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Abstract

Human Galectin-3 is found in the nucleus, the cytoplasm and at the cell surface. This lectin is constituted of two domains: an
unfolded N-terminal domain and a C-terminal Carbohydrate Recognition Domain (CRD). There are still uncertainties about
the relationship between the quaternary structure of Galectin-3 and its carbohydrate binding properties. Two types of self-
association have been described for this lectin: a C-type self-association and a N-type self-association. Herein, we have
analyzed Galectin-3 oligomerization by Dynamic Light Scattering using both the recombinant CRD and the full length lectin.
Our results proved that LNnT induces N-type self-association of full length Galectin-3. Moreover, from Nuclear Magnetic
Resonance (NMR) and Surface Plasmon Resonance experiments, we observed no significant specificity or affinity variations
for carbohydrates related to the presence of the N-terminal domain of Galectin-3. NMR mapping clearly established that the
N-terminal domain interacts with the CRD. We propose that LNnT induces a release of the N-terminal domain resulting in
the glycan-dependent self-association of Galectin-3 through N-terminal domain interactions.
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Introduction

Galectins are small soluble lectins having carbohydrate-depen-

dent extracellular and carbohydrate-independent intracellular

activities [1]. Oligomerization is one of the unique features of

secreted galectins forming ordered galectin-glycan lattices at the

cell surface. Fourteen members of the galectin family have been

identified in mammals and designated as galectin-1 to galectin-14.

The common property of galectins is the presence of a

carbohydrate-recognition domain (CRD) of about 130 amino

acids with a highly conserved folding that confers affinity for b-

galactoside-containing glycans [1]. Galectins are classified in three

categories according to their structures [1]. The members of the

prototype family which exist as monomers or homodimers and

contain one CRD per subunit are Galectin-1, -2, -5, -7, -10, -11,

-13 and -14. The tandem-repeat family accommodates two CRD

domains in a single polypeptide chain connected by a non-

conserved linker sequence of up to 70 amino acids. This family is

composed of Galectin-4, -6, -8, -9 and -12. Galectin-3 is the

unique member of the chimera family and its single polypeptide

chain forms two distinct domains, a non-lectin N-terminal domain

and a C-terminal domain constituting the CRD. Galectin-3 N-

terminal domain encloses a short N-terminal segment necessary

for secretion followed by collagen-like repeats connected to the C-

terminal CRD domain [2].

Galectin-3 displays a large range of cellular locations [3]. It is

found in the nucleus, the cytoplasm and can be secreted via a non-

classical pathway outside the cell [4]. In adults, Galectin-3 is

ubiquitously distributed in tissues and it is thus involved in a large

number of physiological and pathological processes such as cell

proliferation, cell differentiation, cell survival and cell death [5–6].

Galectin-3 N-terminal domain is essential for its biological

activities [2]. This unstructured domain is subject to metallopro-

teinase proteolysis, which impacts on its biological functions.

Cleavage at different positions has been shown to be a fine tuning

of Galectin-3 activity and specificity. Serine and tyrosine

phosphorylations have been described as post-translational mod-

ifications [7]. These modifications are involved in Galectin-3

localization by regulating collagen domain cleavage [8]. Galectin-

3 has also an extracellular localization at the cell surfaces or in the

extracellular matrix [4]. This lectin has been shown to mediate cell

adhesion involving cell surface glycosylated components. Extra-

cellular lattice formation resulting of Galectin-3/glycan interac-

tions is an interesting problem, but a lot of contradictory structural

information is found in the literature. The role of Galectin-3 N-

terminal domain was suggested to be either in modulating the

affinity of the lectin for carbohydrates or regulating the self-

association of this chimera lectin. The CRD is responsible for the

lectin activity of Galectin-3 [9], but the implication of the N-

terminal domain in carbohydrate interaction is still an open
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question. Moreover, two models of Galectin-3 self-association have

been reported: a C-type self-association involving the CRD [10]

and a N-type self-association involving the N-terminal domain

[11]. It has been reported that Galectin-3 precipitates as a

pentamer with synthetic multivalent carbohydrates and forms

disorganized heterogeneous cross-linked complexes [12].

