet leads to a long-term marked 
weight reduction in adolescents with Prader-Willi syndrome who are already overweight 
(176). Importantly, if diagnosis is made at an early age and intensive diet management 
starts early, reasonable weight control is achieved in non-obese patients with Prader-Willi 
syndrome (177, 178). Regular exercise training has beneficial effects on body 
composition and weight loss in Prader-Willi syndrome patients (179, 180), especially as 
they tend to be less physically active than obese non-syndromic individuals (181). MC4R 
or POMC monogenic patients respond as well as non-monogenic obese patients to 
hypocaloric dietary or multidisciplinary (exercise, behavior, nutrition therapy) 
interventions (182, 183) but MC4R monogenic patients fail to maintain weight loss after 
intervention (183).  

The obesity risk variant rs9939609, an allele in FTO, does not modify the weight 
loss response to lifestyle intervention (184-186) or caloric restriction (187, 188), but is 
associated with lower additional weight loss and higher risk of weight regain during the 
weight maintenance phase that follows the caloric restriction program (188). Carriers of 
the FTO intron 1 obesity risk variant experience a higher rate of dropout when they are 
submitted to a high-fat/low carbohydrate (in comparison with a low-fat / high 
carbohydrate) hypocaloric diet (189), but they achieve better weight maintenance than 
wild-type individuals during a 3-year intervention with a Mediterranean diet (190). FTO 
variation has also been shown to interact with protein intake to moderate the response to 
weight-loss interventions (191, 192). A two-year randomized control trial (RCT) found 
that higher protein intake was associated with improved weight loss and body 
composition among carriers of the FTO rs1558902 risk allele compared to non-carriers 
(191). Another analysis of the same trial (N >700) showed that individuals with the FTO 
rs9939609 risk (A) allele achieved more favourable changes in food cravings and appetite 
when consuming a higher-protein weight-loss diet (192).  Carriers of the FTO obesity 
risk alleles also lose less weight in response to exercise training (193, 194). Among five 
childhood obesity susceptibility loci identified in a French-German genome-wide 
association studies (GWAS) meta-analysis (195), only one (SDCCAG8) was associated 
with differential weight loss after lifestyle intervention in 401 children and adolescents 
(196). Eight out of 15 obesity predisposing gene variants recently identified by GWAS 
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showed trends of association with weight loss or weight regain during lifestyle 
intervention in 3 356 adults of the Diabetes Prevention Program (197).  

The PLIN gene has received increasing support for its role in obesity risk and 
insulin resistance, and genetic variation at the perilipin locus has been shown to interact 
with diet behaviours (198-200). Two separate studies have shown that A carriers of the 
11 482 G>A SNP at the perilipin locus lost less weight in response to weight loss 
interventions compared to non-carriers (199, 201).  
 
Obesity predisposing gene variants interact with therapeutic treatment 

As most obese persons are resistant to the weight-reducing effects of leptin, 
administration of recombinant leptin to obese subjects does not generally result in 
significant weight loss (202). However, patients with congenital leptin deficiency 
markedly reverse obesity and associated phenotypic abnormalities when they are treated 
with daily injections of recombinant human leptin (203, 204). Leptin administration 
reduces energy intake, fat mass, hyperinsulinemia, and hyperlipidemia, restores normal 
pubertal development, endocrine and immune function and improves neurocognitive 
performances (205). Although patients with complete leptin deficiency are extremely 
rare, leptin supplementation may eventually help a far greater number of obese patients 
with partial leptin deficiency (heterozygous for a loss-of-function mutation in the LEP 
gene) based on the observation that leptin therapy induces more significant weight loss in 
subjects with low leptin levels (206, 207).  

The guanine nucleotide binding protein beta polypeptide 3 (GNB3) C825T 
functional gene variant predicts that obese individuals will benefit more from the anti-
obesity drug sibutramine treatment. Sibutramine is a serotonin and norepinephrine 
reuptake inhibitor and given that GNB3 variance is associated with an altered response to 
G protein subunit activation (α 2-adrenergic activation) (208), there is biological 
evidence to support this interaction. Two independent studies showed that the carriers of 
the 825 T allele lose more weight in response to sibutramine administration than C allele 
homozygotes (209, 210). Lastly, obesity predisposing gene variants in FTO and MC4R 
are associated with more weight gain in response to antipsychotic treatments (211-215). 
 
Obesity predisposing gene variants interact with bariatric surgery  

Bariatric surgery is the most effective long-term treatment for severe obesity 
(216). Laparoscopic adjustable gastric banding did not result in a long-term weight 
reduction in a 18-years old patient with complete MC4R deficiency (217), and was 
associated with an high risk of conversion to bypass operations in individuals with partial 
MC4R deficiency (218). On the contrary, three studies confirmed that Roux-en-Y gastric 
bypass surgery was an efficient strategy to lose weight in MC4R mutation carriers (219-
221). These results suggest that diversionary operations, which are more invasive but 
efficiently improve the neuro-hormonal control of satiety than gastric banding 
procedures, be recommended in the context of non-syndromic monogenic forms of 
hyperphagic obesity.  

