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Abstract. Diffusion MRI is a key in-vivo non invasive imaging capabil-
ity that can probe the microstructure of the brain. However, its limited
resolution requires complex voxelwise generative models of the diffusion.
Diffusion Compartment (DC) models divide the voxel into smaller com-
partments in which diffusion is homogeneous. We present a comprehen-
sive framework for maximum likelihood estimation (MLE) of such models
that jointly features ML estimators of (i) the baseline MR signal, (ii) the
noise variance, (iii) compartment proportions, and (iv) diffusion-related
parameters. ML estimators are key to providing reliable mapping of brain
microstructure as they are asymptotically unbiased and of minimal vari-
ance. We compare our algorithm (which efficiently exploits analytical
properties of MLE) to alternative implementations and a state-of-the-
art strategy. Simulation results show that our approach offers the best
reduction in computational burden while guaranteeing convergence of
numerical estimators to the MLE. In-vivo results also reveal remarkably
reliable microstructure mapping in areas as complex as the centrum semi-
ovale. Our ML framework accommodates any DC model and is available
freely for multi-tensor models as part of the ANIMA software4.

1 Introduction

Diffusion MRI has raised a lot of interest over the past two decades as it pro-
vides an in-vivo non invasive mean for investigating the brain microstructure
with great hopes of improved diagnosis, understanding and treatment of brain
disorders. Current MR technologies however are limited in spatial resolution
(finest resolution achieved so far in-vivo in diffusion is ∼ 1.25 mm3 [11]). Going
further yields too long scans and too noisy data. Hence, brain microstructure is
only accessible through careful modeling of the diffusion from which the MR sig-
nal arises. The coarser the resolution, the more heterogeneous the microstructure
within the voxel and the more complex the voxelwise diffusion modeling.

Recently, there has been a growing interest in diffusion compartment models
(DCM) [4, 6]. Their strength lies in their biological interpretability in that each

4 https://github.com/Inria-Visages/Anima-Public/wiki
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voxel compartment can be matched to an homogeneous biological substrate.
Assuming Gaussian compartmental diffusion, the most complete microstructure
mapping is given by the multi-tensor (MT) model [6], out of which several sim-
plifications were devised in [4]. In essence, each compartment in the MT model is
characterized by its diffusion tensor (DT). Current publicly available toolboxes
for diffusion MRI processing often include multi-tensor ML estimation routines5.
However, little attention has been paid to the actual numerical convergence to
the ML estimate. We here propose a comprehensive maximum likelihood (ML)
framework for the estimation of DCMs that aims at filling this gap. In effect,
assuming identifiability of the unknown DCM, its ML estimator is guaranteed
to be unbiased and of minimal variance as sample size increases. Our ML frame-
work assumes that measurement error is modeled by white noise, which is fair
for high signal-to-noise ratio (SNR) areas. Our ML framework is still valid for
low SNR but a number of analytic properties of the likelihood used to improve
time-efficiency do not hold anymore, which might lead to lengthier computations.

The contribution of this work is a comprehensive numerically convergent
and massively fast framework for MLE of the MT model, provided that Gaussian
homogeneous noise can be assumed. In Section 2.1, we briefly recall the definition
of the MT model, propose a novel parametrization that features parameter-
independent constraints, and formulate the derived maximization problem on a
constrained domain. In Section 2.2, we provide analytic expressions of the ML
estimators of the noise variance, the baseline MR signal and the compartment
weights given the DTs and the number of compartments. In Section 2.3, we
describe a time-efficient strategy for dealing with the constraints introduced in
Section 2.1. In Section 2.4 we give the analytic expression of the log-likelihood
depending on the unknown DTs exclusively and we derive the analytic expression
of its Jacobian, which is key for time efficiency. Next, in Section 3, we present a
simulation study whose goals are two-fold: (i) a mutual comparison of multiple
algorithms for solving the maximization problem defined in Section 2.4 and (ii)
a comparison with a reference estimation strategy [6]. We also describe our
experiment on real data using a healthy subject from the Human Connectome
Project (HCP) database [11]. Finally, Section 4 presents the results of both the
simulation study and the experiment on real data and discuss our contribution.

2 ML Estimation of the Multi-Tensor Model

2.1 Description of the Problem

In the following, each voxel is considered independently. y is a set of N measured
signals for pairs of b-values bi and diffusion gradient directions gi, µ is the set of
corresponding signals generated by the DCM and τ2 the noise inverse variance.
The Log-Likelihood. The Gaussian log-likelihood function ℓ reads:

ℓ(µ, τ2;y) =
N

2
ln

(
τ2

2π

)
− τ2

2
∥y − µ∥2 . (1)

5 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ http://camino.cs.ucl.ac.uk
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The MT Model. If the MT model with C + 1 compartments holds, the MR
signal for a b-value bi and direction gi can be written in matrix form as:

µ(S0,w,D) = S0(a(D0) + Φ(D)w), (2)

where S0 is the baseline signal, w ∈ RC are the compartment weights,

D ∈
[
S
(
R3
)]C+1

are the DTs, a is an N -dimensional vector s.t. ai(Dj) =

e−big
⊤
i Djgi and Φ is an N × C matrix s.t. Φij = ai(Dj)− ai(D0).

