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Abstract (226 → 200) 

Recent advances in MRI methodology, such as microvascular and brain oxygenation (StO2) 

imaging, may prove useful in obtaining information about the severity of the acute stroke. We 

assessed the potential of StO2 to detect the ischaemic core in the acute phase compared to 

apparent diffusion coefficient (ADC), and to predict the final necrosis. Sprague-Dawley rats 

(n=38) were imaged during acute stroke (D0) and 21 days after (D21). A multiparametric 

MRI protocol was performed at 4.7T to characterize brain damage within three Region of 

interest (ROI): “LesionD0” (diffusion), “Mismatch” representing penumbra 

(perfusion/diffusion) and “Hypoxia” (voxels <40% of StO2 within the ROI LesionD0). Voxel-

based analysis of stroke revealed heterogeneity of the ROI LesionD0, which included voxels 

with different degrees of oxygenation decrease. This finding was supported by a dramatic 

decrease of vascular and perfusion parameters within the ROI Hypoxia. This zone presented 

the lowest values of almost all parameters analyzed, indicating a higher severity. Our study 

demonstrates the potential of StO2 MRI to more accurately detect the ischaemic core without 

the inclusion of any reversible ischaemic damage. Our follow-up study indicates that both 

ADC (r2=0.93) and StO2 (r2=0.68) ROI correlate with the final necrosis, which was 

overestimated by diffusion imaging. 
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INTRODUCTION 

Stroke is a major public health issue due to the socioeconomic burden of stroke-induced 

disability.1 Ischaemic stroke is the most common subtype of stroke (accounting for around 

80% of all stroke cases), resulting from an arterial occlusion that dramatically decreases local 

brain perfusion. Cerebral ischaemia is a complex and dynamic process that spans hyperacute 

to acute, subacute and chronic phases. When diagnosed quickly, ischaemic stroke can be 

treated by thrombolysis, using recombinant tissue plasminogen activator (rtPA).2 Mechanical 

thrombectomy via an endovascular route can be performed either as an alternative to 

thrombolysis to reduce the risk of brain haemorrhage3 or in association with rtPA.4 Patients 

can benefit from thrombolysis up to 6 hours after ischaemic stroke onset.5 However, evidence 

suggests that time alone is not sufficient to optimally select patients for thrombolysis. 

Neuroimaging can play an influential role in refining treatment decisions by correctly 

distinguishing between salvageable tissue and the central irreversible core.6 

Indeed, two distinct regions can be detected during the acute phase of stroke: an ischaemic 

core that is severely and irreversibly damaged, and a zone of “penumbra” defined as an 

ischaemic tissue that is functionally impaired and at risk of infarction but has the potential to 

be salvaged.7,8 Currently, the standard imaging technique to identify the penumbra is positron 

emission tomography (PET)15O2.9 However, the use of PET imaging in acute stroke remains 

limited in clinical practice by its high cost, relative invasiveness and limited availability. A 

more widely available alternative is perfusion-weighted imaging (PWI)/diffusion-weighted 

imaging (DWI) mismatch MRI.  Using MRI, the ischaemic core is detected as the zone of 

water diffusion abnormality, while the penumbra area is indirectly detected as the mismatch 

between the zone of perfusion deficit and the zone of diffusion abnormality.  Recently, it has 

been observed that an area of diffusion alteration that shows a modest apparent diffusion 

decrease could be salvaged with timely reperfusion.10 Different degrees of severity within the 
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apparent diffusion coefficient (ADC) lesion were detected using PWI (mean transit time).11 A 

pilot clinical study using 18FMISO PET also reported the presence of extensive penumbra in 

each patient (n = 3), which included the zone of abnormality identified by DWI9. This 

suggested that ADC may not be the best biomarker for an ischaemic core or predictor of the 

final lesion.  

Recent advances in brain imaging techniques offer new tools to characterize the ischaemic 

lesion. Currently, it is possible to map microvascular parameters such as vessel size index 

(VSI),12 vessel density (VD),13,14 and brain tissue oxygen saturation (StO2) in a voxelwise 

basis, using a multiparametric quantitative blood oxygenation level-dependent (mqBOLD) 

approach.15,16 

Changes in infarct progression may be better detected with voxel-based methods than with 

methods using volumetric mismatches.17 In this way, these new parameters might allow a 

more accurate identification of salvageable areas and the core (irreversible damage) within the 

ADC lesion. Based on previous studies,16,18 a drop in StO2 below 40% of control levels 

predicts irreversible damage. However, it is not yet known how ADC and StO2 compare in the 

context of acute stroke. The specific goals of this study were: 1) to investigate the sensitivity 

of StO2 to detect an acute stroke lesion (compared to ADC); 2) to assess the distribution of 

hypoxic zones within the ADC lesion, and their impact on haemodynamic parameters; and 3) 

to assess the potential of combined StO2 and ADC to predict the final necrosis (three weeks 

after stroke onset).  

To address these goals, we used a multiparametric MRI protocol, which combined standard 

diffusion/perfusion maps with the acquisition of novel MRI parameters (VSI, VD, and StO2). 