Using recombinant full length Galectin-3 (FL) and Galectin-3

CRD (CRD), we have investigated by Dynamic Light Scattering

(DLS) the self-association properties of Galectin-3 in the presence

or the absence of carbohydrates. A mechanism for the ligand-

induced N-type association is proposed on the basis of our

structural NMR data on CRD/N-terminal domain interactions in

the presence or the absence of the lacto-N-neoTetraose (LNnT).

Material and Methods

Protein expression
The cDNA sequences encoding N-terminal domain (13–113),

CRD domain (114–250) and full length (1–250) human Galectin-3

were PCR amplified using appropriate primers (Table S1) in order

to include a 6His-tag sequence at the N-terminus for the N-

terminal domain and at the C-terminus for CRD and full length

protein. The encoding sequences were then cloned into a

pET22b(+) expression vector. After transformation of BL21(DE3)

competent cells, the bacteria were grown on minimum cell

medium M9 at 37uC until OD600 nm = 0.6. Then IPTG 1 mM was

added to the culture to induce overexpression of the proteins. After

4 hours at 37uC, cells were harvested. From a French press cell

lysate, the His-Tag proteins were purified from the supernatant by

affinity chromatography using a HiTrap pre-packed column on an

AKTAPrime purifying system (GE Healthcare). Proteins were

eluted using a linear imidazole gradient and dialyzed in a 5 mM

potassium phosphate buffer at pH 7.4. EDTA was added to purify

fractions of N-terminal domain and full length Galectin-3 to avoid

cleavage by metalloproteinases. Protein purity was checked by

coomassie blue staining of a SDS-PAGE and mass spectrometry

analysis. For isotopic labeling, 15N-ammonium chloride was used

as the sole source of nitrogen and 13C-C6glucose was used as the

sole source of carbon.

NMR experiments
NMR experiments were carried out at 303 K on a Bruker

Avance III 600 MHz NMR spectrometer equipped with a TCI

cryoprobe, and a Bruker Avance III 500 MHz NMR spectrom-

eter. CRD chemical shift assignments were obtained from [13]

and two sets of heteronuclear NMR experiments (HNCA and

HNCOCA, and HNCO and HNCACO) were performed on the
15N and 13C-labeled CRD sample at 400 mM concentration in

the presence and the absence of lactose. 1H-15N-HSQC titrations

were performed on 15N-labeled proteins at 40 mM concentration

for CRD and 30 mM for full length protein (FL), in the absence

and the presence of various concentrations of ligands (lactose or

Figure 1. CRD and FL oligomerization states without glycan determined by DLS. Top, CRD (41 mM) size distribution by volume before and
after filtration. Bottom, FL (37 mM) size distribution by volume before and after filtration.
doi:10.1371/journal.pone.0111836.g001
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LNnT). All NMR experiments were performed on samples in

5 mM potassium phosphate buffer at pH 7.4. Lactose was

purchased from Sigma and LNnT from Elicityl Company.

Surface Plasmon Resonance experiments
SPR experiments were performed at 25uC on a NiHC sensor

chip (Xantec) with a Biacore T200 instrument (GE Healthcare)

using 10 mM HEPES-NaOH pH 7.4, 150 mM NaCl, 50 mM

EDTA, 0.005% Tween-20 as the running buffer. Six his-tagged

CRD and FL were immobilized (230 fmoles) by affinity on two

independent experimental flow cells, and two flow cells without

protein were used as control. A set of concentrations of lactose and

LNnT were successively injected over all flow cells at a flow rate of

30 ml/min during one minute. Sensorgrams obtained from control

flow cells were systematically subtracted from those obtained over

CRD and FL. The KD values were calculated by plotting

saturation binding curves using the equilibrium response at the

plateau of all curves with BiaEvaluation software version 2.0 (GE

Healthcare). Each value was obtained from at least two

independent experiments performed in triplicate.

Dynamic Light Scattering
We performed Dynamic Light Scattering (DLS) experiments

using a Zetazizer Nano Series (Malvern Instruments, London,

UK). The samples were analyzed in a disposable micro-cuvette

ZEN0040. The samples were measured in triplicate. Each

measurement consisted of 11 runs, each run lasting for 10

seconds. We used a laser He-Ne at 633 nm with a scattering

detection angle of 173u. All analyses were performed at 25uC. The

solutions containing 41 mM CRD and 37 mM FL, in 5 mM

potassium phosphate buffer at pH 7.4, were centrifuged at

14,000 rpm for 5 minutes and filtered through a 0.45 mm filter.