FTO risk allele carriers lose less weight than common allele homozygous 
individuals after banding surgery (222, 223), but experience a similar level or more 
weight reduction after gastric bypass surgery (222, 224).  
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Biological processes underlying statistical gene-environment interactions 
 

Epigenetic changes are believed to be one of the primary mechanisms explaining 
interactions between environmental exposures and genetic variation (225, 226). Other 
potential mechanisms propose that the transcription changes induced by environmental 
exposures may vary across genotypes (225). Epigenetics is defined as heritable changes 
in gene function that cannot be explained by changes in the deoxyribonucleic acid (DNA) 
sequence, and the three main types of epigenetic modification in mammals include DNA 
methylation, histone modification and non-coding RNA (226, 227). Of these 
mechanisms, DNA methylation has received the most attention in human studies, and in 
mammals this process mainly occurs at CpG dinucleotides (228). Specifically, covalent 
bonding of a methyl group to the cytosine base creates a barrier that inhibits transcription 
factors from binding to the DNA helix (228, 229). CpG DNA methylation at gene 
promoters is typically associated with gene silencing, whereas CpG methylation in gene 
bodies is linked to gene activity (228). Given that epigenetic differences have been linked 
to obesity status, as well as genetic variation and a variety of pre and postnatal 
environmental factors, these processes likely represent a plausible mechanism of gene-
environment interactions.  

The emergence of new approaches to study epigenetic variation, such as 
epigenome-wide association studies (EWAS), has led to the identification of methylation 
patterns associated with obesity (230). Increased BMI among adults was found to be 
positively associated with increased methylation at the hypoxia-inducible factor 3 alpha 
(HIF-3α) locus in blood cells and adipose tissue (231). This finding was confirmed in two 
replication cohorts in the initial analysis (231), as well as two additional independent 
studies (232, 233). A separate EWAS of an African American sample identified an 
association between methylation at 37 CpG sites and BMI, which were replicated in two 
cohorts of European ancestry (232). Analyzing whole-genome DNA methylation and 
expression data in human adipose tissue from 96 males and 94 females revealed that 
DNA methylation and expression of 2 825 genes was correlated with BMI (234).   

Existing evidence also supports the association between environmental exposures 
on DNA methylation patterns. Monozygotic twins, who are epigenetically 
indistinguishable at birth, exhibited drastically different overall content and genomic 
distribution of DNA methylation and histone acetylation in later life (235). Moreover, 
methylation and expression of 1050 genes have been found to vary with age (234, 236). 
The epigenetic divergence that occurs with aging likely reflects the accumulation of 
environmental exposures that influence methylation patterns. Prenatal factors including 
maternal BMI and variations in maternal methyl donor intake during pregnancy have 
been linked to methylation changes in the offspring (237), and multiple studies have 
shown that maternal vitamin B12, folate and cobalamin levels during pregnancy are 
associated with offspring adiposity (238, 239). Folate, vitamin B12 and choline are 
methyl donors and involved in the synthesis of methionine, the precursor of the universal 
donor of methyl groups needed for DNA methylation (S-adenosylmethionine). As a 
result, disregulation in any of these components can alter the epigenomic regulation of 
gene expression (240). With respect to postnatal determinants of DNA methylation, 
exercise interventions have been shown to alter the DNA methylation of 2817 genes in 
skeletal muscle and 7663 genes in adipose tissue (18 of which were obesity candidate 
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genes) (241). The effect of exercise on DNA methylation appeared to be tissue specific, 
with the majority of genes in skeletal muscle displaying decreased DNA methylation 
(242), and the majority of genes in adipose tissue showed increased DNA methylation 
(243). These changes mirrored the patterns observed for gene expression: most of the 
genes showing concurrent changes in DNA methylation and expression displayed 
increased expression in skeletal muscle and decreased expression in adipose tissue (241).  
A recent review of 25 studies (16 observational 9 interventional) found that both acute 
and chronic exercise significantly influenced DNA methylation, and these changes 
occurred in a tissue- and gene-specific manner (244). DNA methylation changes have 
also been observed in response to high-fat intake (245-248), and after weight loss 
interventions the methylation profiles of adipose and muscle tissue among those formerly 
obese became more similar to lean individuals (249-252). These methylation changes 
involved a number of known obesity-associated loci, including LEPR, STAB1, ZNF608, 
HMGA1, MSRA, TUB, NRXN3, FTO, MC4R and BDNF (250, 251). Both exercise and 
diet have long been recognized as central determinants of body weight regulation in 
epidemiological studies (253, 254). The epigenetic changes induced by these exposures 
likely explain a portion of their association with BMI as well as their interaction with 
obesity predisposing gene variants (102, 125).  