We examined these MRI parameters within four regions of interest (ROI): the lesion detected 

on ADC (ROI LesionD0), the zone of mismatch CBF (cerebral blood flow)/ADC (ROI 
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Mismatch), the zone with a StO2 below 40% within the ADC lesion (ROI Hypoxia) and the 

contralateral tissue (ROI Contra).  

  

 

 

MATERIALS AND METHODS 

All procedures and animal care were in accordance with French government guidelines and 

were performed under permit numbers 380820 and A3851610008 (for experimental and 

animal care facilities) from the French Ministry of Agriculture. The study design was 

approved by the “Grenoble Institute of Neuroscience” local ethics committee for animal care 

and use (agreement number 004). This study is in compliance with the ARRIVE guidelines 

(Animal Research: Reporting in Vivo Experiments).19 Male Sprague Dawley rats (n = 38; 

294±93 g; age = 7 weeks) were obtained from Charles River (France), and housed in groups 

of 3-4 in Plexiglas cages under standard laboratory conditions (12 h light/dark cycle with 

lights off at 7:00 p.m. and at a controlled temperature of 22±2 °C). Water and standard 

laboratory chow were provided ad libitum. Figure 1a shows the full experimental protocol. 

 

Animal preparation 

For all experimental procedures with a potential risk of pain or discomfort for the animals, 

anaesthesia was induced by inhalation of a gas mixture of 5% isoflurane (IsoFlo, Abbot 

Laboratories Ltd, Berkshire, UK) in medical air through a facial mask and maintained 

between 1.0-2.5% of isoflurane during the surgical procedures and MRI acquisition. Body 

temperature was monitored by a rectal probe and maintained at 37 °C ± 0·5°C via a heating 

blanket. The tail vein was equipped with a catheter to deliver the contrast agent. 

 



6 

 

Middle cerebral artery occlusion surgery 

Focal brain ischaemia was induced by middle cerebral artery occlusion (MCAo) using the 

intraluminal filament technique.20 The incision site was shaved, cleaned and injected 

subcutaneously with 2 mg/kg 0.05% Bupivacaine (Pfizer, France). Briefly, the right carotid 

arterial tree was isolated. A monofilament (silicon rubber-coated monofilaments: 0.37 mm in 

diameter, Doccol, Sharon, MA, USA) was advanced from the lumen of the external carotid 

artery into the internal carotid artery to occlude the right MCA at its origin. The external 

carotid artery was ligated, the occipital artery branch of the external carotid artery and 

superior thyroid artery were isolated and electro-cauterized. After 20 minutes of MCAo, the 

MRI session began. At the end of the MRI session, the filament was retracted to allow 

reperfusion. Therefore, ischaemia lasted around 100 minutes (Fig. 1a).  

 

Magnetic Resonance Imaging Protocol 

MRI was performed at day 0 (multiparametric protocol, duration: 53 min) and at day 21 

(anatomical and diffusion sequences, duration: 20 min). 

All MRI data were acquired using a 4.7T magnet (Bruker Biospec®, Germany) (MRI facility 

IRMaGe, Grenoble, France). After securing the animal in a cradle using tooth and ear bars to 

restrict head movement, a volume coil for excitation and a surface coil for detection were 

used. The slice orientation was identical for all MRI sequences. During each MRI session, 

physiological variables were continuously monitored. 

The multiparametric MRI protocol was as follows. After a pilot sequence to ensure the correct 

rat position, anatomical T2-weighted (T2W) images were acquired using a spin-echo sequence 

(repetition time (TR)/echo time (TE) = 7000/50 ms, 31 slices with a voxel size = 

234x234x800 µm). ADC was mapped using diffusion-weighted, spin-echo, single-shot echo-

planar imaging (TR/TE = 2250/33 ms, 8 averages, 9 slices, voxel size = 234x234x800 µm). 
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This sequence was applied four times, once without diffusion weighting and three times with 

diffusion weighting (b = 800 s/mm2) in three orthogonal directions. CBF was determined 

using pseudo continuous arterial spin labelling (pCASL) with an echo-planar imaging (EPI) 

readout (spin-echo EPI, TR/TE = 3600/21ms, labelling duration = 3 s, post-labelling delay = 

400 ms, 50 label/control pairs, 5 slices with voxel size = 234x234x800 µm). Note that the use 

of a fixed 400 ms post-labelling delay may not account for all arterial delays that occur during 

experimental ischaemic stroke. In practice, this approach may underestimate the absolute CBF 

values in the lesion territory. A T1 map was obtained using an inversion-recovery sequence 

(TR/TE = 8000/33 ms; 15 inversion times: 35-7000; 5 slices; voxel size = 234x234x800 µm). 

A T2 map was obtained using a multi spin-echo sequence (26 echoes; TR/TE = 2000/12-312 

ms; 5 slices; voxel size = 234x234x800 µm). A high resolution T2* map was obtained from a 

3D multiple-gradient echo sequence (15 echoes; TR/TE = 100/4-67ms; 26 slices; voxel size = 

117x117x200 µm). A blood volume fraction (BVf) map was obtained using a steady-state 

approach 12. A multiple-gradient echo sequence (16 gradient echoes; TR/TE = 4000/3-56 ms, 

and 1 spin echo TE = 60ms; 5 slices, voxel size = 234x234x800 µm) was performed before, 

and one minute, after an intravenous injection of ultrasmall superparamagnetic iron oxide 

nanoparticles (USPIO) contrast agent (P904, 200 µmol of iron/kg, Guerbet S.A., Aulnay-

sous-bois, France) flushed with 250 µL of saline. 

