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Abstract. Quantifying T2 and T ∗
2 relaxation times from MRI becomes

a standard tool to assess modifications of biological tissues over time
or differences between populations. However, due to the relationship be-
tween the relaxation time and the associated MR signals such an analysis
is subject to error. In this work, we provide a Bayesian analysis of this re-
lationship. More specifically, we build posterior distributions relating the
raw (spin or gradient echo) acquisitions and the relaxation time and its
modifications over acquisitions. Such an analysis has three main merits.
First, it allows to build hierarchical models including prior information
and regularisations over voxels. Second, it provides many estimators of
the parameters distribution including the mean and the α-credible inter-
vals. Finally, as credible intervals are available, testing properly whether
the relaxation time (or its modification) lies within a certain range with
a given credible level is simple. We show the interest of this approach on
synthetic datasets and on two real applications in multiple sclerosis.

1 Introduction

Relaxometry imaging provides a way to quantify modifications of biological tis-
sues over time or differences between different populations. In this context, the
problem of estimating T2 values from echo train acquisitions is discussed in many
works [10, 12, 11]. Since we deal with quantitative values, being able to then de-
tect and assess significant differences and changes seems an important goal to
achieve. However, to our knowledge, there is still a lack of statistical method
to analyse such data. In this work, we focus on the analysis of the T2 or T ∗

2

modification between two time-points (e.g. baseline versus 3 months later or pre
versus post contrast agent injection) for a given subject. A naive approach to
perform such a task consists in first computing the T2 maps for the pre and
post acquisitions using an optimisation algorithm and then in comparing the
variation level inside a region of interest -typically multiple sclerosis lesions- to
the variation inside the normal appearing white matter (NAWM). However, this
solution may drive to important issues. The reproducibility error of T2 and T ∗

2

maps is indeed significantly smaller in the NAWM than in regions with higher
intensities. This makes the task, in the best case, complex and, in the worst,
error prone with many false positive detections in the higher intensities regions.



In fact, due to the form of the relationship relating the MR signal and the
relaxation time, the uncertainty of estimation increases with the relaxation time
(see [7] for illustrating experiments on phantoms). In this work, we provide a
Bayesian analysis of this relationship. More specifically, we build posterior distri-
butions relating the raw (spin or gradient echo) acquisitions and the relaxation
time and its modification over time. These posterior distributions extract the
relevant information from the data and provide complete and coherent charac-
terisations of the parameters distribution. Our approach has three main advan-
tages over the existing T2 and T ∗

2 estimation methods. First, it allows to build
complex models including prior belief on parameters or regularisations over vox-
els. Second, it provides many estimators of the parameters distribution including
the mean and α-credible highest posterior density (HPD) intervals. Finally, once
the credible intervals estimated, testing properly whether the relaxation time (or
its modification) lies to a certain range given a credible level becomes simple.

The article is organized as follows. In Section 2, we describe a set of models
to analyse the T2 and T ∗

2 relaxation times. More specifically, in Section 2.1, we
give a posterior for the T2 (or T ∗

2 ) estimation. In Section 2.2, we give a procedure
to assess differences of T2 in a voxel between two time points at a given credible
level. Then, in Section 2.3, we slightly modify the posterior so that the estimation
is not anymore performed voxel-wise but region-wise leading to non-independent
multivariate estimations and testings. In Section 2.4, we propose a prior to use
the extended phase graph function instead of the exponential decay function used
in the previous models. Then, in Section 3, we assess our method on synthetic
data. In Section 4, we provide two examples of applications on Multiple Sclerosis
data. Finally, in Section 5, we discuss this work and give perspectives.

2 Models

2.1 Bayesian analysis of T2 relaxometry

For a given voxel in a volume, the MR signal Si for a given echo time τi can be
related to the two (unknown) characteristics of the observed tissue T2 and M
(where M accounts for a combination of several physical components) through:

Si|T2 = t2,M = m,σ = σ ∼ N(ft2,m(τi), σ
2), (1)

where ft2,m(τi) = m · exp
(
− τit2

)
and N(µ, σ2) is the normal distribution with

mean µ and variance σ2. The Gaussian error term allows to account for mea-
surement noise as well as for model inadequacy (due to e.g. multi exponential
decay of the true signal, partial volumes or misalignment). Then we consider
that for all i 6= j (Si|t2,m, σ) ⊥ (Sj |t2,m, σ) (⊥ standing for independence).