Parametrization. We propose the following parametrization:
– S0 is left as is with the constraint S0 ≥ 0 since MR signals are positive,
– τ2 is left as is with the constraint τ2 ≥ 0 since a variance is positive,
– w are fundamentally proportions, hence subject to w ≥ 0 and 1⊤w ≤ 1,
– D are 3D covariance matrices, i.e. positive definite symmetric matrices.

Hence, we propose the following parametrization:

Dj = (d1j + d2j)e1je
⊤
1j + d2je2je

⊤
2j + d3jI3, (3)

where ekj (k = 1, 2, 3) are the 3 eigenvectors of Dj , parametrized by
Euler angles θj ∈ [0, π], ϕj ∈ [0, 2π] and αj ∈ [0, 2π] and respectively
associated with the eigenvalues λ1j ≥ λ2j ≥ λ3j > 0 such that d1j =
λ1j − λ2j ≥ 0, d2j = λ2j − λ3j ≥ 0 and d3j = λ3j > 0.

Objective. To find the ML estimators of the parameters w, D, S0, and τ2, i.e.,
to maximize eq. (1) plugged-in with eq. (2) subject to the constraints above.

2.2 Complete Solution for a Known Number of Compartments

We propose to maximize eq. (1) in a stepwise fashion solving maximization sub-
problems over a subset of the parameters in terms of the others:
Estimation of τ2. Solving the partial derivative equation (PDE) in τ2 yields:

τ̂2
−1

(w,D, S0) = N−1 ∥y − S0a(D0)− S0Φ(D)w∥2 . (4)

Since the right hand-side is always positive, eq. (4) defines the MLE of τ2.
Estimation of w. Plugging eqs. (2) and (4) into eq. (1) turns the problem

into a least squares problem linear in the compartment weights. As in [1], we
resort to the method of variable projection (VP) to get the weights estimates:

ŵ(D, S0) =
[
Φ⊤(D)Φ(D)

]−1
Φ⊤(D)

[
S−1
0 y − a(D0)

]
, (5)

In this section, the number of compartments is known which implies, in
particular, that there are no pairs of compartments with equal diffusion
distributions. Hence, the C × C matrix Φ⊤Φ is invertible and eq. (5) is the
MLE of w, provided that it satisfies the constraints ŵ ≥ 0 and 1⊤ŵ ≤ 1.

Estimation of S0. Plugging eqs. (2), (4) and (5) into eq. (1) and solving the
PDE in S0 yields:

Ŝ0(D) =
< a(D0), P

⊥
Φ (D)y >

< a(D0), P⊥
Φ (D)a(D0) >

, (6)
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where P⊥
Φ = IN − Φ(Φ⊤Φ)−1Φ⊤ is the N × N projector on the orthogonal

complement of the column space of Φ and < ·, ·> is the inner product in RN .
Equation (6) is the MLE of S0 which is automatically positive since y ≥ 0.

Estimation of D. Maximizing eq. (1) finally boils down to maximizing nu-
merically the following log-likelihood function w.r.t. the DTs (obtained by
plugging eqs. (2) and (4) to (6) into eq. (1)):

ℓ(D;y) = −N

2

[
1 + ln

(
2π

N

(∥∥P⊥
Φ (D)y

∥∥2 − <a(D0), P
⊥
Φ (D)y>∥∥P⊥

Φ (D)a(D0)
∥∥2

))]
. (7)

At this point, it is worth making a few observations:
1. Equation (5) provides the MLE of w only if they lie inside the constrained

domain of the original maximization problem, which is not guaranteed by the
equations alone. This will be the object of section 2.3. In addition, eqs. (4)
to (6) define the MLEs of τ2, w and S0 for a given set D of DTs. Yet,
they are the solution of the original maximization problem if and only if we
can find the MLE of D, which requires a careful numerical maximization of
eq. (7). This will be the object of section 2.4.

2. The VP method was already introduced in [1] as a powerful tool for DCM
estimation. Our contribution is instead a comprehensive framework that pro-
vides the MLE of all the DCM parameters in a remarkably fast computation
time, and automatically guaranteeing asymptotic unbiasedness and efficiency
of the estimated DCMs. Estimators proposed in [1] are instead not the MLE
of the corresponding parameters, which makes it difficult to guarantee un-
biasedness and efficiency in all circumstances. In addition, notwithstanding
S0 and τ2 are not diffusion parameters, their accurate knowledge is criti-
cal for a reliable estimation of the diffusion parameters. In [1], there are no
guidelines pertaining to their estimation. In the present work instead, we
compute their MLE analytically. In addition, we propose clear indications
to deal with compartment weights constraints in our MLE framework.