At day 21, the MRI protocol was composed of the same anatomical and ADC sequences. 

 

Histology 

After euthanasia at day 21, brains were quickly removed, frozen in -40 °C isopentane, and 

stored at -80 °C until processing. Coronal cryosections (20 µm thick) were cut along the entire 

lesion at -20 °C on a cryotome (Leica, Nanterre, France). 
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Haematoxylin-erytrosine (HE) staining was performed according to the manufacturer’s 

instructions on the slice with the largest lesion area to assess the final necrosis (n = 10). 

 

 

 

 

MRI data processing 

MRI data were processed using homemade software developed in Matlab 2013 (MathWorks, 

Natick, MA, USA). This software allows map calculation and the creation of ROIs. 

ADC maps were generated with Paravision 5.1 software (Bruker, Germany) computed as the 

mean of the ADCs measured in the three principal directions of the gradient system. VSI and 

BVf maps were derived from the change of T2 and T2* induced by injection of iron oxide 

particles as previously described.12 VD was derived from the ratio of the changes in transverse 

relaxation rates, using the equations 13 to 15 described in Troprès et al. 2015.13 A quantitative 

CBF map was computed with the equations described in Alsop et al. 2015 using both the 

pCASL sequence and the T1 map.21 A StO2 map was computed using the T2 map, T2* map 

and BVf map as previously described.15 The spatial resolution of all MRI maps was set to that 

of the lowest acquired (234x234x800 µm). Except for ADC maps (9 slices), all parametric 

maps had 5 slices placed in the centre of the lesion because of technical limitations.  

 

MRI data analysis 

At day 0, four ROIs were delineated to evaluate the alterations of the MRI parameters 

following ischaemia (Fig. 1b). The ROI LesionD0 was obtained by contouring the zone with 

abnormal diffusion on the ADC map (over 9 slices). The ROI Contra was the “mirror” of the 

ROI LesionD0 in the contralateral hemisphere. The ROI Mismatch was defined as the 
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difference between the low-CBF ROI manually delineated (over 5 slices) on the CBF map 

and the ROI LesionD0. To delineate the low-CBF ROI, we searched for anatomically relevant 

areas (i.e. excluding ventricles) that exhibited a sharp CBF decrease (about 20%). The ROI 

Hypoxia was automatically defined as the voxels with a StO2 value below 40% and located 

within the ROI LesionD0 (over 5 slices). The StO2 threshold of 40% was chosen on the basis 

of a previous study demonstrating that a value below 40% is not sufficient for cell survival.18 

These four ROIs were transferred to each parametric map.  

In addition, two ROIs, ROI HIpsiD0 (9 slices) and ROI HContraD0 (9 slices), were defined 

by delineating hemispheres on T2W images and excluding ventricles and Corpus callosum. 

The volume of each hemisphere was estimated by multiplying the number of voxels in the 

ROI by the voxel volume (234x234x800 µm3). At day 21, the lesion volume (LesionD21) was 

estimated by delineating regions of hyperintensity on the ADC map of the 9 slices 

(approximately between the coordinates +2.20 and 4.0 mm from bregma) and the ROI 

ContraD21 was the “mirror” of LesionD21. The volume of each hemisphere (HIpsiD21 and 

HContraD21) was measured as described above.  

The volume occupied by the ROI Hypoxia in the ipsilateral hemisphere was compared to that 

detected three weeks after, the ROI LesionD21. Finally, we compared the in vivo (MRI) and 

ex vivo (histological analysis) detection of the final necrosis at day 21.  

The comparison between the volume of the lesion detected on the StO2 map at day 0 and the 

final lesion at day 21 was performed using 5 slices, because the StO2 maps had only five 

slices (cf. MRI data processing section of Material and Methods). For ADC-based 

measurements, 9 slices were used. Hemisphere volumes were evaluated at day 0 and day 21 to 

detect brain oedema or shrinkage. Lesion volume was also evaluated at both time points to 

assess the ADC lesion fate.  
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Histological data analysis 

After HE staining, the slices were digitized at a resolution of 2400-dot-per-inch using a photo 

scanner (Perfection 4870; Epson, Long Beach, CA) with backlighting. Brain images were 

imported into the Matlab environment (using homemade software), converted to black and 

white and then warped (elastic registration) to ensure matching of the histological regions and 

the anatomical points detected by MRI T2W (1 slice). Briefly, a simple 2D elastic registration 

was done in three steps using built-in Matlab functions (MathWorks, Natick, MA, USA): 1) 

manually selecting control point pairs that correspond to the same anatomical structure 

between the HE staining and the MRI anatomical image (Matlab function called cpselect); 2) 

infer the spatial transformation from control point pairs using a piecewise linear 

transformation (Matlab function called cp2tform); and 3) transform the HE image according 

to the 2D spatial transformation returned by the cp2tform function (Matlab function called 

imtransform). The ROI NecrosisD21 was defined by delineating the zone of HE alteration.  

