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Maximum Likelihood Estimators of Brain White
Matter Microstructure
Stimatori di massima verosimiglianza per la
microstruttura della materia bianca cerebrale

Olivier Commowick1, Aymeric Stamm2,3, Simone Vantini2, and Simon K.
Warfield3

Abstract The microstructure of the brain white matter is not visible to the naked
eye but would be of invaluable help to the clinician in the diagnosis and treatment of
many brain pathologies. Diffusion MRI is an in-vivo non invasive imaging technique
that probes the cyto-architecture of the white matter through the diffusion of water.
However, diffusion MRI is limited in resolution, which makes forward models of
the diffusion at the voxel level rather complex. In this paper, we provide a statistical
framework for recovering the maximum-likelihood estimators of the parameters of
mixture models of the diffusion. We calibrate different methods on simulated data
to guarantee convergence to the maximum likelihood and show that profile likeli-
hood maximization using variable projection together with a Levenberg-Marquardt
algorithm with analytic Jacobian is the most efficient method to obtain the MLE.
Abstract La microstruttura della materia bianca del cervello umano è, da un lato,
non visibile ad occhio nudo e, dall’altro, portatrice di un indubbio valore clinico
sia in termini di diagnosi che di trattamento delle patologie cerebrali. La risonanza
magnetica di diffusione (dMRI) è una pratica medica per l’esplorazione in-vivo
e non invasiva della cito-architettura della materia bianca basata sulla diffusione
dell’acqua. Tuttavia, la risoluzione spaziale limitata della dMRI rende necessario
l’utilizzo di modelli di diffusione molto complessi a livello del singolo voxel. Questo
lavoro si focalizza sulla stima di massima verosimiglianza dei parametri dei mod-
elli di diffusione di tipo mistura utilizzati in questo contesto. I vari metodi sono con-
frontati sfruttando dati simulati per avere garanzia di convergenza al massimo della
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verosimiglianza. Il confronto mette in luce come la massima efficienza venga ot-
tenuta mediante la massimizzazione della profile-likelihood tramite il metodo della
proiezione di variabili accopiato all’uso dell’algoritmo di Levenberg-Marquardt
con Jacobiano analitico.

Key words: maximum likelihood, variable projection, diffusion MRI, compartment
models, brain, white matter.

1 Introduction

White matter in the human brain is the seat of neuron projections that are respon-
sible for transmitting nerve impulses that govern the functions of our body. These
projections, called axons, are cylindrically shaped and connect different functional
areas of the brain together. They are surrounded by spherically shaped glial cells
whose function is to support neuronal activity. Both have impermeable membranes
in a healthy subject. While axons and glial cells are invisible to the naked eye, there
is an urgent unmet need to visualize them in-vivo. In effect, we can think of the ex-
ample of a neurosurgeon who needs to remove a tumor: he needs to know if critical
connexions are on his access path to the tumor or within the resection area so that
no irreversible damage is done to functions such as breathing or moving.

Diffusion MRI provides us with the means to observe these axons and cells by
the observation that water inside axons or glial cells is subject to restricted diffusion
as it bounces on and off the membranes. Hence, inferring the probability distribution
of 3D molecular displacements due to diffusion provides knowledge about tissues
themselves. Nevertheless, spatial resolution is currently limited to 2 × 2 × 2mm3,
while individual cell diameters are of the order of the micron. Many cells and various
axon bundles with different orientations will then populate a white matter voxel and
the underlying diffusion process that needs to be estimated can be quite complex.

At the voxel level, the diffusion is naturally modeled using so-called multi-
compartment models [6, 9], known by statisticians as mixture models. A compart-
ment is defined as a sub-volume of the voxel in which random molecular motion is
governed by the same underlying probability distribution, with the assumption of no
exchange between compartments. The focus of this work is not to discuss the valid-
ity and/or performances of different compartmental diffusion models that have been
proposed over the years, but rather to concentrate on a generic and robust framework
for the estimation of those mixture models from the acquired noisy data. We start
upfront by assuming compartmental diffusion to be a zero-mean Gaussian process.
The resulting multi-compartment model is often dubbed multi-tensor model, since
each compartment is identified by a diffusion tensor akin to a 3D covariance matrix.