The associated reference prior [1] for σ and (M,T2) in different groups writes:

Π1(t2,m, σ) = ΠT2
(t2) ·ΠM (m) ·Πσ(σ) (2)

∝
( l0(t2) · l2(t2)− l21(t2)

t2
2 ·1[t2min,t2max](t2)

)
·
(
m·1[mmin,mmax](m)

)
·
( 1

σ
1IR+(σ)

)
,



where lk(t2) =
∑
i τ
k
i exp(−2 τit2 ) for k = 0, 1, 2 and where 1A(x) = 1 if x ∈ A

and 0 elsewhere. Notice that the upper limit for M and positive lower limit for
T2 in the prior support are needed to ensure posterior properness. This prior
leads to invariance of the inference under reparametrisation of the exponential
decay function. Moreover, as it will be shown in Section 2.1, it provides satisfying
performance whatever the actual values of T2 (so, under normal as pathological
conditions). Estimators for the resulting marginal posterior p(T2|(si)) can then
be computed using a Markov Chain Monte Carlo algorithm (details in Section
3).

2.2 Bayesian analysis of T2 modification

We are now concerned with the following question : how to assess that the T2
value associated to a given voxel has changed between two acquisitions with a
given minimal credible level. Let call Xa the random variable associated to a
quantity for the pre acquisitions and Xb for the post acquisitions. We assume
that the volumes are aligned and model for the pre acquisition:

Sa,i|t2,ma, σa ∼ N(ft2,ma
(τi), σ

2
a), (3)

and introduce C as the T2 modification between the two acquisitions through:

Sb,i|t2, c,mb, σb ∼ N(ft2+c,mb
(τi), σ

2
b ), (4)

where (additionally to above independences) for all i, j (Sb,i|t2, c,mb, σb) ⊥
(Sa,j |t2,ma, σa). From Eq. 2 we can define the prior:

Π2(c, t2,ma,mb, σa, σb) ∝ ΠT2(t2 + c)ΠT2(t2)ΠM (ma)ΠM (mb)Πσ(σa)Πσ(σb),
(5)

that defines, with Eq. 3 and 4, the marginal posterior for (among others) the T2
modification p(C|(sa,i), (sb,i)). Then a voxel can be defined as negatively (resp.
positively) altered at α level, if the α-credible HPD interval for C does not
contain any positive (resp. negative) value (see [8] for a testing perspective).

The previous model of variation T2b = T2a+C was dedicated to T2 modifica-
tion. Another important alternative model of variation states that when adding
a contrast agent to a biological tissue the effect on its T2 property is additive
with the rate 1/T2 : 1/T2b = 1/T2a + CR and that CR (we use this notation
to distinguish it from the above C) is proportional to the contrast agent con-
centration. From the posterior of T2 and C designed above, its posterior writes:
p(CR = cR|(sa,i), (sb,i)) = p( −C

T2(C+T2)
= cR|(sa,i), (sb,i)).

2.3 Region-wise analysis

The models proposed previously allow a voxel-wise analysis where each voxel
is processed independently from others. Performing a grouped inference for all
the voxels of a given region (e.g. lesion) can be performed by adding a sup-
plemental layer to the model. Let us use j to index voxels, then one can re-
place each prior Π2(cj) by for example: Π2(cj |µC , σC) = ψN (µC − cj , σ2

C)



(ψN being the Normal kernel). We then assume that ∀ i1, i2 and j1 6= j2,
(Sj1i1 |t2

j1 ,mj1 , σj1) ⊥ (Sj2i2 |t2
j2 ,mj2 , σj2) (in particular, we consider the errors

as independent between voxels). For the two hyperparameters µC and σC , we
use the weakly informative priors (see [5] for details) µC ∼ N(0, 106) (approx-
imating the uniform density over IR) and σC ∼ Cauchy(x0 = 0, γ = 100)IIR+

(allowing σC to go well below 400ms), where IIR+ denotes a left-truncation. Such
a model allows the set of inferences over the (Cj) to be performed not indepen-
dently thus dealing in a natural way with multiple comparisons by shrinking
exceptional Cj toward its estimated region-wise distribution [6] and improving
the overall inference. Depending on the expected regularity of the Cjs within the
regions, we can alternatively opt for a Cauchy density or/and add an informative
prior for the error variances σ2

a,i and σ2
b,i to favor goodness of the fit. Parallelly,

a spatial Markovian regularisation can also be considered.