 

Statistical Analysis 

We tested the normality of our data distribution using the Shapiro-Wilk test. Comparisons of 

ROI areas, volumes and parameter values at day 0 were analyzed with Student’s paired t-test 

if the distribution was normal or by Wilcoxon Signed-rank test otherwise. The Spearman 

correlation coefficient was used for the correlation analysis of MRI at day 0 and day 21 and 

the Pearson correlation coefficient was used for the correlation of MRI D21 and histological 

analysis. Statistical significance was set to p<0.05. Statistical analysis was conducted with 

statistical software package SPSS 21.0 (IBM, Armonk, USA). Data are presented as mean ± 

Standard Error of Mean (SEM) for MRI data or mean ± standard deviation (SD) for 

physiological data. 
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RESULTS 

Four animals were excluded for not presenting an ischaemic lesion (n = 2) or because of 

problems with the contrast agent administration (n = 2). We also lost 22 rats spontaneously 

due to stroke, and 2 because of deteriorating health, leaving 10 rats in our follow-up study. 

The mean occlusion time was 101±15 minutes. Physiological variables (day 0 and day 21) 

were monitored and maintained within physiological limits (Table 1). We found higher heart 

(HR, p=0.04) and breathing rates (BR, p=0.01) at day 0 than at day 21.  

The HIpsi and HContra had similar volumes, at both time points (at day 0: 375.3±3.8 mm3 

and 364.9±6.8 mm3, p=0.17; at day 21: 365.0±5.7 and 363.0±5.7mm3, p=0.97 respectively. 

Comparisons between HIpsiD0 vs. HIpsiD21 p=0.10; and HContraD0 vs. HContraD21 

p=0.88, evaluated by a paired analysis Wilcoxon Signed-rank test) (Fig. 2a and 2b).  

 

Mortality 

Rats spontaneously died due to the severity of ischaemia (n = 22) or were euthanized due to 

deteriorating health (n = 2). The criteria for euthanasia were based on clinical examination 

and assessment of the rat's level of pain, distress or significant weight loss (20% from 

preoperative body weight). Rats were euthanized by an intra-cardiac injection of Pentobarbital 

200mg/kg (Dolhethal, Vétoquinol Inc, France) under deep anaesthesia by isoflurane (IsoFlo, 

Abbot Laboratories Ltd, Berkshire, UK).  

 

Effect of ischaemia on MRI parameters during the acute phase 

Table 2 and Figure 3 summarize the values of each MRI parameter within each ROI at Day 0 

(n = 10). Comparisons between these parameters were based on estimates obtained from 5 

slices, with the exception of ADC (9 slices), and were performed by a paired analysis 

(Student’s paired t-test for a normal distribution or Wilcoxon Signed-rank test otherwise).  
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ADC. As expected, a decreased ADC was observed in the MCA territory following MCAo. 

The ROIs LesionD0 and Hypoxia showed a similar ADC decrease (p=0.14). The mean ADC 

within the ROI Mismatch was similar to that of the ROI Contra (p=0.22) (Figure 3b). 

 

Perfusion. The CBF in the ROI Hypoxia was lower than that of the ROI Mismatch (p=0.001) 

or LesionD0 (p=0.01) (Figure 3c). BVf, measured with a steady-state approach, confirmed a 

reduced perfusion in the ipsilateral ROIs, with the greatest reduction observed in the ROI 

Hypoxia, followed by LesionD0 and Mismatch (p=0.04 for the comparison between Hypoxia 

and the LesionD0 and p<0.01 for comparisons between the other groups) (Figure 3d). 

 

VSI and VD. Figures 3e and 3f show the average VSI and VD, respectively, across all rats 

and for each ROI. MCAo induced alterations in the apparent microvascular architecture: the 

three ipsilateral ROIs exhibited larger VSI and lower VD than in the ROI Contra. Moreover, 

the ROI LesionD0 had higher VSI values than the Mismatch (p=0.05) and Hypoxia (p=0.02) 

ROIs. VD in ROI Hypoxia was lower than that of ROI Mismatch (p<0.01) but similar to that 

of ROI LesionD0 (p=0.37). 

 

StO2. Figure 3g shows the mean StO2 values in the different ROIs. The three ipsilateral ROIs 

exhibited lower StO2 values than the ROI Contra (StO2=70.2%, p<0.01). As expected, the 

lowest values of StO2 were found in the ROI Hypoxia when compared to the ROI LesionD0 

(22.3% vs. 46.7% respectively, p=0.01) or to the Mismatch ROI (22.3% vs. 59.8% p=0.01).  

 

Evolution of the ischaemic lesion three weeks after stroke 
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A paired test showed that the volume of altered ADC (over 9 slices, n = 10 rats) was lower at 

day 21 (ROI LesionD21: 48.6±19.2 mm3) than at day 0 (ROI LesionD0: 65.8±24 mm3, 

p=0.02) (Figure 2b). A good correlation was detected between the two time points (r2=0.93, 

y=1.202x +7.435, p<0.01). At Day 21, the ADC values reported in the ROIs LesionD21 and 

Contra (ADC map) were 1743.7±134.6 µm2/s and 756.2±10 µm2/s, respectively. 