The genesis of this work relies on the observation that, in the computational
MR community, focus was on designing the best possible model but little attention
has been paid on how well these models are estimated. In effect, Gaussian mixture
model estimation is an extremely intricate problem to solve while state-of-the-art ap-
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proaches to their estimation consist in attempting a minimization of the least squares
criterion between observations and signals predicted by the multi-tensor model us-
ing a derivative-free algorithm which features computation times of the order of the
week on super-computers with no convergence guarantee [9]. There has been at-
tempts at overcoming this issue using a Levenberg-Marquardt algorithm but, so far,
it has been limited to two compartments since this algorithm cannot handle inequal-
ity constraints on the parameters. In addition, convergence is barely discussed and
statistical properties of underlying estimators are often disregarded or unknown.

This is however critical both for fair model comparison and, even more impor-
tantly, in providing accurate and reproducible results to the clinician. Our purpose
is thus to provide a systematic statistical framework for finding the maximum-
likelihood estimators (MLE) of the parameters defining the multi-tensor model in
a minimum amount of computation time with reasonable convergence towards the
global maximum. The paper is structured as follows: in Section 2, we quickly review
the voxelwise relationship between the signal measured in dMRI and the underly-
ing diffusion process and we recall the formulation of the multi-tensor model. In
Section 3, we introduce our strategies to design maximum likelihood estimators for
the parameters of the diffusion mixture models. Finally, in Section 4, we calibrate
different estimation strategies on simulated data to ensure convergence to the MLE
and show that using a Levenberg-Marquardt algorithm with analytic Jacobian to
maximize the profile likelihood using variable projection yields the most efficient
strategies to get the MLE of diffusion mixture models.

2 Diffusion MRI and the Multi-Tensor Model

In diffusion MRI, the subject’s head lies in a tube immersed in a strong magnetic
field. Protons of water in his brain are excited by radio-frequencies, which generate
a net magnetization measurable by an array of coils as a current. We shall denote
by µ0 the true amplitude of such a signal. Next, a collection of N magnetic field
spatial gradients, with different magnitudes and directions, are applied, resulting in
a decay of the net magnetization due to the random diffusion of water. If we assume
that the probability distribution that governs diffusing water motion is a Gaussian
mixture with zero mean, the true net magnetization decay S i/µ0 resulting from the
application of a magnetic field spatial gradient (bi, gi) reads:

ŷi(p1, . . . , pC ,D0, . . . ,DC; bi, gi)
µ0

=

1 − C∑
j=1

p j

 e−big>i D0gi +

C∑
j=1

p je−big>i D jgi , (1)

where gi is the direction of the gradient, bi is a positive value proportional to the gra-
dient magnitude, p j’s are the mixture weights and D j’s are the mixture covariance
matrices, often termed tensors, hence the full name multi-tensor model.
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Microscopy studies have shown that axons tend to regroup into dense bundles
with a common orientation. We shall refer to these bundles of axons as fascicles.
The model assumes that, in a voxel, water can be subject to 4 types of diffusion:

• Free Water (FW): when water is not trapped within cells and away from cell
membranes, it is subject to free isotropic diffusion. The multi-tensor model in-
cludes FW in a single mixture component featuring isotropic covariance with
eigenvalue equal to dFW = 0.003mm2/s, which is the diffusivity of FW at 37◦C.

• Stationary Water (SW). The multi-tensor includes one mixture component with
null covariance matrix to account for water that does not diffuse at all.

• Isotropically Restricted Water (IRW): water inside glial cells can diffuse in all
directions evenly but is restricted by cell membranes. The multi-tensor model
includes IRW in a single mixture component featuring isotropic covariance with
eigenvalue equal to dIRW = 0.001mm2/s as determined in [7].