Although environmental factors have the potential to influence the epigenetic 
environment, it is estimated that approximately 20-40% of epigenetic variation can be 
attributed to genetic differences (226, 255, 256). Early evidence demonstrated that the 
risk allele of FTO promotes increased methylation of sites within intron 1 of the FTO 
gene, as well as greater methylation of additional genes (257). Other evidence identified 
28 obesity-associated SNPs that were associated with differential methylation at 107 
proximal CpG sites (258). A recent study of Trim28 haploinsufficiency used findings 
from mice and humans to demonstrate the variation in obesity phenotypes that can be 
induced through epigenetic changes (259). These authors also reported that FTO 
expression was decreased among Trim28_Low obese children compared to Trim28_Low 
lean individuals (259).  

These epigenetic findings support an emerging mechanistic model to explain 
gene-environment interactions in obesity. Existing evidence indicates that obesity, pre 
and postnatal environmental factors and multiple obesity associated gene variants are 
linked with epigenetic patterns (Figure 1). Given that gene variants, such as those in 
FTO, and environmental factors both play a role in the methylation of obesity genes, the 
balance between these two effects likely impact the manifestation of genetic obesity. This 
biological model provides support for many of the statistical interactions reported to date, 
and further integration of genomic, epigenomic and transcriptomic data with gene-
environment interaction studies will aid in uncovering these biological mechanisms. 
 
Methodological considerations in gene-environment interaction studies of obesity: 
recent developments and future options 
 

Despite the rapid growth of GEI studies in the field of obesity, there has been 
increasing scrutiny regarding the validity of these studies based on several issues 
including statistical modelling (260, 261), confounding (260, 262), a low replication rate 
(263-265), underpowered analyzes (266), lack of biological assumptions (267, 268) and 
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measurement precision (269) (Table 1). The relevance of testing interactions between 
individual genetic variants and specific environmental exposures has also been 
questioned (260). Based on these concerns, some leaders of opinion have suggested that a 
large proportion of significant gene x environment interaction (GEI) findings are in fact 
false positives (23, 260). This scepticism has been adopted by multiple journals, which 
have implemented stringent criteria for candidate gene and interaction studies considered 
for review (270, 271).  

This portion of the review will focus on issues in GEI studies related to (1) 
statistical modelling of interaction terms, (2) modelling of confounding variables, (3) 
timing of environmental exposure across the life span and (4) measurement of predictor 
and outcome variables. The final section will provide suggestions to these issues based on 
existing evidence and will outline future directions of GEI research.  

 
Statistical modelling issues in gene-environment interaction research   
 

Using a multiple linear regression model with the inclusion of a cross-product 
term signifying the product of environmental (E) and genetic (G) variables is the most 
common method to assess interactions (107, 114, 117, 125). Coding genetic 
polymorphisms is either performed to create a binary variable (under a recessive or 
dominant model) or a three-category variable based on an additive model, with the latter 
often used when the true functional model of a given marker is not known (261). A recent 
analysis demonstrated that modelling gene-environment interactions with a simple cross-
product term (G x E) often produces misleading results when assuming an additive model 
(261). First, the simple cross-product model always forces the regression lines to be 
ordered (0, 1, 2 and never 0, 2, 1). While this assumption may be intuitive from a 
biological perspective, this approach will always predict an ordered effect of genotypic 
differences even when the data do not reflect this assumption (265). Second, the 
differences in slopes between the adjacent regression lines are always assumed to be the 
same (261). There is no rationale for this assumption and in practice, sampling error 
alone would be expected to create uneven differences between regression slopes (272). 
Alternatively, non-linear gene-environment interaction effects may be present, which 
could not be estimated accurately with only a cross-product interaction term (261, 273). 
Third, this model constrains all three regression lines to cross at the same point when 
interaction effects are present (261). This implies that there is a certain level of 
environmental exposure that confers the same level of risk/disease for all three different 
genotypes. There is no statistical or biological evidence to justify this assumption, 
especially since the specific genetic model is often not established for the genetic marker 
of interest (260). These simulations indicate that the models using only the cross-product 
term are more vulnerable to Type 1 and Type 2 errors (261). In all cases, including two 
additional coefficients, one to model non-linear genetic effects (4G2) and another to 
account for non-linear interaction effects (5G2 x E), represented the interaction (or lack 
of interaction) more accurately. Many authors recommend this model for genetic variants 
following an additive or unknown genetic model, and emphasize that failure of an 
interaction to match a plausible biological interaction likely indicates a false positive 
result (261, 274). In summary, re-conceptualizing interaction models to account for non-