2.3 Handling compartment weights constraints

Equation (4) always provides estimates of τ2 within the constrained domain.
This is not necessarily the case for eqs. (5) and (6). When the equations provide
estimates that violate the constraints, we must search for the maximum on the
boundary of the constrained domain. Our strategy relies on few key observations:
1. The sum-to-one constraint for compartment weights can be easily handled

by expressing one of the weights as a linear combination of the other ones.
2. The positivity constraints on the remaining ones can be efficiently handled

due to some analytical properties of the log-likelihood:
– The symmetry properties of the log-likelihood function which is indeed

invariant to the re-labeling of the fascicle compartments.
– Along the domain boundary for w (i.e., when one or more compartment

weights are constrained to 0) the log-likelihood function coincides with
the log-likelihood of a reduced model with fewer compartments.
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As a result, search on the boundary (when required) can be efficiently carried
out by applying the strategy described in section 2.2 on a MT model with one
or several compartments removed. This boundary search guarantees, in the end,
compartment weights estimates always satisfying the constraints.

2.4 Solving for the MLE of the diffusion tensors

Our objective is to find a suitable optimization algorithm that features (i) short
computation times and (ii) convergence to the maximum of the log-likelihood
function defined in eq. (7). It is well-known that knowledge of the analytic Jaco-
bian is of great help in achieving both. Let xk ∈ {θj , ϕj , αj , d1j , d2j , d3j}j=0,...,C

be one of the parameters the MLE of which has to be obtained numerically.
It is possible to analytically compute the derivative of eq. (7) w.r.t. xk, which
formally defines the analytic Jacobian. After some algebra, one can show that:

∂kℓ = −N

2

(∥∥P⊥
Φ (D)y

∥∥2 − <a(D0), P
⊥
Φ (D)y>∥∥P⊥

Φ (D)a(D0)
∥∥2

)−1 [
<y, ∂kP

⊥
Φ (D)y>

− 2Ŝ0

(
<∂ka(D0), P

⊥
Φ (D)y> + <a(D0), ∂kP

⊥
Φ (D)y>

)
(8)

+Ŝ0

2 (
<∂ka(D0), P

⊥
Φ (D)a(D0)> + <a(D0), ∂kP

⊥
Φ (D)a(D0)>

)]
,

where ∂k denotes the partial derivative operator w.r.t. xk. Given the results
presented in sections 3 and 4, we recommend the use of the Levenberg-Marquardt
(LM) algorithm [3], which achieves convergence in remarkably short times. This
algorithm solves unconstrained problems only. Since our parametrization makes
xk bound-constrained only, we can easily turn our constrained maximization
problem into an unconstrained one by suitable mappings of xk.

3 Material & Methods

The following sections pertain to the experimental study. The goals are two-
fold: (i) a comparison of 4 algorithms for solving the constrained maximization
problem defined in section 2.4 and (ii) a comparison with the estimation strategy
used in [6], which is one of the reference papers on MT models. The former
comparison is carried out in a simulation study while the latter one also in
a case study on real data. All computations were performed with a Xeon 2.6
GHz processor, using 15 cores. Sections 3.1 and 3.2 details the simulation study
and case study respectively, while section 3.3 provides a brief description of the
compared algorithms/methods and section 3.4 depicts the evaluation metrics.

3.1 Simulation Study

We built an in-house diffusion phantom using subsets of the 6 compartments
defined in Table 1 to generate purely isotropic areas (Area 0F) and areas with
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Table 1. In-House Diffusion Phantom Compartments.

Compartment Characteristics (10−3 mm2/s for diffusivities)

Free Water (FW) λ1 = λ2 = λ3 = 3.0
Stationary Water (SW) λ1 = λ2 = λ3 = 10−5

Isotropic Restricted Water (IRW) λ1 = λ2 = λ3 = 1.0
Circular Fascicle (CF) Orient. [0◦, 360◦], λ1 = 1.8, λ2 = 0.3, λ3 = 0.2
Vertical Fascicle (VF) Orient. 90◦, λ1 = 1.6, λ2 = 0.5, λ3 = 0.4
Diagonal Fascicle (DF) Orient. −45◦, λ1 = 1.7, λ2 = 0.2, λ3 = 0.16

1 (Area 1F), 2 (Area 2F) and 3 (Area 3F) fascicle compartments. The 3 iso-
tropic compartments are always included. Then, we set spatially varying com-
partment weights within biologically feasible ranges. We set baseline signals in
each area to realistic values using the mean baseline signals in grey matter,
WM and cerebro-spinal fluid from case #153227 of the HCP database [11]. We
added Gaussian noise as estimated in the same subject assuming a Rayleigh
distribution of the background signals, which led to an average SNR ∼ 23 dB in
diffusion-weighted MR images. Finally, we used the HCP diffusion gradient table
to generate N = 288 diffusion-weighted MR images. Comparisons based on the
simulated phantom are made at known number of compartments to avoid con-
founding model selection errors. Isotropic diffusivities are assumed to be known.