2.4 Using the extended phase graph

When the signals (si)i=1:N are obtained using sequences of multiple echoes spin
echoes (e.g. CMPG sequence), the exponential decay function is only a rough
approximation of the relation between T2 and the MR signals. Some solutions
to adapt it to this situation exist [10] and could be easily added to our model.
In the following, we propose a broader solution that consists in replacing the
exponential decay by the Extended Phase Graph function (EPG) [9] that relates
the signal Si to two other quantities (additionally to T2 and M) so that (Si) =
EPG(T2,M, T1, B1, (τi)) + ε (T1 being the spin-lattice relaxation time, B1 the
field inhomogeneity i.e. multiplicative departure from the nominal flip angle and
ε representing the noise term of Eq. 1). This function is complicated (product of
N 3×3 matrices involving non-linearly the different parameters) and derivating
a dedicated reference prior would be cumbersome. Nevertheless, it consists of
small departures from the exponential function and mainly depends on M and
T2. Thus a reasonable choice consists in using the same priors as those derivated
for the exponential function. Then, an informative prior is designed for B1. In
practice, B1 typically takes 95% of its values in [0.4, 1.6] (we deliberatively use
this symmetric form to avoid B1 = 1 to be a boundary of the prior support) so we
set B1 ∼ Gamma(k = 8.5, θ = 0.1). We did the same for T1 by choosing a gamma
distribution with 95% of its density in [20, 2000] (T1 ∼ Gamma(2.3, 120)). In
practice, T1 has a very small impact on the EPG and on the inference. Then the
EPG model can be used by simply replacing ft2,m(τi) by EPG(t2,m, t1, b1, (τi))
(prior sensitivity analysis for T1 and B1 give satisfying result).

3 Results on synthetic data

3.1 Implementation, datasets and convergence diagnosis

For the sake of concision, for the previous models, we only exhibited the like-
lihoods, the priors and the independence assumptions. The resulting posteriors



can be obtained using the Bayes rule. Then for each marginal posterior p(T2|(si))
(Section 2.1), p(C|(sa,i), (sb,i)) (Section 2.2) and p((Cj)|(sja,i), (s

j
b,i)) (Section

2.3), we get its statistics using the ”logarithm scaling” adaptive one variable at
a time Metropolis-Hastings algorithm [13]. We used 10k samples (40k for the
region-wise model) after discarding the 5k first ones (20k for the region-wise
model). Convergence has been assessed using the Geweke score [2].

The data we use in this section are numerically generated T2 spin echo ac-
quisitions with 7 echo times τ equally spaced by 13.8ms and a repetition time of
1s. Because the function EPG(t2, t1, b1, (τi)) is time consuming and many calls
are needed, it is tabulated on a fine grid for different values of t2, t1 and b1. All
the results given below are those using the EPG (for both generating data and
inference), those obtained using the exponential decay are slightly better and
lead to the same conclusion.

3.2 Results

T2 estimation: We run 400 estimations for different configurations of T2 and σ
(realistic values are randomly given to T1, B1 and M). Results are summarized
in Table 1 and illustrate how the length of the credible intervals increases as
expected with T2 and σ. Moreover, these intervals exhibit excellent coverage
properties, illustrating the interest of the derivated priors in the absence of prior
information for T2. Notice that other choices of prior such as the reference prior
with σ and M as nuisance parameters [1] do not lead us to analytical solutions.

Table 1. Mean 0.05-credible interval length and coverage properties (i.e. percentage of
intervals containing the true value of T2) using 400 simulations for each configuration.