Moreover, we compared the volume of ROI Hypoxia detected by MRI at day 0 using the 

ADC and StO2 maps with the final lesion detected on the ADC map at day 21. We observed 

no significant difference in the volume of ROI Hypoxia (24.29mm3±9.57; 5 slices) and the 

lesion volume detected at day 21 in the ROI LesionD21 (34.66 mm3±12.87; 5 slices; p=0.64) 

(Fig 4). A good correlation was detected between the volume of the ROI Hypoxia and the 

ROI LesionD21 (r2=0.68, p<0.01) (Figures 4b and 4c).  

To check the accuracy of the lesion detection by MRI in the chronic phase, we assessed the 

correlation between lesions detected in vivo by MRI (ROI LesionD21) and ex vivo by 

histological staining (ROI Necrosis). We found a good correlation between the in vivo and ex 

vivo detection of necrotic area (r2=0.85; p<0.01) (Fig 5). Altogether, these results suggest that 

there is a good agreement between the volume of ROI Hypoxia, measured during the acute 

phase of the stroke, and the chronic lesion volume. 

 

DISCUSSION 

The aims of this study were to investigate the sensitivity of StO2 to detect hypoxic areas 

during the acute phase of ischaemic stroke compared to ADC, and to assess its potential in 

predicting the final necrosis. During the acute phase of stroke, both ADC and StO2 detected a 

lesion. The results obtained with multiparametric MRI show that the lesion may be divided 

into three zones with different degrees of severity: the ROIs Mismatch (CBF/ADC mismatch), 

LesionD0 (the ADC lesion) and Hypoxia (as a part of the ADC lesion). After three weeks, the 
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final lesion volume was smaller than that of the initial ischaemic core defined on the ADC 

map. StO2 and ADC were equivalent in predicting the final necrosis.  

 

 

 

Contralateral hemisphere 

Most of the parameter values assessed in the contralateral hemisphere are in agreement with 

previous reports for ADC,22 BVf, VD,23 CBF,24 and StO2.16,25 Contralateral VSI values appear 

to be slightly higher than those previously reported in literature (7.0±0.6 µm vs. 4.5±0.8 

µm).26,27 This result might be explained, as previously reported, by long-term changes in 

myogenic reactivity of MCAs in both ischaemic and non-ischaemic hemispheres.28 

 

Penumbra 

In this study, the “mismatch” area (ROI Mismatch), usually considered to be a salvageable 

zone, exhibited the least severe alterations among the three ipsilateral ROIs. Note that this 

penumbra, being observed around 60 minutes after stroke onset. was evolving more slowly 

than just after stroke onset. We observed an important reduction in CBF (61.0±5.2 

mL/100g/min) compared to the contralateral hemisphere (153.0±4.6 mL/100g/min), but with 

values compatible with cell survival,29 and no alteration of ADC. For all other parameters 

(BVf, VD, StO2), a slight reduction was observed, compared to the contralateral hemisphere, 

except for VSI whose values were slightly higher (7.0±0.6 µm vs. 8.1±0.7 µm). 

 

Ischaemic core 

Quantitative measures of ADC in previous studies revealed that during ischaemia, ADC 

declines before energy metabolism fails.30 These results suggest that a reduced ADC area may 
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overestimate the size of the infarct core. In the present study, the ROI LesionD0 (i.e the ADC 

abnormality) exhibited lower values of ADC, CBF, BVf, VD, and StO2 than the contralateral 

hemisphere and the mismatch area. Conversely, VSI was higher in the initial diffusion lesion 

(LesionD0 ROI) than in the mismatch area and contralateral hemisphere. Regarding both the 

ischaemic core and the penumbra, the increase in VSI, combined with a decrease in BVf and 

VD, could result from a decrease in the number of perfused vessels. Indeed, it is unlikely that 

microvessels have disappeared 1 hour after MCAo. It is more likely that MCAo and oedema 

prevent blood flow in some vessels, which become inaccessible to contrast agent (USPIO), 

resulting in an apparent reduction in VD. The increase in VSI suggests that these non-

perfused vessels are the smallest in diameter. Alternatively, the increase in VSI could arise 

from vasodilation of the remaining perfused vessels, or to a combination of both phenomena. 

The balance between the reduction in VD and the increase in VSI yields a reduction in CBV.  

The ROI Hypoxia was defined as the pixels located within the diffusion lesion (ROI 

LesionD0) with a StO2 below 40%. This segmentation yielded the same hypoxic area as that 

estimated by pimonidazole ex vivo.16  

This threshold was chosen based on a study using near-infrared spectroscopy.18 In the study, 

the authors demonstrated that a lactate increase is detected at an oxygen saturation of 44%, 

minor electroencephalography alterations appear at 42%, and the adenosine thriphosphate 

(ATP) decreases at 33%.18 In a previous study by our team, a comparison between hypoxic 

zones detected in vivo by MRI (threshold of 40% of StO2) and by histological analysis with 

pimonidazole was performed.16 Pimonidazole is a bioreductive hypoxic marker that is 

activated in an oxygen-dependent manner and is covalently bound to thiol-containing proteins 

in hypoxic cells.31 This binding is reported in viable hypoxic cells but not in necrotic cells. 

