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Abstract 

 

Mesenchymal stromal/stem cells (MSC) are non-haematopoietic multipotent 

progenitor cells, first described in bone marrow in the middle of last century. Since 

then, MSC have been the objects of a myriad of publications, progressively 

increasing our knowledge on their potentialities and bringing high expectancies for 

their regenerative properties. During the same period, numerous tissues, such as 

adipose tissue, placenta or umbilical cord, have been used as alternative sources of 

MSC in comparison with bone marrow. In particular, considering the accessibility and 

ease to harvest fat tissue, adipose-derived MSC have gained interest above bone 

marrow-derived MSC. More recently, the discovery of MSC immunomodulatory 

properties made MSC-based therapy progressively slip from the field of regenerative 

medicine to the one of autoimmunity. Indeed, in this group of disorders, caused by 

aberrant activation of the immune system resulting in loss of self-tolerance and auto-

reactivity, conventional immunosuppressant may be harmful. One advantage of 

MSC-based therapy would lie in their immune plasticity, resulting in space and time 

limited immunosuppression. More specifically, among autoimmune disorders, 

systemic sclerosis appears as a peculiar multifaceted disease, in which autoimmune 

phenomena coexist with vascular abnormalities and multi-visceral fibrosis. 

Considering the pleiotropic effects of MSC, displaying immunomodulatory, 

angiogenic and antifibrotic capabilities, MSC-based therapy could counteract the 

three main pathogenic axes of systemic sclerosis and might thus represent a 

complete breakthrough in this intractable disease with unmet medical need. In this 

article, while reviewing most recent literature on MSC biology, we itemize their 

current applications in the field of autoimmunity and shed light onto the potential use 

of adipose-derived MSC as an innovative strategy to cure systemic sclerosis.  
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Abbreviations used in the manuscript: 

 

α-SMA: alpha-smooth actin muscle 

AID: autoimmune disorders 

AOPP: Advanced Oxidation Protein 
Products 

ANCA: antineutrophil cytoplasm 
antibodies 

ASC: adipose-derived mesenchymal 
stem cells 

AT: Adipose tissue 

ATMP: Advanced-Therapy Medicinal 
Product 

bFGF: basic fibroblast growth factor 

BILAG: British Isles Lupus Assessment 
Group 

CD : Crohn’s Disease 

CFU-F: colony-forming unit-fibroblasts 

CGH: Comparative Genomic 
Hybridization 

CIA: collagen induced arthritis 

CNS: central nervous system 

CXCR4: chemokine C-X-C motif 
receptor 4 

DC: dendritic cells (mDC: mature, iDC: 
immature) 

EAE: experimental acute 
encephalomyelitis 

EC: endothelial cells 

FDA: Food and Drug Administration 

FISH: Fluorescence In Situ 
Hybridization 

GFP: green fluorescent protein 

GILZ: Glucocorticoid Induced Leucin 
Zipper 

GM-CSF: Granulocyte Macrophage 
Stimulating Growth Factor 

GMP: good manufacturing practices 

GvHD: Graft versus Host Disease 

HO-1: Heme Oxygenase 1 

HOCl: hypochlorite 

HSCT: hematopoietic stem cell 
transplantation 

IA: intra-articular 

IBD: Inflammatory bowel diseases 

IDO: indoleamine 2,3 dioxygenase 

IFN: interferon  

Ig: immunoglobulin 

IL: Interleukin 

IL1-RA: Interleukin 1 Receptor 
Antagonist 

iNOS: inducible NO synthase 

IP: intra-peritoneal 

iPSC: induced pluripotent stem cells 

ISCT: International Society for Stem 
Cell Therapy 

IT: intra-tracheal 

IV: intravenous 

LIF: Leukemia Inhibitory Factor 

LPS: lipopolysaccharide 

MHC: Major Histocompatibility complex 

MMP: metalloprotease 
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MOG: myelin oligodendrocyte 
glycoprotein  

MPC: multipotent progenitor cells 

mRSS: modified Rodnan skin score 

MS: multiple sclerosis 

MSC: mesenchymal stromal/stem cells 

mMSC: murine MSC; hMSC: human 
MSC;  BM-MSC: bone-marrow derived 
mesenchymal stem cells; UC-MSC: 
umbilical cord MSC 