T2/σ 50/5 80/5 120/5 200/5 300/5 50/10 80/10 120/10 200/10 300/10

mean interval length 4.95 8.63 14.54 35.85 71.17 10.08 17.40 28.27 72.30 154.89

coverage 0.97 0.96 0.98 0.95 0.96 0.96 0.97 0.96 0.97 0.98

C estimation: For different configurations of T2, σ and C, we analyse the
specificity (denoted p−) and sensitivity (denoted p+) of the estimator for C
modification (Section 2.2) for α=0.05. Results are summarized in Table 2 and
illustrate that for the used acquisition protocol, detecting low T2 modifications
in high values is limited with a 0.95 specificity level. Such simulations can be
used to design decision rules providing an optimized specificity/sensitivity trade-
off for given T2/C values by adjusting α. We also observe that the region-wise
model leads to strong improvements of the performances.

4 Two applications on real data

The present method has been developed in a clinical context including a dataset
of about 50 pre-post acquisitions from relapsing-remitting multiple sclerosis pa-
tients. In this section, we examplified applications of our method on a few data



Table 2. Specificity and sensitivity for α = 0.05 for different σ/T2/C configurations
(using 200 simulations). The region-wise analysis is performed with regions of 16 voxels
with C values drawn from a Cauchy density (to deviate from the chosen model) with
mean 1.1 · C (C being the value for the voxel of interest) and scale parameter 10.

Voxel-wise

T2/ σ 80/5 120/5 200/5 300/5 80/10 120/10 200/10 300/10

C = 0, p− 0.96 0.97 0.96 0.94 0.93 0.96 0.97 0.95
C = 30, p+ 1 1 1 0.73 1 1 0.60 0.16
C = 60, p+ 1 1 1 0.93 1 1 0.90 0.23

Region-wise
C = 0, p− 1 0.99 0.98 0.98 1 0.98 0.99 0.98
C = 30, p+ 1 1 0.98 0.95 1 1 0.78 0.46
C = 60, p+ 1 1 0.98 0.97 1 1 0.97 0.67

from this study. Data are acquired on a 3T Verio MRI scanner (Siemens Health-
care, 32-channel head coil) and consists of volumes of 192×192×44 voxels of size
1.3×1.3×3mm3. The sequence parameters are the same as those used in Section
3. For each patient, all volumes are rigidly co-registered using a robust block-
matching method [3]. No other preprocessing is applied.

4.1 Assessing USPIO enhancement in MS lesion

Ultra small superparamagnetic iron oxide (USPIO) is a contrast agent used to
assess macrophagic activity that reduces the T2 relaxation of the surrounding
tissues [4]. We use, in this section, sets of pre-post injection acquisitions to
detect the presence of USPIO in MS lesions using our model. Figure 1 displays
detection with a 5% level for a patient acquired twice without USPIO injection
and for a patient with potentially active lesions. The pre-post T2 relaxation maps
illustrate the difficulty to label the lesions as enhanced or not by simply using the
point estimates. The map for the patient without USPIO injection, for which
our method does not detect any voxels, highlights this point. More generally,
on this data we never detected more than 5% of the voxels. For the active
patient with USPIO injection, the method detects lesion 1 -for which we have
independent clues that it is effectively active (i.e. high variation of MTR, FA and
ADC values between baseline and acquisitions 3 months later)- as enhanced. By
contrast, lesion 2 -for which we had no initial clue that it was actually active- is
not detected as enhanced, while it shows a substantially positive pre-post signal.

4.2 Assessing T2 recovery in an active MS lesion

In this section, we use our model to assess the evolution of the T2 associated to a
MS lesion just after its emergence (m0) and 3 (m3) and 6 (m6) months after. To
illustrate the interest of the credible intervals, we display the minimal plausible
C values for the 0.05 level i.e. the lower bound of the 0.05-credible interval for
[m3,m0] (Fig 2.a) and the upper one for [m6,m3] (Fig 2.b). Notice that, for
a sake of clarity, we quantify here differences from m3 to m0 so that expected
difference C (a decrease of the T2 signals over time) is positive (and similarly for



Fig. 1. Pictures a) and b): acquisitions performed without USPIO injection
(so all lesions should be detected as negative). a) superposition of a T2 weighted
image, the lesion segmentation mask (white patches) and the enhanced voxels (red) for
the 5% level and b) the pre-post T2 relaxation map (using ML estimates). Pictures
c) and d): an active patient. Same displays than for a) and b).