Sodium phosphate buffer with a viscosity of 0.89 cp and a

refractive index of 1.33 was used for all sample preparations. We

used the standard refractive index 1.45 for a spherical protein to

calculate the mass distribution of size. Protein analysis was

performed using the instrument software based on the model

determined from an L.curve. We used a standard operating

procedure for protein analysis. All measurement conditions were

optimized automatically by the instruments software. We added

increments of 1 ml of 100 mM lactose to a 50 ml sample containing

CRD and FL respectively. The concentrations of lactose used were

from 2 mM to 8 mM. LNnT was added in 0.5 ml increments of a

7 mM stock to 50 ml sample containing CRD and FL respectively.

The LNnT concentrations added to the FL sample were from

70 mM to 210 mM, in contrast to the higher amounts added to

CRD, 70 mM to 1.2 mM.

Figure 2. CRD and FL glycan induced oligomerization determined by DLS. A] CRD (41 mM) size distribution by volume before and after the
addition of glycans. Top, monomeric CRD without glycan; middle, monomeric CRD with 2 mM lactose; bottom, monomeric CRD with 140 mM LNnT.
B] FL (37 mM) size distribution by volume before and after the addition of glycans. Top, FL monomer without glycan; middle, FL monomer with 8 mM
lactose; bottom, FL oligomers with 140 mM LNnT.
doi:10.1371/journal.pone.0111836.g002
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Results and Discussion

Oligomerization states of Galectin-3 investigated by DLS
Taking into account the large number of contradictory results

already published in the literature regarding the oligomeric states

of Galectin-3, our first concern was to investigate the oligomer-

ization states of CRD and full length Galectin-3 by DLS. After

purification and freezing at 280uC, we could observe that both

CRD and FL were present in two states: a small hydrodynamic

size as already reported in the literature and a large hydrodynamic

size, indicating an oligomerization of the Galectin-3 independent

of the glycan presence and independent of the N-terminal domain,

corresponding to the C-type association (Table 1 and Fig. 1).

However, when comparing FL and CRD samples, it appeared

that FL was more sensitive to oligomerization. We optimized a

protocol including centrifugation (14,000 rpm during 5 mn) and

filtering (0.45 mm) which allowed us to obtain a sample

predominantly constituted of molecules with a hydrodynamic

radius less than 5 nm (Table 1), consistent with the monomeric

form of the lectin. We observed that the monomeric state of CRD

or FL samples remained stable at room temperature for several

hours following filtration. The samples also remained stable up to

47uC. With the aim to observe glycan induced oligomerization, we

have performed all the DLS experiments using samples centri-

fuged, filtered and analyzed at room temperature. Two carbohy-

drates were tested, lactose, well established as a good ligand for

Galectin-3 and LNnT [14]. Both x-ray structures of the CRD/

lactose complex (PDB 3ZSJ) and CRD/LNnT complex (PDB

4LBN) have been solved. In Table 1, the results of DLS

experiments are summarized, showing the percentages of different

hydrodynamic sizes (corresponding to different oligomerization

states) for both CRD and FL in the absence and presence of the

ligands. The comparison between the initial percentage of

monomeric CRD and FL (size ,5 nm) and after lactose addition,

clearly shows that lactose does not induce CRD nor FL

oligomerization (Fig. 2). This data is in agreement with previous

data found in the literature [15]. Interestingly, with the addition of

70 mM LNnT to the FL solution, two populations were present;

the first with a hydrodynamic radius of 3.147 nm representing

66.7% of the total mass and the second with a radius of 4.643 nm,

representing 33.3% (Table 1, sample 9). The 4.643 nm population

could be indicative of a pentameric state already described in the

literature (Ahmad et al, 2004). Consequently, when we increased

the concentration two fold of LNnT, the percentage of protein

with low hydrodynamic size (less than 5 nm) dropped to zero,

while an increase of two populations with larger hydrodynamic

radii was observed. The first population with a hydrodynamic

radius greater than 40 nm, represents 8.7% of the total mass and

the second population with a radius greater than 100 nm,

represents 91.3%. On the contrary, the presence of LNnT

induced no effects on the CRD. The evidence clearly demon-

strates that LNnT is able to induce oligomerization of the full-

length protein, but not of the CRD alone. Such results strongly

support the hypothesis of an essential role of the N-terminal

domain in the mechanism of ligand-dependent oligomerization of

Galectin-3 via an N-type self-association as recently reported in

the literature [11].