NK: Natural Killer  

OPG: osteoprotegerin 

PAH: pulmonary arterial hypertension 

PBMC: peripheral blood mononuclear 
cell  

PD-1/PD-L1: programmed death-1/ 
programmed death ligand-1 

PGE2: prostaglandin E2 

PHA: phytohemagglutinin 

PLP: proteolipid proteins  

RA: Rheumatoid Arthritis 

RANK/RANKL: Receptor Activator of 
Nuclear Factor Kappa-B / RANK 
Ligand 

ROS: reactive oxygen species 

SCID: Severe combined 
immunodeficiency 

SCF: Stem Cell Factor 

SDF-1: stromal cell derived factor-1 

SLE: Systemic Lupus Erythematosus 

SLEDAI: SLE Disease activity score 

SRY: sex region of Y chromosome 

SSc: systemic sclerosis  

SVF: stromal vascular fraction 

TIMP: tissue inhibitor of 
metalloprotease 

TNF: tumor necrosis factor 

TNFR: tumor necrosis factor receptor 

TSG-6: Tumor Necrosis Factor 
Inducible Gene 6 

URC: ulcerative recto-colitis 

VCAM: vascular cell adhesion 
molecule 
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1 INTRODUCTION 

Since the first description of mesenchymal stromal/stem cells (MSC) in the 

middle of last century, our knowledge has considerably increased and we can now 

expect to benefit from the regenerative properties of these cells in innovative 

therapeutic approaches. In the last decades, earlier studies focused on MSC 

differentiation capacities, but with discovery of their immunomodulatory properties, 

MSC-based therapy progressively slipped from the field of regenerative medicine to 

the one of autoimmunity. This rising interest in cell therapy using MSC for 

autoimmune disorders (AID) is conspicuous when looking at the number of original 

publications and review articles on the subject [1-4], as well as the growing number 

of clinical trials using MSC, among which one third concerns applications to 

autoimmune diseases (for the latest update, see http://www.clinicaltrials.gov). During 

the same period, adipose tissue emerged as a convenient source of MSC, and 

because of potent immunosuppressive abilities, adipose-derived mesenchymal stem 

cells (ASC) have gained interest above bone marrow derived mesenchymal stem 

cells (BM-MSC) in clinical trials. Still there remains questions regarding MSC 

applications in the clinic, in particular those related to the precise characterization of 

these cells according to tissue origin, but also regulatory issues concerning 

production and standardization of cell preparations for good manufacturing practices 

(GMP). This point is crucial considering the need for randomized controlled trials 

evaluating MSC in AID.  

Among AID, systemic sclerosis (SSc) appears as a peculiar multifaceted disease, 

in which autoimmune phenomena coexist with vascular abnormalities and multi-

visceral fibrosis [5,6]. Considering immunomodulatory, angiogenic and antifibrotic 

capabilities of MSC, MSC-based therapy could represent a complete breakthrough in 
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this severe life-threatening disease with unmet medical need [7]. In this article, while 

reviewing most recent literature on MSC biology and immunomodulatory capacities, 

we detail the current applications of MSC in the field of AID and shed light onto the 

potential use of ASC in SSc. 

 

2 MSC: DEFINITION 

2.1 History and introduction of MSC in physiology 

MSC were first identified in the 1960’s by Alexander Friedenstein [8], who 

isolated non-haematopoietic cells from bone-marrow aspirates and qualified them as 

colony-forming unit-fibroblasts (CFU-F) because of their adherence to plastic and 

their fibroblastic-like shape in monolayer culture. He and others consecutively 

demonstrated their role in the haematopoietic niche, as bystanders with homeostatic 

features through the secretion of anti-apoptotic molecules, but also as active 

supporters of haematopoiesis through the release of trophic and growth factors: 

Stem Cell Factor (SCF), Granulocyte Macrophage Stimulating Growth Factor (GM-

CSF), Interleukin-6 (IL-6), Leukemia Inhibitory Factor (LIF), etc… He also 

demonstrated their capacity to generate osteogenic progenitors and their role in bone 

regeneration. Later on, MSC were found in other mesenchymal tissues (see 

paragraph 4) and shown to participate in tissue maintenance and homeostasis 

through their differentiation into mature cells. Their implication in wound healing was 

also rapidly outlined, and they are now considered as sensors in case of tissue injury, 

interacting with endothelial cells and secreting chemo-attractants, with a specific role 

for pericytes [9]. Their activation might thus be the primum movens of tissue 

inflammation, while MSC also play an important role in inflammation resolution and 

tissue repair, surpassing the confined role of progenitors required for cell turn-over.   
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Since their discovery in the sixties and the first clinical application by Lazarus et 

al. in 1995 [10], various methods have been used to isolate, characterize and culture 

MSC, resulting in some inconsistencies in the results obtained and in difficulties to 

compare studies. Indeed, no specific marker can define a MSC to date, and even the 

terminology used has been discussed, some researchers disputing the stemness of 

these cells, and preferring the use of “multipotent progenitor cells” (MPC). Altogether, 

these observations led the International Society for Stem Cell Therapy (ISCT) to 

draw guidelines in 2006, and bring a consensual definition of MSC. 