 17

linear effects removes the constraints of traditional regression techniques and provides a 
more accurate representations of gene-environment interaction effects (261).  
 Other authors contend that traditional GEI analyses neglect to test the a priori 
hypotheses that form the basis of these studies (275). The implicit framework adopted in 
traditional GEI analyses is the diathesis-stress model of environmental action (276), 
which specifies that certain individuals are more vulnerable to the adverse consequences 
of some exposures than others (277). As an extension of this limitation, exploratory 
approaches also fail to test or compare the competing predictions from alternative 
theoretical frameworks such as the more recent differential-susceptibility framework 
(278). This theory posits that some individuals are more susceptible to not only negative 
exposures, but to positive environmental influences as well (279). Based on this 
characterization some authors have proposed that gene variants classically referred to as 
‘vulnerability genes’ be reclassified as ‘plasticity genes’ to correspond with the 
differential susceptibility framework (280). This theory has been proposed by several 
authors (278, 281), and has been applied to the study of GEI (280, 282, 283). In response 
to these competing frameworks, many statistical criteria were developed to distinguish 
differential-susceptibility interactions from those representing diathesis-stress theory 
(279, 284), and Widamen’s confirmatory method appears to be the most efficient (285). 
This technique directly evaluates alternative theoretical frameworks by aligning the 
analyses with each hypothesis (285). Specifically, this method systematically adjusts the 
parameters included in the regression equation to compare different theoretical 
frameworks, and specifies where the regression lines (representing each genetic 
subgroup) will cross relative to the value of the environmental exposure (285). With 
respect to the frameworks discussed above, the diathesis-stress theory models an ordinal 
interaction whereby the predicted outcome value for the genetically vulnerable subgroup 
is always less than that of the genetically low-risk group. The differential-susceptibility 
framework predicts that the risk of the outcome for the genetically malleable group can 
be higher or lower than the genetically non-malleable group depending on the level of the 
environmental exposure (275). It is important to note that Widaman’s confirmatory 
approach can be used for dominant/recessive or additive genetic models, and can be 
applied to other forms of statistical interaction involving competing hypotheses about the 
nature of the interaction (275, 286). Integration of this technique into interaction studies 
where the theoretical framework is uncertain may help to improve the accuracy and 
replication rates of interaction studies. This model is supported by biological evidence 
from a recent study, which demonstrated that TRIM28 knockout mice are alternatively 
lean or obese depending on subtle environmental changes (259). Other consequences of 
this framework have important implications for variants identified in GWAS. If a 
‘plasticity gene’ displays opposite effects in two exposure groups, the main effect of this 
variant may not be identified in GWAS and this interaction effect could be missed. 
Another concern for GWAS is the possibility that interaction effects may only exist 
among subgroups with very rare exposures. Analyzing both ‘vulnerability’ and 
‘plasticity’ gene frameworks may be a method to prevent these issues and identify 
additional gene-environment interactions in future studies.  

Another consideration when analyzing interaction effects is the selection of either 
an additive or multiplicative interaction scale (287-289). This decision has important 
implications given that different scales can lead to different conclusions and 
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consequently, different public health recommendations (290). An additive interaction 
exists when the combined genetic and environmental risk is significantly greater than 
would be expected if their effects were additive, whereas a multiplicative interaction 
describes a joint genetic and environmental risk that is greater than expected from 
multiplying their effects (23, 291). Some authors argue that the selection of measurement 
scale is less crucial when the underlying biological processes are not known, and both 
scales can be appropriate in certain situations (292-294). If the pathophysiology consists 
of a multistage process, such as cancer initiation and promotion stages, two factors that 
act at the same stage will generally fit an additive model and those acting at different 
stages will typically fit a multiplicative model (295, 296). It has also been suggested that 
if the main objective is to study public health impact, an additive scale is better suited to 
identify heterogeneous effects across subgroups, while the multiplicative scale is more 
appropriate for studying disease etiology (295).  

 
Confounding issues in gene-environment interaction research   
 

Several modelling strategies have been proposed to address the impact of 
confounding in gene-environment interaction studies (260, 262). Variables with the 
potential to offer alternative explanations of an interaction are typically entered into the 
regression equation as covariates to control for their potential confounding effects (265). 
While this method controls the influence of confounding on the main effect of the 
genotype and environment, it does not adjust for potential confounding of the interaction 
term (260). An alternative method has been proposed whereby all covariate x gene and 
covariate x environment interaction terms are included in the model that tests the gene x 
environment interaction of interest (260). If significant covariate interactions are 
observed, the validity of any gene x environment interactions may be compromised by 
the covariate and warrant additional analysis. Although there are potential objections to 
this modelling technique, the justifications of this approach are outlined by Keller (260). 
First, even though over-fitting the model may prevent accurate estimations of the many 
covariate interactions, the purpose of including covariate interactions is to control for 
their effects on the gene x environment interaction rather than producing accurate 
parameter estimates. Second, multicolinearity between the many interaction terms may 
diminish the strength of the main gene x environment interaction. This however is the 
purpose of this procedure and if inclusion of the covariates weakens the main interaction, 
then the covariates may be significantly influencing the interaction. Lastly, it is 
reassuring to recognize that the gene x environment interaction term is only marginally 
affected if there is no ‘true’ relationship between the covariate and the gene x 
environment interaction (260). One caveat to this approach is that shared heritability 
between the covariates and the outcome can introduce bias and increase the risk of false-
positive results (297). Therefore, including heritable covariates in the model should be 
avoided if they are associated with the gene variant being tested (297).  