Structural analysis of full length Galectin-3
To investigate the structural features of Galectin-3 ligand-

induced oligomerization, we produced 15N-labelled N-terminal

domain, CRD domain and full length Galectin-3 to perform an

NMR structural study (Fig. 3).T
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1H-15N HSQC spectra of the free CRD domain of Galectin-3

(Fig. 3A) is in agreement with the already published assignment of

this protein [13]. The 1H-15N HSQC of the free N-terminal

domain (Fig. 3B) is characteristic of an unfolded domain with

resonances between 8.5 and 7.5 ppm. The 1H-15N HSQC of the

full length protein is the sum of the 1H-15N HSQC spectra of the

N-terminal domain and of the CRD with slight chemical shift

variations in perfect agreement with the already published

assignment of the full length protein [16]. In the three proteins

(CRD, FL and N-terminal domain), the 6His-Tag was not

assigned.

To access the interactions between the CRD and N-terminal

domains we compared 1H-15N HSQC spectra of the free CRD

with that of CRD within the FL (Fig. 4C and Fig. 5A). Chemical

shift variation analysis indicates that the markedly shifted

resonances of CRD belong to some residues close to the sugar

binding site and residues located at the backside of the lectin

(residues Ile132, Leu135, Val138, Lys139, Phe192, Glu193,

Phe198, Ile200, Gln201, Val202, Leu203, Glu205, Lys210,

Ala212, Asp215, Ala216, Asp241, Thr243 and Ser244) (Fig. 5A).

This result is in perfect agreement with the peptide analysis

already reported by NMR spectroscopy indicating that the N-

terminal domain of Galectin-3 interacts with residues of CRD

located at the back of the molecule [17]. Moreover, residues

located at the N- and C-terminal extremities of the CRD (residues

Ile115 and Val116, and Tyr247, Thr248 and Met249) were also

perturbed by the presence of the N-terminal domain as previously

predicted by modeling of Galectin-3 involving the b-strands S1

and S12 [18]. The binding of the N-terminal domain of Galectin-3

on the N- and C-terminal segments of the CRD may explain the

monomeric status of this galectin in solution.

On the other hand, comparison of 1H-15N HSQC of the N-

terminal domain alone and within the full length Galectin-3 was

more difficult to interpret (Fig. 3B). Even if the assignment of the

Figure 3. 1H-15N HSQC spectra carried out on a 500 MHz NMR spectrometer at 300 K. A] 15N-HSQC of full length Galectin-3 (in black) at
30 mM concentration and recombinant CRD (in red) at 40 mM concentration, B] 15N-HSQC of full length Galectin-3 (in black) at 30 mM concentration
and recombinant N-terminal domain (in red) at 30 mM concentration.
doi:10.1371/journal.pone.0111836.g003
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full length Galectin-3 has been recently reported [16], it was not

possible to give a chemical shift mapping of the CRD domain

interacting zone on the N-terminal unstructured domain in full

length Galectin-3. Due to the various conformations of the flexible

N-terminal domain, the presence of repeat segments and the poor

resolution of the NMR spectra of the N-terminal domain,

unambiguous sequence specific assignments within the complex

were difficult to obtain. However, we could observe that numerous

resonances of the N-terminal domain underwent perturbations

when comparing the spectra of the N-terminal domain alone and

within the full length protein, confirming that the N-terminal

domain interacts with the CRD (Fig. 3A).

Structural analysis of Galectin-3 oligosaccharide
complexes

1. Complex formation of CRD and full length Galectin-3

with lactose. Figures 4 and 5B show the NMR titrations

conducted on the CRD with lactose. The residues for which we

observed chemical shift variations correspond to ones shown in the

x-ray structure to be involved in the formation of the CRD/lactose

complex (PDB 3ZSJ). No significant difference was observed

between the affected residues of the CRD alone and full length

protein. This indicated that lactose does not affect N-terminal

domain/CRD interactions (Fig. 4A and 4C). The KD obtained by

SPR measurements with lactose (Fig. 6) were in agreement with

our NMR data as similar affinities for CRD (1.2560.18 mM) and

for FL (1.1260.2 mM) were observed. These results clearly

established that the N-terminal domain did not mediate nor

enhance lactose/CRD interactions.