• Anisotropically Restricted Water (ARW): water trapped inside fascicles will dif-
fuse mainly along the fascicle orientation and motion is restricted by axon mem-
branes. The multi-tensor model accommodates ARW in C different mixture com-
ponents, to account for multiple fascicles that cross in the voxel, in which co-
variance matrices are expected to be anisotropic, i.e. with a principal eigenvalue
much larger than the other two.

In summary, the multi-tensor model considered here has 7C+2 free parameters to
be estimated: the 6 covariance entries, the mixture weight for each of the C fascicle
components and the 2 mixture weights of two out of the three isotropic components
(the last one being obtained by the constraint that weights should sum up to one). In
addition, the net magnetization µ0 is a nuisance parameter that needs to be estimated.
The number C of fascicle components usually varies between 0 and 3 depending on
the location of the voxel in the brain [10]. The forward model thus reads:

ŷi(pSW, pIRW, p1, . . . , pC ,D1, . . . ,DC; bi, gi)
µ0

=

1 − pSW − pIRW −

C∑
j=1

p j

 e−bidFW

+ pSWe−bidSW + pIRWe−bidIRW +

C∑
j=1

p je−big>i D jgi . (2)

In the next section, we shall present three possible strategies to perform maxi-
mum likelihood estimation for the parameters of such a forward model.

3 Maximum Likelihood Estimators

The problem of defining maximum likelihood estimators (MLE) is intrinsically re-
lated to the nature of the measurement noise. In MRI, the noise in the raw measure-
ments made by the individual surface coils follows a complex Gaussian distribution,
and can, in principle, be effectively combined into a composite real-valued Gaussian
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random measure ready for diffusion modeling [11]. When such a reconstruction is
sub-optimal, it can be shown that the measured diffusion signal follows a non-central
χ-distribution [1], which is fairly well approximated by a Gaussian one, provided
that signal-to-noise ratio is high. Hence, we focus on maximizing the likelihood of
model parameters given Gaussian-corrupted input diffusion signals with homoge-
neous variance. For clarity and conciseness, given that the estimation problem is
solved independently in each voxel of the 3D image of the brain, we shall focus on
the single voxel and thus drop any index that refers to it.

Assume that we collected N diffusion signals y1, . . . , yN by applying N non-
collinear magnetic field spatial gradients (b1, g1), . . . , (bN , gN). First, observe that
we can write Eq. (2) in matrix form as:

ŷ = µ0 [a0 +Φ(D1, . . . ,DC)w] ∈ RN , where:

ai0 = e−bidFW , ai1 = e−bidSW , ai2 = e−bidIRW , ai j(D j) = e−big>i D jgi for j ≥ 3

w = (pSW, pIRW, p1, . . . , pC)> ∈ RC+2,

Φ(D1, . . . ,DC) ∈ RN×(C+2) s.t. φi1(D1, . . . ,DC) = ai1 − ai0,

φi2(D1, . . . ,DC) = ai2 − ai0, and φi j(D1, . . . ,DC) = ai j(D j) − ai0, for j ≥ 3.

Hence, the likelihood of the model parameters under the assumption of white noise
with precision parameter τ2 = 1/σ2 reads:

L(µ0, τ
2,w, {D j}; y) =

(
τ2

2π

)N/2

exp
{
−
τ2

2
‖y − µ0 [a0 +Φ(D1, . . . ,DC)w]‖2

}
. (3)

Section 3.1 outlines the 3 different strategies to find the MLEs of the model pa-
rameters maximizing Eq. (3). Section 3.2 focuses on optimization algorithms re-
quired in any strategy for finding the MLE of at least a subgroup of parameters.