The redox-dependent process is progressively inhibited at increasing oxygen tensions and 

involves the cell-specific action of cellular nitroreductases.32 A good correlation was 



16 

 

previously reported between StO2 MRI and pimonidazole-positive hypoxic cells 2 hours after 

ischaemia onset.16 

The values of the MRI parameters within the hypoxic zone (ROI Hypoxia), located by 

construction within the diffusion lesion (ROI LesionD0), were in general much lower than 

those of the two other ipsilateral regions, except for ADC and VD, where the ROI Hypoxia 

values were similar to LesionD0. The mean value of CBF in the ROI Hypoxia (31.0±1.4 

mL/100g/min) was no longer compatible with cell survival 29. StO2 fell to 22.0±0.6%; in the 

ROI LesionD0 it was 47.0±1.4%. BVf was also reduced (from 2.2±0.7 to 1.9±0.1%) but to a 

lesser extent. Note that we could not find a BVf or a CBF threshold that could yield the same 

Hypoxia area as that detected with the 40% StO2 threshold. 

Altogether, our results demonstrate that StO2 is a discriminant parameter to detect the most 

severe ischaemic areas within the zone of ADC decrease. In this way, our data confirmed our 

hypothesis that the zone of ADC decrease is heterogeneous, based on our vascular and 

oxygenation results.  

In the present study, the reperfusion was performed after the MRI acquisition, and we 

therefore investigated hypoperfused areas. It should be noted that if the artery had already 

been recanalized at the time of scanning, the blood vessel StO2 concentration would have been 

high even in zones of already dead tissue. In such cases, StO2 values would not represent 

brain tissue oxygenation. The morphology and function of cerebral capillaries undergo 

profound changes during cerebral ischaemia. Capillary constrictions regulated by pericytes 

could block the blood supply; this could explain the occasional absence of tissue reperfusion 

even after the large-vessel recanalization. This result corresponds to the well-described no-

reflow phenomenon.33 This neurovascular dysfunction involves the formation of reactive 

species of oxygen at the level of the vascular endothelium, and affects the local oxygen 

delivery.33 
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In clinical settings, a spontaneous reperfusion could be a limitation for the detection of an 

ischaemic core using a low StO2 threshold. Abnormally high StO2 and normal CBF values 

could also be a marker of already dead tissue.  

 

Evolution of the ischaemic lesion 

The final lesion volume was estimated from the area of increased ADC (LesionD21: 

1743.7±134.6 µm2/s vs. ContraD21: 756.2±10 µm2/s). This increase in ADC, in line with a 

previous study,34 is a consequence of cell death and subsequent cavitation of brain tissue 

being filled by liquid and cell debris. The final lesion volume (48.5 mm3) was smaller than the 

initial volume (65.8 mm3). In accordance with previous reports,35 this suggests that an altered 

ADC during the acute phase does not necessarily yield a lesion. In addition, some 

morphological changes were detected at day 21 such as brain shrinkage and enlargement of 

ventricles (Figure 3a). Brain shrinkage, a process commonly associated with stroke, occurs 

not only in the perilesional zone but also in contralateral hemisphere.36 Additional processes, 

such as axonal degeneration, are involved in shrinkage, and result in expansion of the lesion 

to include remote regions connected to the affected area.36,37  

The ischaemic lesion has a complex and dynamic physiopathology process, and even after 

reperfusion the lesion can continue to change. One limitation of our study is that our 

estimation of the hypoxic zone (ROI Hypoxia based on the StO2 map) did not take into 

account neighbouring voxels. Indeed a recent study, which considered each voxel 

independently, showed that the distribution of intensities surrounding a voxel at the early 

ischaemic stages may capture the dynamic of the lesion growth and be predictive of tissue 

outcome.6,38  

There was a good correlation between the volume of the MRI lesion detected at day 0, 1 hour 

after stroke onset, by StO2 map (ROI Hypoxia) or by ADC (ROI LesionD0), and the volume 
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measured at day 21 (ROI LesionD21), which corresponded to that of Necrosis D21, estimated 

post-mortem. Due to the above mentioned morphological changes that occur between day 0 

and day 21, we were not able to conduct a pixel-by-pixel analysis to determine whether each 

voxel of the StO2 lesion evolved towards necrosis. Nevertheless, we observed that LesionD0 

tended to overestimate the volume of LesionD21, while Hypoxia tended to underestimate it. 

Further studies are needed, including MRI maps obtained at several time points between 30 

and 90 minutes after a stroke for the acute phase, and obtained 1 or 2 days after a stroke for 

the late phase, to assess the fate of low StO2 voxels within the ADC lesion and determine 

whether StO2 MRI is a better predictor of the final infarct than ADC alone. 