 

2.2  MSC definition  

According to the ISCT, the official terminology to refer to these cells should be 

“multipotent mesenchymal stromal cells”, which can still be abbreviated as MSC [11]. 

At the same time, the society brought minimal criteria for defining MSC and 

standardizing further studies in the field [12]. These criteria are still applicable today, 

and define MSC according to 3 main features: 

1. Plastic adherence in standard culture conditions, 

2. Specific surface antigen pattern :  

 expression (> 95% of cells) of CD73, CD90, CD105,  

 no expression (<2% of cells) of pan-leucocyte antigen CD45, of 

haematopoietic and endothelial progenitor marker CD34, of 

monocyte/macrophage antigens CD14 or CD11b, of B lymphocyte 

antigens CD79 or CD19, and of class II antigen HLA-DR, to exclude 

haematopoietic contamination, 

3. Tri-lineage differentiation potential into adipocytes, osteoblasts or 

chondrocytes. These differentiation abilities are evaluated in vitro under 
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defined culture conditions and are characterized by specific stainings 

respectively using Oil Red O, Alizarin Red S, and Alcian blue or Safranin O 

(or collagen II immunohistochemical staining) and up-regulation of markers 

specific for each differentiated cell type. 

  

2.3 Limitations to the ISCT definition  

The choice made by the ISCT not to retain the “stemness” of MSC may seem 

rationale since this term implies a self-renewal capacity, which is still under debate 

for these cells. However, the terminology routinely applied still remains 

“mesenchymal stem cells”, as shown by the higher number of references using this 

term in pubmed (39311 vs 25510 for mesenchymal stromal cells and 2667 for 

multipotent stromal cells). Concerning the multipotency of MSC, some could argue 

that these cells are pluripotent since they have now been shown to differentiate into 

cell types from other embryonic layers [13]. However, the demonstrations were 

mostly made in vitro, in very specific conditions. Another limitation to the ISCT 

definition is that it mostly refers to human MSC (hMSC), but human ASC do express 

CD34 in naïve state and during the first days of in vitro expansion [14]. No consensus 

exists as well for murine MSC (mMSC), whose pattern of surface markers can vary 

depending on genetic background, with an admitted specific expression of CD29, 

CD44, CD73, CD105, CD106, and Sca-1 [15,11,16]. Conversely, HLA-DR 

expression, another exclusion criterion in ISCT definition, can be induced after MSC 

stimulation with interferon gamma (IFN-γ) and basic fibroblast growth factor (bFGF). 

Importantly, phenotypical and functional differences have been observed between 

MSC isolated from different tissues. Altogether, these observations illustrate the need 

for developing new definitions based on functional assays, making possible a better 
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characterization of MSC preparations. Such definitions could additionally be useful to 

work on standardized and homogenised populations of cells [17] [18]. 

 

2.4 Regulatory concerns 

The growing interest in the therapeutic potentialities of MSC progressively 

raised regulatory issues, as a prerequisite for broader clinical applications. Indeed, 

MSC are easily isolated and expanded in culture in two to three weeks, and can be 

cryopreserved, allowing long-term storage. The development of new techniques for 

isolation and of bioreactors for cell expansion should allow sparing precious time and 

be more cost-effective, making possible the large-scale production of MSC. 

Concordantly, the number of MSC-based clinical trials is constantly increasing, from 

227 in 2012 to 597 in 2016, with a majority of applications for tissue regeneration, but 

almost one third for immunomodulation, and a minority for haematopoietic restoration 

(see clinicaltrials.gov).  