Fig. 2. Recovery assessment in MS lesions. From left to right: a) Minimal T2

recovered value for [m3,m0] (admissible with α = 0.05), b) Maximal T2 recovered
value for the next time [m3,m6] and c) Minimal USPIO concentration CR at m0.

m3 and m6). These maps offer a quantitative scale to compare lesions recovery
among and within patient. More precisely, for lesion 3, the minimal admissible
C is positive for [m3,m0] (thus the interval does not contain 0) demonstrating
that the lesion is recovering during this period. By contrast, this is not the case
for the other lesions of the slice and for lesion 3 at [m6,m3] (not displayed) :
it cannot be excluded with a 5% level that the recovering process is finished.
Moreover, the maximal admissible value for [m6,m3] (Fig 2.b) is far lower than
the minimal one for [m3,m0]. We also give the minimal USPIO concentration
i.e. CR changes for the 5% level (Fig 2.c): we observe a good adequacy between
USPIO concentration and T2 change at [m0,m3].

5 Discussion and Conclusion

In this paper, we proposed a Bayesian analysis of T2/T ∗
2 relaxation time as-

sessment and modification. Then, we showed the interesting properties of our



models on synthetic datasets. Finally, we exemplified the interest of the obtained
credible intervals with two applications. As illustrated, when available, interval
estimates can be more powerful than point ones to address naturally complex
issues in medical imaging. Moreover, this work can be extended in several ways:

- It can be used as a base for the development of more informative hierarchical
models (this is a motivation for considering a Bayesian setting). For example, the
Bj1s are correlated in space which could be accounted for adding a supplemental
layer to the model (similarly to what proposed in Section 2.3). An informative
prior for σj could also be of interest to get less conservative intervals.

- In this work, we considered the errors (modelled by the error term of Eq. 1
or Eq. 3 and 4) as not correlated between voxels and modelling correlated errors
(with unknown structure) would be of interest and is a challenge to meet.

- The method is computationally intensive (about 2s per voxel for the EPG
region-wise approach) and for more demanding applications, other strategies e.g.
maximising over nuisance parameters could be investigated.

More generally, we think there is room for potential applications of interval
estimation in e.g. T1 or DTI and hope this work will encourage such development.

References

1. Berger, J.O., et. al.: The formal definition of reference priors. ANN. STATIST
37(2), 905–938 (2009)

2. Brooks, S., et. al.: Handbook of Markov Chain Monte Carlo. Chapman &
Hall/CRC Handbooks of Modern Statistical Methods, CRC Press (2011)

3. Commowick, O., et. al.: Block-matching strategies for rigid registration of multi-
modal medical images. In ISBI. pp. 700–703 (May 2012)

4. Corot, C., et. al.: Recent advances in iron oxide nanocrystal technology for medical
imaging. Advanced Drug Delivery Reviews 58(14), 1471 – 1504 (2006)

5. Gelman, A.: Prior distributions for variance parameters in hierarchical models.
Bayesian Analysis 1(3), 515–534 (09 2006)

6. Gelman, A., et. al.: Why we (usually) don’t have to worry about multiple compar-
isons. Journal of Research on Educational Effectiveness 5(2), 189–211 (2012)

7. Kjos, B.O., et. al.: Reproducibility of T1 and T2 relaxation times calculated from
routine mr imaging sequences: phantom study. American journal of neuroradiology
6(2), 277–283 (1985)

8. Kruschke, J.K.: Bayesian assessment of null values via parameter estimation and
model comparison. Perspectives on Psychological Science 6(3), 299–312 (2011)

9. Matthias, W.: Extended phase graphs: Dephasing, RF pulses, and echoes - pure
and simple. Journal of Magnetic Resonance Imaging 41(2), 266–295 (2015)

10. Milford, D., et. al. Mono-Exponential Fitting in T2-Relaxometry: Relevance of
Offset and First Echo. PLoS ONE, Fan X Editor 10(12) (2015)

11. Neumann, D., et. al.: Simple recipe for accurate T2 quantification with multi spin-
echo acquisitions. Magnetic Resonance Materials in Physics, Biology and Medicine
27(6), 567–577 (2014)

12. Petrovic, A., et. al.: Closed-form solution for T2 mapping with nonideal refocusing
of slice selective CPMG sequences. Magn Reson Med 73, 818–827 (2015)

13. Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. Journal of Compu-
tational and Graphical Statistics 18(2), 349–367 (2009)