Confounding issues can be further complicated if the interacting genetic variant 
and environmental exposure of interest are correlated (297, 298). Under these 
circumstances, simulations have demonstrated that uncontrolled confounding will bias 
the estimates of the main genetic effect and the gene-environment interaction even if the 
genetic and environmental factor are not associated with the outcome (299). If the genetic 
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variant and environmental factors are independent, this is no longer an issue as long as 
unmeasured environmental confounders are not related to genetic factor. The issue of 
gene-environment dependence has been highlighted in extreme cases where the genetic 
variants are associated with both the environmental factor and the outcome. For example, 
variants on 15q25 have been linked to both smoking behaviours and lung cancer (300-
302). As a result, some authors suggest directly analyzing the relationship between the 
interacting genetic variant and environmental exposure (299).  

 
Considering time of exposure in gene-environment interaction research   
 

Given that gene expression and silencing varies significantly throughout 
development, it may be important to consider time of exposure when modelling 
exposures that can have differential effects throughout the life cycle (303). Evidence 
from toxicology research indicates that many environmental exposures display distinct 
dose response curves that vary based on the developmental stage at which exposure 
occurs (304, 305). The identification of these developmental windows suggests a need to 
include time of exposure as a third interacting factor when analysing gene-environment 
interactions (268). However, the inclusion of a three-way interaction term dramatically 
increases the necessary sample size (260, 306) and this information is rarely available. 
Simulation studies indicate that the sample size required to detect three-way interactions 
is four-fold the sample size necessary to detect a two-way interaction of the same 
magnitude (307). Another statistical method to address this issue involves considering 
environmental exposure as a time-varying factor to analyze the lag effects of gene x time-
varying environment interactions (268). Yet, the repeated measurements needed to 
measure lag effects are often not feasible due to the cost of repeated measurement in 
large studies. This constraint explains the high prevalence of cross-sectional case-control 
designs to study gene-environment interactions (268). The challenge of measuring 
variations in the impact of environmental exposures is compounded by changes in the 
heritability of the outcome across time. A meta-regression of heritability studies of BMI 
found that the genetic contribution to BMI varies with age: heritability was positively 
associated with age among child studies and negatively associated with age among 
studies of adults (308). A recent genome-wide interaction meta-analysis identified 15 
BMI loci that interacted with age, 11 of which had a greater effect impact in younger 
(<50 years) compared to older (≥ 50 years) adults (77). Failure to address the time-
varying effects of environmental exposures and heritability may account for some of the 
challenges with replicating gene-environment interactions (23, 260, 309).  
 
Measurement issues in gene-environment interactions research 
 

The measurement of the exposure and outcome also represent important 
considerations for gene-environment interaction research. Major determinants of power 
include allele frequency, genetic effect size, the magnitude of interaction effect, risk 
allele frequency, degree of genetic misclassification and measurement error associated 
with the exposure and outcome (269, 306, 310). Although the trade-off between precision 
and feasibility is common to most study designs, the large samples required to study 
interaction effects make this balance particularly important. Currently, the most notable 
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gene-environment interactions in obesity have measured diet patterns or physical activity 
as environmental exposures (102, 107, 311, 312). The gold standard criterion measure for 
these exposures are a 7-day weighed diary and doubly labelled water, respectively. 
Unfortunately, the large number of participants required for these studies have restricted 
the measurement of these exposures to less precise instruments. The error associated with 
exposure measurement generally attenuates the estimate of the true effect size (313, 314). 
Similar problems occur when the outcome used is an indirect measure for the true 
outcome of interest. In gene-environment analyses of obesity, BMI is commonly used as 
the outcome (102, 125, 315, 316), which further contributes to this error given that BMI 
fails to distinguish between fat and fat-free mass (317). 