In this context, the need for clinical-grade MSC led to other debates and 

regulatory definitions. In particular, the standardization of isolation and culture 

procedures is critical, both for safety reasons but also in order to make studies 

comparable. These standards may concern: the technique for recovery, the enzymes 

used, the quality of medium, animal serum, bioreactors for culture and amplification, 

closed and aseptic systems. The safety controls have to include microbiological 

controls (from the donor for viral concerns, and in culture acquired bacterial 

contamination, such as mycoplasma), but also search for genetic instability, using 

techniques ranging from a raw karyotype, to Fluorescence In Situ Hybridization 

(FISH) or Comparative Genomic Hybridization (CGH) arrays. Eventually, functional 

assays, relevant to the application considered could improve MSC use in the clinic 



 11 

(for instance, in vitro assay for immunosuppression) [18] [16]. However, the current 

impediment to a standardization of procedures using MSC lies in the high variability 

of regulatory rules from one country to another, questioning the comparability of 

clinical studies [19]. For instance, the usage of MSC in USA must meet the Food and 

Drug Administration (FDA) definition and comply with GMP standards [20], whereas 

European countries define MSC as an Advanced-Therapy Medicinal Product (ATMP, 

regulation 1394/2007), which includes guidelines for authorization, supervision, 

technical requirements, product characteristics, and labelling [21]. Efforts are still to 

be made for more harmonization of procedures in the future. 

 

3 MSC BIOLOGY AND PHARMACOLOGY 

3.1 Immunomodulation  

First shown in the beginning of the century [22,23], MSC immunosuppressive 

capacities are well described and constitute a huge body of data, subject of 

numerous reviews [24,13,25,2,26-31]. However, discordant mechanisms have been 

observed, according to tissue origin of cells, species [32], in vitro and/or in vivo 

conditions. This prompted ISCT to make a proposal in 2013 and define a gold-

standard for inter-study analyses (culture conditions, priming of cells, etc.) [25].  

In vitro usual demonstration of MSC immunosuppressive function is based on 

the capacity of MSC to reduce the proliferation of immune cells in co-culture, 

affecting both innate and adaptive immunity. In these experiments, immune cells 

(total splenocytes, peripheral blood mononuclear cell (PBMC), or purified populations 

of cells) undergo polyclonal or antigen specific activation, using phytohemagglutinin 

(PHA), lipopolysaccharides (LPS), CD3, or a specific antigen. The main mechanism 

is paracrine and depends on the secretion of soluble factors, since the effects are still 
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appreciable when MSC and immune cells are separated by a semi-permeable 

membrane (transwell), or can be mainly reproduced by the sole supernatant of 

activated MSC. Cell contact however amplifies the process.  

Concerning T lymphocytes, the anti-proliferative effect observed is likely due to 

G0/G1 phase cell cycle arrest by inhibition of cyclin D2, resulting in a reversible 

quiescence of these cells, rather than apoptosis of T cells [13]. This leads to effector 

cell anergy, as testified by the secretory profile of these cells, with a decrease of the 

pro-inflammatory cytokines IFN-γ, TNF-α, IL-17 and an increase of IL-10 and IL-4 

(switch to Th2 and/or regulatory phenotype). The two main and well described 

soluble factors responsible for these effects are: 1) indoleamine 2,3 dioxygenase 

(IDO), an enzyme whose activation depletes the surrounding environment in the 

essential amino acid tryptophan, which is catabolized into kynurenine, leading to the 

accumulation of breakdown toxic products [33,34,29]; 2) inducible NO synthase 

(iNOS) activation, with NO release in the vicinity, resulting in cytotoxicity on 

numerous immune cells (i.e. T lymphocytes, NK) [13]. These two enzymatic activities 

have been considered as essential since their selective inhibition reverses the 

inhibitory effect of MSC on immune cell proliferation. They are species specific, IDO 

and iNOS being expressed in human or murine cells, respectively (see infra). Other 

secreted factors are involved but their inhibition does not completely abrogate MSC 

suppressive functions. Among them, prostaglandin E2 (PGE2) [35], IL-6 [36], TGF-β1, 

Hepatocyte Growth Factor (HGF), Tumor Necrosis Factor Inducible Gene 6 (TSG-6), 

Heme Oxygenase 1 (HO-1), HLA-G5 [13], Interleukin 1 Receptor Antagonist (IL-1RA) 

[37], and soluble TNF-Receptor 1 [38] seem of particular interest. We also 

demonstrated the role of Glucocorticoid Induced Leucin Zipper (GILZ) in the 

mediation of MSC immunosuppression and induction of non-pathogenic Th17 cell 
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subset [39]. As previously discussed, cell contact can amplify the suppressive 

response on Th17 cell function, for example through the programmed death-1/ 

programmed death ligand-1 (PD-1/PDL-1) pathway, as recently shown by our team 

[40].  