3.1 Strategies for Maximum Likelihood Estimation

Marginal Likelihood Maximization. This strategy pertains to integrating out of
the likelihood any parameter considered as a nuisance parameter. In dMRI, we
are very much interested in the mixture weights w and the tensors D j’s. However,
µ0 and τ2 are irrelevant parameters, although we need to estimate them accurately
as well. Hence, we can integrate the likelihood given in Eq. (3) over µ0 and τ2

to obtain a marginal likelihood that depends only on the parameters of interest.
The latter ones are then found by maximizing the marginal log-likelihood using
non-linear optimization algorithms. We denote this strategy as MARGINAL.

Profile Likelihood Maximization. This strategy pertains to profiling out some of
the model parameters in terms of the others. For the current problem, we observe
that for a set of fixed diffusion parameters w and D j’s, we can find analytically
the values of µ̂0(w, {D j}) and τ̂2(w, {D j}) that maximize the log-likelihood. We
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can then substitute these expressions in the original log-likelihood function and
maximize the resulting profile log-likelihood using optimization algorithms to
solve for the diffusion parameters. We denote this strategy as PROFILE.

Profile Likelihood by Variable Projection. This strategy is also based on profile
likelihood maximization. It uses the fact that the log-likelihood that we want to
maximize is actually linear in the mixture weights. Hence one can start by profil-
ing out the mixture weights using linear least-square methods and subsequently
profile out µ0 and τ2. Consequently, we only have to resort to an optimization
algorithm to find the tensors D j’s. This is known in the optimization literature as
variable projection [3]. We denote this strategy as VARPRO.

3.2 Optimization Algorithms

In each of the three strategies previously described, at least the MLE of the tensors
D j’s requires the use of algorithms for non-linear optimization. All optimized pa-
rameters are bounded: angles and eigenvalues defining the tensors are bounded by
biological/physical constraints and mixture weights are bounded to [0, 1] in that they
represent proportions. In the current work, we compare three different algorithms:

Bounded Optimization BY Quadratic Approximations (BOBYQA) [8]. It is a
derivative-free algorithm that solves bound constrained optimization problems.
We use the implementation of the NLOpt library [4]. It is one of the two standard
algorithms used in the literature for fitting multi-tensor models [9].

Levenberg Marquardt algorithm [5]. This algorithm deals with unconstrained
non-linear least square problems only. We use the implementation of the Insight
ToolKit (ITK)1 after mapping the original bounded parameters onto the real line.
It is gradient-based but the Jacobian is not mandatory. It can be computed by
forward differences if not provided. This algorithm with forward difference ap-
proximation of the Jacobian is the second of the two standard algorithms used in
the literature of multi-tensor models [6].

Conservative Convex Separable Approximation (CCSA) [12]. It is a gradient-
based algorithm that supports bound constraints. We use the implementation
from the NLOpt library. It requires the user to provide the Jacobian.

Finally, whenever the mixture weights have to be optimized as well through these
algorithms, their sum should not exceed 1. This further inequality constraint is
nicely accommodated in the NLOpt library, which offers an Augmented Lagrangian
method [2] to cope with inequality constraints. No such method exists for the Leven-
berg Marquardt algorithm, which will thus only be used with the VARPRO strategy.

1 http://www.itk.org
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4 Simulations & Discussion

We have designed a simulation that allows to calibrate the termination criterion of
the various algorithms to ensure reasonable convergence towards the maximum of
the log-likelihood function and compare the resulting computation times to provide
guidelines to the best strategy for finding ML estimators for the multi-tensor model.

We simulated theoretical diffusion signals out of the forward multi-tensor model
using all three isotropic compartments and one fascicle compartment. We used two
sets of magnetic field spatial gradients with N1 = 65 (ACQ1) an N2 = 288 (ACQ2)
gradients respectively. The net magnetization before applying any gradient was set
to µ0 = 3300. Proportions of the compartments were set to pFW = 0.07, pSW = 0.03,
pIRW = 0.1 and pARW = 0.8. The tensor of the ARW compartment was cigar-shaped
with a first eigenvalue much larger w.r.t. the other two. Eigenvalues and orientations
vary voxelwise. For each set of gradients, we added Gaussian noise to the ground
truth diffusion signals with standard deviation of 8% of the net magnetization µ0.