 

Study Limitations 

The primary limitation of our study is the mortality rate. We lost around 60% of animals, 

including the animals euthanized due to deteriorating health. Our model of ischaemic stroke 

promotes a massive lesion that includes the fronto-parietal cortex and striatum. In our 

experience, a short occlusion time promotes smaller and more heterogeneous lesions. To 

avoid this heterogeneity, we used a minimum occlusion time of 90 minutes. This resulted in a 

high number of large homogeneous lesions, but also in a higher mortality. The mortality in 

this case can be linked to complications that are common in large stroke, such as cerebral 

oedema and haemorrhagic transformation. The majority of rats died after the filament 

retraction. The actual American Heart Association /American Stroke Association guidelines 

recommend not reperfusing patients with severe stroke.39 Note that our study, like all stroke 

studies, is biased towards small stroke lesions: indeed, as reported in the Results section, rats 

with large lesions died early.  

A second point is that a voxel-based evaluation of the lesion progression over time is 

inherently challenging. Firstly, because it requires the exact same placement of the rats in the 
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magnet, and secondly because of the occurrence of brain shrinkage and/or ventricle 

enlargement. Overall, the registration quality was not sufficient to allow voxel-by-voxel 

analysis. However the co-localization was visually inspected and we observed a coherent 

evolution of infarction. 

An additional limitation is that here we use manual contouring for the diffusion map. The 

zone of ADC abnormality could be also detected using thresholds to detect the voxels with the 

most severe decrease of ADC. This method of detection has previously been used in a clinical 

study of patients with persistent arterial occlusion.35  

In the present study, we focused on StO2 mapping for core discrimination but other 

parameters such as BVf or CBF could be used to estimate stroke severity within the zone of 

ADC decrease. For this, perfusion thresholds should be used to detect the voxels 

corresponding to the irreversibly damaged zones. Engelhorn et al. 2005 evaluated the absolute 

CBF using radioactive-labelled microspheres.29 They demonstrated that the baseline CBF 

(before MCAo) is variable by region, for example between the parietal (0.88±0.26 mL/g/min) 

and temporal cortex (0.74±0.24 mL/g/min).  In addition, this difference is increased in 

ischaemic conditions, dropping to 0.51± 0.21 mL/g/min in the parietal cortex and 0.20± 0.15 

mL/g/min in the temporal cortex.29 Thirty minutes after MCAo, the absolute CBF in viable 

areas was 0.39 ± 0.15 mL/g/min, while in hypoxic brain tissue the CBF average was 0.30± 

0.09 mL/g/min.29  Hypoxic zones detected by the StO2 (<40%) mapping could be compared 

with those detected by perfusion using a threshold. Wu et al. 2006 reported that the use of 

automated threshold techniques by MR-based algorithms combining PWI and DWI was more 

sensitive to the detection of salvageable areas (penumbra) than diffusion alone.17 A limitation 

of our study is that we have not performed the analysis based on perfusion. Brain oxygenation 

is linked to perfusion (BVf), and perfusion could provide a similar core discrimination to 

StO2.  
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Summary 

The voxel-based analysis performed using the StO2 map reveals heterogeneity within the 

ischaemic zone in the acute phase. Diffusion imaging is commonly employed during the acute 

phase of ischaemic stroke to detect the ischaemic core. We report that the zone of ADC 

decrease includes voxels with different degrees of severity, as confirmed by the 

multiparametric analysis including CBF, BVf, VSI and StO2. This study therefore provides 

evidence of the utility of a multiparametric analysis including StO2 mapping to more 

accurately analyze the severity and heterogeneity of brain focal ischaemia. Our follow-up 

study indicated that both ADC and StO2 MRI maps were able to predict the final necrosis. 

However, the lesion volume detected by ADC mapping decreased significantly three weeks 

after stroke. This could indicate that salvageable tissue is included within the initial diffusion 

lesion. 

Few microvascular MRI studies concerning stroke have been conducted.13 As far as we know, 

this is the first study assessing the VSI and VD during the acute phase in a model of 

ischaemic stroke.  

Currently, the most common methods of analysis of CT and MRI images in clinical settings 

are volumetric-based, and until voxel-based analysis becomes available, perfusion-diffusion 

mismatch is useful in clinical settings.40 Overall, a multiparametric approach appears to be 

promising in depicting the severity of a stroke, but such an approach still requires further 

validation and simplification of data analysis. For clinics, the use of this MRI methodology to 

identify heterogeneous acute stroke could be useful to better select the optimal candidates for 

recanalisation procedures. 
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Figure legends 

 

Figure 1. a) Experimental protocol. Ischaemic stroke induction by Middle Cerebral Artery 

occlusion (MCAo). MRI protocol acquisition started 20 minutes after MCAo, lasting for 53 

minutes at day 0. Reperfusion took place 90 minutes after MCAo. MRI acquisition was 

repeated 21 days after (duration 20 minutes); finally the animals were euthanized for 

histological analyses; n = 10 rats. b) Representative image of regions of interest (ROIs) 

delineated on the ADC (apparent diffusion coefficient) map: ROIs measured at day 0: 

LesionD0, ContraD0, hemisphere (H) ipsilateral (ipsi) HIpsiD0, and HContraD0. ROIs 

measured at day 21: LesionD21, ContraD21, HIpsiD21, and HContraD21. ROI Mismatch was 

delineated on the CBF (cerebral blood flow) map; ROI Hypoxia was delineated on the StO2 

(brain tissue oxygen saturation) map. 