2. Complex formation of CRD and full length Galectin-3

with LNnT. Galectin-3 is known to interact with polyLacNAc

oligosaccharides [14] and among them the structure of CRD/

LNnT complex was solved by x-ray (PDB 4LBN). SPR

experiments show that both the CRD and the FL proteins have

a higher affinity for LNnT than for lactose (Fig. 6). Moreover, the

affinities of CRD and FL were similar for LNnT indicating that

the N-terminal domain does not mediate the lectin/LNnT

interaction (0.1460.017 mM for CRD and 0.1260.016 mM for

Figure 4. Complex formation involving Galectin-3. A] 15N-HSQC spectra carried out on a 600 MHz NMR spectrometer equipped with a TCI
cryoprobe at 300 K. Top left, free CRD at 40 mM concentration in black and CRD at 40 mM concentration in the presence of lactose at 1.5 mM in red;
top right, free full length Galectin-3 (FL) at 30 mM concentration in black and FL at 30 mM concentration in the presence of lactose at 1.5 mM in red;
bottom left, CRD at 40 mM concentration in black and CRD at 40 mM concentration in the presence of LNnT at 80 mM in red; bottom right, free full
length Galectin-3 (FL) at 30 mM concentration in black and FL at 30 mM concentration in the presence of LNnT at 80 mM in red. B] Zoom in of HSQC: in
left box, free CRD at 40 mM concentration in black and CRD at 40 mM concentration in the presence of lactose at 0.1 mM in red, 0.8 mM in green and
1.5 mM in blue; in the right box, CRD at 40 mM concentration in black and CRD at 40 mM concentration in the presence of LNnT at 28 mM in red and
90 mM in blue. C] Chemical shift variations observed on Galectin-3 CRD NH, top, induced by the N-terminal domain within FL (Table S2); center,
induced by lactose (Table S3); bottom, induced by LNnT (Table S4). Values shown were calculated using the equation Ddobs = [(DdHN

2 + DdN
2/25)]1/2.

In green boxes are highlighted residues affected by lactose. In red boxes are highlighted residues affected by the N-terminal domain within the full
length protein.
doi:10.1371/journal.pone.0111836.g004
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FL). The slow exchange of NMR chemical shift variations

observed in the presence of LNnT and the fast exchange observed

in the presence of lactose were also in agreement with a higher

affinity for LNnT than for lactose (Fig. 4B). X-ray structural data

on CRD/ligand interactions (PDB 3ZSJ and 4LBN) revealed that

the binding of the core b-galactoside is highly conserved in all

analyzed complexes. In particular, the interactions formed by

Trp181 with O4 and O6 of the galactose moiety are always

observed. 1H-15N HSQC spectra indicate that the ligand affects

the CRD and FL spectra in a similar way (Fig. 4C and Fig. 5C). In

the crystal structure of CRD/LNnT complex [19], there is a well-

defined electron density for the three carbohydrate residues from

the reducing end of LNnT (GlcNacb1-3Galb1-4Glc). These

residues form identical hydrogen bonding with the protein as

those in the lactose-bound structures. The GlcNac residue that is

b1-3 linked to the lactose in the tetrasaccharide extends the

Galectin-3 binding site by the formation of direct hydrogen bonds

with the protein side chains (Arg144 and Asp148). Consistently,

these two residues show additional chemical shift variations in the

spectrum of CRD in the presence of LNnT (Fig. 4C). In addition,

water- mediated interactions are observed between GlcNac

carbonyl oxygen and the side chains of Arg144 and Asn160,

and van der Waals contacts are found between GlcNac C6/O6

and Asp148 and His158. Additional chemical shifts are observed

for these residues in the NMR spectra in the presence of LNnT

(Fig. 4C). The terminal b1-4 galactose residue is relatively poorly

defined in the electron density and it forms weak interactions with

Gly238 and Arg144 in agreement with the additional chemical

shifts observed in the NMR spectra in the presence of LNnT

(Fig. 4C). It is clear that these favorable interactions are consistent

with a greater affinity for LNnT than for lactose, as calculated

from SPR experiments (0.1460.017 mM for LNnT and

1.2560.18 mM for lactose with CRD) (Fig. 6). As mentioned in

the literature, the conformation of LNnT and its contact at the

surface of the protein limits the types of extensions suitable for

Galectin-3 ligands. Any extension would, however, lie along the

binding groove [14]. When comparing the effect of LNnT binding

on the quality of the NMR spectra of CRD and full length

Galectin-3, one can observe decreased peak intensity in the NMR

spectra of the full length protein after LNnT addition (Fig. 4A).