3.2 Real Data

Ground truth microstructure parameters and the actual number of compart-
ments in each voxel is missing for real data. Hence, we visually compare the
estimated MT models in the corpus callosum (CC) and in the centrum semi-
ovale (CSO, where decussation of 3 brain circuits happens), provided by our
framework (method A1) and the strategy in [6], which is a reference on MT
models (method B), both methods being tuned to run in the same amount of
time. Model selection was performed by comparing models with 0, 1, 2 and 3
fascicle compartments using the unbiased AIC criterion [8]. We used the same
HCP subject that helped building our phantom. The 3 isotropic compartments
defined in section 3.1 were included in the model as well.

3.3 Compared Methods

In this section, we provide a brief description of the various methods compared
in this experimental section. All methods of type A* correspond to algorithmic
variants of our MLE framework while method B is a reference strategy.
Method A1. We use the Levenberg-Marquardt (LM) algorithm [3] with ana-

lytic Jacobian as implemented in ITK6.
Method A2. We use the LM algorithm with numerical Jacobian.
Method A3. We use the globally convergent conservative convex separable ap-

proximation (CCSA) algorithm [10] implemented in the NLOpt library [2].
Method A4. We use the derivative-free bounded optimization by quadratic ap-

proximations (BOBYQA) algorithm [5] also implemented in NLOpt.

6 http://www.itk.org
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Method B. We use the strategy proposed in [6], with no spatial regularization,
which performs brute-force estimation of all parameters using BOBYQA.

We did not include the estimation strategies proposed in [4, 1] in the comparison,
since the former does not apply to DCMs with more than two compartments
and the latter is difficultly reproducible due to the lack of documentation.

3.4 Evaluation Metrics

The comparison of the 5 strategies defined in Section 3.3 focuses on the trade-off
between error w.r.t. the ground truth model and computation time. We naturally
quantify this error by means of the MSE. For a given estimator θ̂ of a parameter
θ, its MSE is defined as E[d2(θ̂, θ)], where d is a selected metric. Hereafter, we
compute the MSEs of both the weights estimator ŵ and the tensors estimator
D̂ separately in areas 0F, 1F, 2F and 3F of the phantom. We use the Euclidean
distance for weights and the log-Euclidean distance for tensors. The MSEs are
estimated as the averaged squared distances over the voxels of each area. This
procedure led to 7 sets of performance curves for each area (4) and each estimator
(2) that show MSE variations as a function of computation time.

4 Results & Discussion

Figure 1 shows the variations in MSE of both the weight and tensor estimators as
defined in Section 3.4 as we let more time to the algorithm for estimating the MT
models. Comparing method A1 (i.e. our framework) to the others at fixed MSE
emphasizes – in the 4 simulated scenarios – multiple advantages of our proposed
MLE framework: (i) there is an extra time cost in approximating the Jacobian
(A1 vs A2), (ii) the LM algorithm is faster than other convergent gradient-based
(GB) optimizers (A1 vs A3), (iii) GB optimization is faster than derivative-free
(A1 vs A4) and (iv) our algorithm outperforms one of the reference approaches
to MT model estimation (A1 vs B).

Next, Figure 2 shows the estimated MT models using both method A1 and
method B in a fixed computation time of 30s (corresponding to 0.13s/voxel/core)
for the crop on the CC and for the crop on the CSO. Visual inspection shows
the ability of method A to provide more spatially coherent estimates of the MT
model with less artifacts, mostly visible in three fascicle areas.

In summary, we have set up a novel and comprehensive framework for the
efficient ML estimation of the MT model featuring massive reduction of com-
putational burden. The framework generalizes to any DCM with known ana-
lytic Jacobian of the generative model. Future works will investigate its perfor-
mances for estimating other important DCMs such as DIAMOND [7], DDI [9] or
NODDI [12] and the possibility of embedding model selection in the framework.
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Fig. 1. Performance curves. The curves show the drop in MSE as a function of
computation time (in sec). 1st row for the weights estimator, 2nd row for the tensors
estimator. Columns represent areas with 0F, 1F, 2F, 3F from left to right.

(a) (b) (c) (d)

Fig. 2. Estimated Multi-Tensor Models In-Vivo. In the CSO (a,b), in the CC
(c,d); using method B (a,c) or method A1 (b,d).
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