Simulations have characterized how varying different determinants of power can 
impact the required sample size of gene-environment interaction studies (269, 306). As 
an example of these analyses (269), genetic misclassification was fixed at 2.5% to be 
consistent with prior empirical studies (318, 319) and the magnitude of effect for the 
common allele was also constant. With a correlation between the true and observed 
exposure and outcome of 0.6 and 0.7, respectively, a sample size of just over 9 500 is 
needed to detect an interaction at a significance of 10-4 with 95% power (17). However, 
the correlations of 0.6 and 0.7 between the true and observed exposure and outcome are 
unusually high for gene-environment interactions in obesity due to the cost of precise 
measurement tools (125, 310, 320). With more typical correlations of 0.3 and 0.4, the 
required sample size can increase to over 100 000 participants with all other variables 
held fixed (269). If precise instruments are not available to mitigate this error, performing 
repeated measurements is a useful strategy on condition that the error in repeated 
measures is not correlated (313). As an example, performing two independent repeated 
measures using a tool with a validity coefficient of 0.6 increases the overall validity 
coefficient to almost 0.8. With all other variables being fixed, this reduces the necessary 
sample size by more than a factor of six (269).  

The value of improving measurement accuracy as opposed to increasing sample 
size can be reinforced with the example of physical activity measurement, a common 
exposure analyzed in gene-environment interactions of obesity (117, 125, 269). Physical 
activity is usually assessed by questionnaire, and even comprehensive instruments that 
address occupational and leisure activity rarely correlate with objective measures of 
energy expenditure above 0.3 (321). The physical activity assessment used in the EPIC-
Norfolk study displayed an overall correlation of 0.44 with objective measures, although 
this fell to 0.28 after adjustment for age and sex (322). The error associated with 
measuring this exposure is compounded by the moderate correlation (0.5) of BMI with 
body fat percentage as measured by dual-energy x-ray absorptiometry (323). Using the 
EPIC-Norfolk questionnaire with BMI as an outcome would require almost 90 000 
participants to detect an interaction that doubled the effect of a genetic variant, when the 
variant is present in 20% of the population (269). Since a doubling of genetic risk from 
an environmental exposure is at the upper limit of interaction effect estimates reported for 
common variants and exposures (324-326), some authors speculate that the majority of 
published interaction studies are underpowered and report “lucky” true-positives or false-
positive results (23). A recent study by our group provides an empirical example of how 
measurement precision can influence statistical power. We analyzed physical activity x 
FTO interactions on BMI using two measures of physical activity: a three-level 
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categorical variable and a quantitative estimate of energy expenditure. The categorical 
data was available in 99% of the sample while the quantitative energy expenditure data 
was only available in 63% of the sample. Despite this disparity, similar interactions were 
detected using both measures, which may suggest that the added precision of the energy 
expenditure data compensated for the decrease in sample size (121).  

Given the sample size requirements imposed by this type of data, more direct 
measurement techniques have been proposed. Objective measures such as heart rate 
monitors carry increased precision while maintaining feasibility in moderately sized 
epidemiological studies (327). Heart rate monitor data have demonstrated a correlation 
with the gold standard of energy expenditure methods (doubly labelled water) of 0.73 
(328). Two repeated measures can increase this correlation to over 0.88. Substituting this 
method of exposure measurement for questionnaire methods would decrease the 
necessary sample size to 9453, a decrease by a factor of 10 (269). Therefore, the gain in 
precision associated with more accurate measurements of exposure may be less resource 
intensive than accruing large sample sizes. The power implications of using precise 
measurement techniques suggest that smaller studies with more accurate measures of 
exposure and outcome may be better suited to detect gene-environment interactions than 
large sample sizes with imprecise measurement (269). The issue of measurement 
imprecision has long been debated in the nutrition field and ‘deep phenotyping’ strategies 
(measuring metabolic markers such as circulating plasma lipids as a surrogate of a high-
fat diet) may be worthwhile alternatives to traditional self-report measures (329-331). 
Other assessments that may mitigate the concerns associated with traditional diet 
measures include ad libitum energy intake tests or analyzing the dietary information of 
food consumed in regulated settings such as cafeterias or restaurants (332).  

The issue of direct and indirect measurement of genetic variants also has 
important implications for statistical power. In many current GWAS and GEI studies, the 
true susceptibility loci involved in the disease etiology is not known (or unavailable) and 
the linkage disequilibrium (LD) between marker alleles and the actual disease loci is used 
to study associations between gene variants and the phenotype under study (333, 334). 
Since this is an indirect approach, the effect estimate will be underestimated if the LD 
between the two variants is incomplete (r2< 1) (335). Previous studies have demonstrated 
that the sample size requirements of GEI studies can be strongly influenced by the marker 
allele frequency, disease allele frequency, the LD between these loci, as well as the main 
genetic and environmental effect, the prevalence/impact of the environmental exposure 
and the magnitude of the interaction (334, 335).  