Such decrease for the bound protein is correlated to a glycan

induced oligomerization observed in DLS experiments for the FL

protein but not for the CRD alone, and results in a lower

concentration of the soluble form. We thus concluded that LNnT

induces a full length Galectin-3 N-type self-association.

Structural implications of N-type self-oligomerization of
Galectin-3

On the basis of our NMR titrations, we analyzed the effects

induced by the N-terminal domain, lactose and LNnT on the

CRD chemical shifts (Fig. 4C). One can observe that the chemical

shift variations on the CRD in the presence of LNnT are the sum

of those induced by lactose and some due to the N-terminal

domain. Thus, the N-terminal interface and the LNnT interface

Figure 5. Chemical shift mapping representation on Galectin-3 CRD structure. A] Effects of the N-terminal domain on the NH groups of
amino acids of the CRD. The structure of CRD in the presence of LNnT (PDB 4LBN) is shown. In yellow is Trp181, in red is LNnT and in blue are the
amino acids of the CRD with chemical shift variations in the presence of the N-terminal domain within the full length Galectin-3. B] Effects of lactose
on the NH groups of amino acids of the CRD. The structure of CRD in the presence of lactose (PDB 3ZSJ) is shown. In yellow is Trp181, in red is the
lactose and in green are amino acids of CRD with chemical shift variations induced by the presence of lactose. C] Effects of LNnT on the NH groups of
amino acids of the CRD. The structure of CRD in the presence of LNnT (PDB 4LBN) is shown. In yellow is Trp181, in red is LNnT and in green are amino
acids of the CRD with chemical shift variations induced by the presence of LNnT.
doi:10.1371/journal.pone.0111836.g005
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overlap on the CRD, indicating that one interaction might alter

the other (Fig. 5). These data bring us to conclude that LNnT

removes the N-terminal domain from the CRD interface by

competition, triggering the release of this N-terminal domain and

resulting in the oligomerization of the full length Galectin-3 via a

N-type glycan-dependent self-association.

At the cell surface when Galectin-3 is overexpressed, two

independent Galectin-3 self-association processes are the driving

force of lattice formation. The first is a glycan-dependent N-type

association where Galectin-3 forms heterogeneous oligomers

through N-terminal domain interactions. The second is glycan-

independent and also observed for the CRD alone, thus defined as

C-type association. In the full length galectin-3, the C-type

association is probably enhanced by the N-type association. In this

work, we show how in the presence of LNnT, N-type oligomer-

ization increases the exposure of the N- and C-terminal extremities

of the CRD domain which are favorable to the C-type

interactions. These two driving forces assisted by the specific

positioning of glycans at the cell surface may induce a proper

lattice formation. Such lattice is necessary to strengthen cell-cell

interactions under dragging forces imposed by the fluid flow acting

on cells or bacteria. The protein-protein interactions encountered

at the N-terminal domain/CRD interface of Galectin-3 may be

considered as new potential targets for drug design in cancer.
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Figure 6. SPR measurement of lactose and LNnT binding to CRD and FL. Increasing concentrations of lactose (12.5–2000 mM, A, C) and
LNnT (0.5–250 mM, B, D) were injected over immobilized CRD and FL. Typical sensorgrams obtained with CRD (A, B) are displayed. The measured
plateau values were used to plot saturation binding curves (C, D). These curves were used to calculate the KD value for lactose and LNnT bindings to
CRD and FL. One curve is representative of at least two independent experiments.
doi:10.1371/journal.pone.0111836.g006
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15N backbone and side-chain chemical shift assignments for the 36 proline-

containing, full length 29 kDa human chimera-type Galectin-3. Biomol NMR

Assign. DOI 10.1007/s12104-014-9545-3.
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