 

Figure 2. a) Evolution of the apparent diffusion coefficient (ADC) map of a rat brain from 

one animal during middle cerebral artery occlusion at day 0 (D0) and 21 days after (D21). b) 

Volume of the cerebral hemispheres: Ipsilateral (HIpsi) and contralateral to the lesion 

(HContra) at D0 and D21, and volume of the altered zone detected by diffusion MRI during 

middle cerebral artery occlusion. Region of interest (ROI) LesionD0 at day 0 and at D21 

(LesionD21) over the 9 slices of ADC map. *Difference between the MR diffusion alteration 

volume at D0 and D21 detected by Wilcoxon Signed-Rank test (p=0.02). c) Correlation 

between the volumes of ROI Lesion at day 0 and day 21 r2=0.93, p<0.001, y=1.202x +7.435 

(n = 10).  

 

Figure 3. a) Representative images of multiparametric MRI post-ischaemic stroke. Six MRI 

parameters were mapped: apparent diffusion coefficient (ADC); cerebral blood flow (CBF); 

blood volume fraction (BVf); vessel size index (VSI); Vessel density (VD) and brain tissue 
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oxygen saturation (StO2). The grey scale bar represents the range of values of each map.  3.2 

Comparison of values of each MRI parameter: b) ADC, c) CBF, d) BVf, e) VSI, f) VD and g) 

StO2 within each region of interest (Contra, Mismatch, LesionD0 and Hypoxia) at Day 0. 

*Significant difference detected by paired Student t-test comparison (for ADC, CBF, BVf, 

VSI and StO2 maps) or by Wilcoxon Signed-rank (for VD map) p<0.05, n = 10. 

 

Figure 4. a) Volume of Lesion at day 0 and at day 21. Representative images of the MRI 

maps at day 0 (D0) (StO2, brain tissue oxygen saturation map) and at day 21 (ADC D21). b) 

Comparison of the volume of the ROI Hypoxia and LesionD21 over 5 slices expressed in 

mean and the standard error of mean (SEM). No significant differences were detected 

between the volume occupied by the ROI LesionD21 (34.66mm3±12.87) and ROI Hypoxia 

(24.29mm3±9.57) (p=0.05) 0. c) Correlation between the volume of ROI Hypoxia vs. 

LesionD21; the correlation coefficient was r2=0.67, p=0.005, y=0,63x +0,98 (n = 10). 

Figure 5. Quantitative correlation between in vivo and ex vivo evaluation. a) Representative 

images of apparent diffusion coefficient (ADC) at day 21 (used to define ROI LesionD21) 

and haematoxylin erythrosine (HE) staining (used to define ROI NecrosisD21). b) Correlation 

between the size of ROI LesionD21 and ROI NecrosisD21. Dashed line represents identity; 

solid line represents the limiar. Pearson coefficient correlation was r2=0.85, p=0.001, y=1,04x 

+ 2,31 (n = 10). 
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Table 1. Physiological data 

 Day 0     (mean±SD) Day 21 

(mean±SD) 

SaO2 (%) 95.55±4.06  

392.19±20.5*  

98±1.35  

334.5±38.9  Hr (bpm)  

Br(brpm)  64.07±9.3*  51.5±6.97  

Physiological variables during magnetic resonance 

imaging acquisition. Saturation of oxygen (SaO2), heart 

rate (HR), beats per minute (bpm); breathing rate (BR), 

breaths per minute (brpm). Data are expressed as mean ± 

standard deviation (SD), n=10. * Significant difference 

detected by paired Student t-test  p<0.05. 

 

 

 

Table 2. Magnetic Resonance Imaging parameter values in each Region of interest   

 Regions of interest  (mean ± SEM) 

 MRI parameters Contra LesionD0 Mismatch Hypoxia 

     
ADC (µm2/s-1) 763±15.6 576.7±16.3 742±7.5 563±16.1# 

CBF (mL/100g/min) 153±4.6 46±5.1 61±5.2 31±2.0#  

BVf  (%) 4± .1 2.± .1 3± .1 2± .1#  

VSI (µm) 7± .6 10±.9 8± .7  9± .8   

VD (mm-2) 289±39.9 147±40.8 230±41.4 139±51.1#  

StO2  (%) 70±1.5 47±1.4 60±2.2 22± .6#  

Magnetic resonance imaging (MRI), apparent diffusion coefficient (ADC); cerebral blood flow (CBF); blood volume 

fraction (BVf); vessel size index (VSI); vessel density (VD) and brain tissue oxygen saturation (StO2). Significant 

differences detected by paired Student t-test comparison (for ADC, CBF, BVf, VSI and StO2 maps) or by Wilcoxon 

Signed-rank (for VD map). In bold, ROIs different from LesionD0; # from ROI Mismatch. For all MRI parameters 

evaluated, the ROIs Mismatch, LesionD0 and Hypoxia were different from ROI Contra, except for the ROI mismatch in 

ADC.  Data are expressed as mean and standard error of mean (SEM) p<0.05. 
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