 
Future directions for gene-environment interactions and obesity 
 

Given that specific environments can greatly impact the magnitude of genetic 
predisposition to obesity, the systematic study of gene-environment interactions 
constitutes an important field of investigation in order to inform public health strategies 
to prevent and manage obesity and other complex diseases. Gene-environment interaction 
studies in the context of various forms of obesity (monogenic, polygenic) and in diverse 
experimental designs (observational, interventional) (22) may lead to a better 
understanding of the protective or detrimental environmental exposures that modify the 
impact of certain genetic variants. Existing interactions need to be studied in additional 
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obesity-prone (e.g. response to smoking cessation, response to insulin therapy in diabetic 
subjects) or obesity-protective (e.g. lifestyle intervention, response to the anti-obesity 
drug orlistat administration or to bariatric surgery) conditions. Gene-environment 
interaction studies are complementary to observational epidemiology, interventional 
study or clinical trials, and will certainly help to elaborate efficient strategies to reverse 
the obesity epidemic.  

Currently, GWAS for obesity-related traits have focused on the marginal gene 
effect ignoring gene-environment interaction entirely (336). Gene-environment 
interactions are nevertheless frequent in obesity, and statistical models that do not 
properly account for gene-environment interactions may attenuate the marginal effect 
size and reduce the power to detect true associations (23, 337). Applying a joint test for a 
main genotype effect and gene-environment interaction may increase the power to 
identify an individual SNP associated with a disease outcome (338-340). As many 
completed GWAS for obesity have been conducted on samples with large amounts of 
existing environmental data, performing gene-environment-wide interaction studies 
(GEWIS) in these existing datasets is a cost-effective strategy to find additional obesity-
associated gene variants that interact with specific environments but have been missed by 
conventional GWAS (341). Since large sample sizes and meta-analytical approaches are 
required to reliably detect SNPs with subtle gene-environment interaction patterns (342), 
GEWIS for obesity have been initiated in the context of large international obesity 
consortiums like GIANT (343). Although these methods show promise, recent 
simulations indicate that this technique is more appropriate for analyzing interactions 
between genetic risk scores rather than individual SNPs, due to the reduced power when 
analyzing the small effect sizes of individual SNPs (344). As a potential solution, 
Marigorta and Gibson suggest selecting participants who are at a high-risk for obesity 
based on environmental exposure (344). This strategy has the potential to identify 
environmental exposures that can modulate the impact of specific variants associated 
with obesity (344). However, challenges associated with GEWIS include identifying 
adequately sized cohorts with appropriate genetic and phenotypic data, as well as issues 
with statistical power. As a novel alternative to these techniques, variance prioritization 
was developed as a method to model genetic associations with genetic variance, without 
requiring knowledge of the interacting variables (345). Since the main effects of gene 
variants involved in interactions are typically associated with a large degree of variance, 
this strategy exploits this pattern to rank and prioritize variance estimates to identify gene 
variants associated with a large degree of variance in a quantitative trait (345).  

Bayesian methods have also been developed to integrate variations in multiple 
SNPs within a given gene/region, and examine how an environmental exposure 
moderates the risk of these genetic profiles (346). This method was applied to the 
Environment and Genetics of Lung Cancer Etiology (EAGLE) study and detected a 
smoking x genetic profile interaction that was not detected by conventional interaction 
tests (346). Artificial neural networks have been applied to interaction analyses and 
simulations suggest that this technique may be particularly valuable for detecting non-
linear penetrance and interaction effects (347). Other analytical approaches have been 
developed to test interactions while addressing the common concern of statistical power. 
These techniques, termed “cocktail methods,” involve a three-step approach to testing 
genome-wide gene-environment interactions while preserving the type 1 error rate and 
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increasing power by 30-40% under certain circumstances (348). These three steps include 
screening, multiple testing and GxE testing, and current simulations of this technique 
have been applied to binary environmental variables, although this approach is applicable 
to continuous environmental data (348). While early analysis of these novel techniques 
has been positive, further real data application of these methods will reveal the 
generalizability of these approaches.  

Recent GWAS for obesity have collected phenotypic information in individuals 
living in a broad range of environments. While successful, this approach may fail to 
identify potential gene variants associated with obesity-related traits in a context 
dependent manner. Gene identification efforts may therefore be targeted in populations 
that display homogeneous environment and lifestyle factors across time and across the 
community, as observed in the Plain people (349). Performing genetic association studies 
for adiposity change in response to a standard major environment modification 
(antipsychotic drug use, smoking cessation, intensive caloric restriction, anti-obesity drug 
therapy, obesity surgery) is another valuable way to control the environmental exposure, 
lower sources of heterogeneity and provide a more comprehensive molecular basis for 
genetic predisposition to obesity.  