Strategy Algorithm
Time

(s)
Avg. Rel. Error

on σ2 (%)
Avg. Rel. Error

on µ0 (%)
Avg. Quad. Error

on w
(
×10−2

)
MARGINAL BOBYQA 152 −13.4714 (±16.4024) 0.2242 (±3.5420) 0.9408 (±1.0392)
MARGINAL CCSA 363 −13.9121 (±16.3688) 0.2469 (±3.5084) 1.1160 (±1.1788)

PROFILE BOBYQA 155 −13.4661 (±16.4109) 0.1565 (±3.5497) 0.9402 (±1.0523)
PROFILE CCSA 361 −13.9135 (±16.3684) 0.1763 (±3.5116) 1.1163 (±1.1808)
VARPRO BOBYQA 992 −13.9210 (±16.3665) 0.1650 (±3.5138) 1.1309 (±1.1766)
VARPRO CCSA 224 −13.9203 (±16.3666) 0.1637 (±3.5144) 1.1306 (±1.1775)
VARPRO LM (approx) 467 −13.9210 (±16.3665) 0.1650 (±3.5137) 1.1310 (±1.1767)
VARPRO LM (exact) 79 −13.9135 (±16.3668) 0.1695 (±3.5105) 1.1304 (±1.1760)

Table 1 Estimation results with the ACQ1 protocol (N = 65).

Tables 1 and 2 show the results of the estimation of the multi-tensor model, where
LM (approx) stands for Levenberg Marquardt algorithm with forward difference
Jacobian approximation while LM (exact) uses the analytic Jacobian. The tables
show the mean and standard deviation of the relative error on the noise variance σ2,
on the µ0 parameters and the relative quadratic error on the mixture weights w.

Strategy Algorithm
Time

(s)
Avg. Rel. Error

on σ2 (%)
Avg. Rel. Error

on µ0 (%)
Avg. Quad. Error

on w
(
×10−2

)
MARGINAL BOBYQA 268 −2.9309 (±8.2558) −0.3881 (±1.9206) 0.4741 (±0.4428)
MARGINAL CCSA 1039 −3.3113 (±8.2423) −0.3601 (±1.8785) 0.4642 (±0.4842)

PROFILE BOBYQA 267 −2.9285 (±8.2575) −0.4075 (±1.9301) 0.4767 (±0.4246)
PROFILE CCSA 1040 −3.3113 (±8.2424) −0.3826 (±1.8797) 0.4641 (±0.4853)
VARPRO BOBYQA 2417 −3.3162 (±8.2416) −0.3845 (±1.8805) 0.4589 (±0.4637)
VARPRO CCSA 631 −3.3161 (±8.2416) −0.3845 (±1.8805) 0.4588 (±0.4639)
VARPRO LM (approx) 1066 −3.3162 (±8.2416) −0.3845 (±1.8805) 0.4589 (±0.4638)
VARPRO LM (exact) 230 −3.3162 (±8.2416) −0.3844 (±1.8805) 0.4589 (±0.4638)

Table 2 Estimation results with the ACQ2 protocol (N = 288).
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Having in mind that the log-likelihood is inversely proportional to the MLE of
the variance parameter, convergence to the global maximum of the likelihood is
reached whenever the average relative error on σ2 is minimal, i.e., whenever σ̂2 is
minimal. That being said, it is clear from Table 2 that the LM (exact) combined
with VARPRO is the quickest way to reach the global maximum. Table 1 seems
to suggest that this method reaches a value very close but not equal to the global
maximum. Nevertheless, given that it provides a 6-fold acceleration w.r.t. to the
quickest method that finds the global maximum and that the difference in mixture
weight estimates is almost irrelevant, these results yield the same conclusion.

In summary, we highly recommend the use of the variable projection method
together with the Levenberg Marquardt algorithm with exact derivative to solve the
problem of multi-tensor model estimation. This is very effective in providing the
ML estimate of the parameters in a short computation time.
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