In order to refine the search for interaction variants, statistical GEI tests could be 
combined with methylation quantitative trait loci (meQTL), expression quantitative trait 
loci (eQTL), and protein quantitative trait loci (pQTL) to focus on SNPs with a plausible 
biological mechanism for interaction (258). Specifically, a joint test could be applied to 
(1) identify genetic variants that statistically interact with a given environmental exposure 
(e.g. physical activity level) to modulate an outcome (e.g. BMI), (2) test if the same 
genetic variants are also eQTL, meQTL and/or pQTL for a given locus and (3) determine 
if the methylation, expression and protein level of the same locus is modulated by the 
same environmental factor (243). A similar test could be applied to analyse the 
interaction between an individual SNP and multiple environmental factors. Since 
methylation is influenced by several environmental exposures (physical activity (243), 
diet (248), sleep (350)) identifying SNPs that redundantly interact with multiple 
exposures may be a method to exploit this pattern. The ‘Identifying REdundant Gene-
environment InteractionS’ (REGIS) method may increase the probability of detecting 
‘true’ and replicable gene-environment interactions. Another avenue for future research is 
to study gene-environment interactions jointly in mouse and human studies (351). The 
development of the clustered regularly interspaced short palindromic repeat (CRISPR) 
system for gene targeting and editing creates a new opportunity to study ‘humanized’ 
genetically modified mice carrying human mutations (352, 353). Combining this 
biological data from animal studies with statistical evidence of interaction form human 
epidemiological studies is also likely to improve the validity of gene-environment 
interaction studies (23).  
 
Conclusion 
 

Heritability, syndromic, monogenic and polygenic obesity studies provide 
converging evidence that obesity predisposing genetic factors strongly interact with 
environment, from birth to agedness and in a wide range of situations. A prolific period 
of discovery is foreseen in this fast-moving field, especially with the many 
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methodological innovations that attempt to address the ‘missing heritability’ of obesity. 
To effectively tackle this knowledge gap, prospective studies need to incorporate current 
methodological evidence to optimize the validity of emerging evidence. Emerging 
epigenetic studies have demonstrated that obesity, genetic variants and environmental 
exposures can influence DNA methylation, which provides a mechanistic model to 
support the statistical interactions from genetic epidemiology. A comprehensive 
understanding of gene-environment interactions in obesity may lead to tremendous 
applications in the emerging field of personalized medicine and individualized lifestyle 
recommendations. Evidence from interaction studies suggests that specific subgroups of 
individuals may have an increased risk to develop obesity in specific environments but 
may also benefit more from lifestyle interventions, a treatment or a surgical procedures 
(354). This information will help determine if population-wide or personalized subgroup 
interventions are the best suited to fight the worldwide obesity epidemic (355, 356). 
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Table 1. Summary of methodological issues and solutions for gene-environment interaction 
studies in obesity.  

Methodological Issue Suggested Solution Reference 
(Lead author  

Modelling the G x E cross-
product terms 

Include an additional coefficient to 
model non-linear genetic effects 
(4G2), and a second to account for 
non-linear interaction effects (5G2 x 
E) 
 

Aliev, Bavav Genet, 2014 

Comparing biological 
frameworks (e.g. diathesis-
stress model vs. differential 
susceptibility framework) 
 

Adjust the parameters in the 
regression equation to compare 
alternate theoretical frameworks  

Belsky, Psychol Bull, 2009 
Widamen, Psychol Methods, 
2012 

Selection of interaction scale 
(e.g. additive vs. 
multiplicative) 
 

Consider the application of the 
interaction test a priori. Additive 
scales have been recommended for 
identifying heterogeneous effects 
across subgroups in public health 
settings, while multiplicative scales 
are suggested for studying disease 
etiology 
 

Ottman, Prev Med, 1996 

Confounding of the G x E 
interaction term 

Include all covariate x gene and 
covariate x environment interaction 
terms 
 

Keller, Biol Psychiatry, 2014 

Shared heritability between the 
outcome and covariates 
 

Avoid the inclusion of heritable 
covariates that are associated with 
the gene variant being tested  
 

Aschard, Am J Hum Genet, 
2015 

Correlation between the gene 
variant under study and the 
interacting environmental 
factor 

Directly analyze the relationship 
between the interacting gene variant 
and environmental exposure to 
ensure that they are not correlated  
 

VanderWeele, Am J 
Epidemiol, 2013 

Variations in gene 
expression/silencing, and 
changing the heritability of 
BMI throughout development 
 

Use a repeated measures design or 
include a G x E x Time term if the 
sample size is sufficient 

Liu, Environ Health, 2012 

Changing heritability of BMI 
throughout development 

Use existing gene x age interactions 
to identify variants with differential 
effects across the lifespan 
 

Elks, Front Endocrinol, 2012 
Winkler, PLoS Genet, 2015 

Measurement error associated 
with the environmental 
exposure and outcome 

Consider more accurate 
measurement tools or repeated 
measures in favour of large sample 
sizes with less accurate measures 

Wong, Int J Epidemiol, 2003 
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Figure 1. Biological model to explain gene-environment interactions in obesity.    
 
 
 
 
 
 

 