 In addition to their suppressive effect on effector T cells, MSC are able to 

induce the generation and expansion of CD4+CD25+Foxp3+ regulatory T cells, 

resulting in peripheral tolerance [13] [41]. MSC also affect, directly or indirectly, the 

proliferation and/or cytotoxicity of NK cells, via soluble factors (PGE2 and TGFβ1) 

[42]. Similar suppressive effects have also been shown against B lymphocytes, both 

through the inhibition of proliferation and preventing the maturation of these cells 

towards plasmocytes, resulting in decreased production of immunoglobulins (Ig) [43]. 

This effect on B cells could be indirect, resulting from MSC inhibition of activated T-

cells [44]. Finally, MSC promote the maturation of antigen-presenting cells toward a 

regulatory phenotype. In particular, MSC suppress the differentiation of monocytes 

into mature dendritic cells (mDC) through IL-6 [45], IL-4 and GM-CSF secretion, 

resulting in the persistence of inhibitory immature (i)DC, with regulatory phenotype 

and induce the shift towards an anti-inflammatory M2-like phenotype [46,47].Few 

studies have reported their impact on neutrophils, yet indirect mechanisms can lead 

to the inhibition of neutrophil oxidative burst. This inhibition mainly occurs through the 

secretion of IL-10 by M2 macrophages, induced by the production of PGE2 and IL-6 

by MSC [35].  

Of note, the priming of MSC is required for most of these immunosuppressive 

effects. Indeed, resting MSC do not constitutively secrete high levels of the 

abovementioned factors and need activation by the surrounding inflammatory 

environment to polarize them towards a suppressive phenotype [48]. The main 
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activators of MSC are IFN-γ, TNF-α and, to a lesser extent IL-1 [25], More recently, 

the segregation between a MSC1 and a MSC2 phenotype, with pro-inflammatory and 

anti-inflammatory profiles respectively, has been described [26]. Although challenged, 

the description of these two phenotypes according to environmental stimuli could 

support the critical role played by MSC in immune homeostasis, in particular at the 

time of tissue injury. On the whole, convincing data demonstrate the broad spectrum 

of immunomodulatory effects of MSC towards innate and adaptive immunity. .  

3.2 Differentiation potential 

Besides adipocytes, osteoblasts and chondrocytes, MSC differentiate in vitro, 

upon specific culture conditions (i.e. hypoxia, 3D culture using biomaterial scaffolds, 

specific growth factors), into other mesodermal cells (myocytes, tendinocytes, 

cardiomyocytes), but also cells from endoderm (pneumocytes, hepatocytes, 

pancreatic islet beta cells), or ectoderm (epithelial cells, neuroglial cells, etc.) [49] 

[50]. In vivo, in lung injury, MSC ability to differentiate into alveolar epithelial cells 

may give credit to their regenerative potential [51,52]. However, the low frequency of 

MSC trans-differentiation doesn’t seem meaningful in therapy [53], since most of the 

studies show poor engraftment of cells [54] or differentiation in vivo [55]. Anyhow, the 

regenerative properties of MSC have been demonstrated in various degenerative 

conditions such as myocardial infarction, stroke, and neurodegenerative disorders 

[56]. In osteo-articular diseases, bone or cartilage repair through tissue engineering 

or scaffold-free MSC-based therapies is evaluated in the clinics [57-65] (for review, 

see [66]).  

  

3.3 Trophic potential 
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The trophic role of MSC, first described in the bone-marrow haematopoietic 

niche, is now highlighted in view of multiple applications in many disorders and is 

mostly based on the secretion of anti-apoptotic factors, proliferative and growth 

factors, angiogenic factors, and many others. The importance of MSC secretion has 

been demonstrated in bone remodelling through the modulation of Receptor Activator 

of Nuclear Factor Kappa-B Ligand (RANKL) and osteoprotegerin (OPG), but also in 

neuroprotection, cardiac regeneration, and generally in tissue remodelling [4] [67]. 

Beside anti-apoptotic and angiogenics properties, MSC prevent fibrosis through the 

secretion of HGF, metalloproteases (MMP), and the down-regulation of collagen 

synthesis [67]. Finally, anti-oxidative effects are also to be mentioned, through 

paracrine secretion or cell-contact. Most of these effects depend on paracrine 

secretion in the vicinity of target cells, but the role played by the extracellular vesicles 

(microparticles or exosomes) released by MSC seems to be key. Extracellular 

vesicles containing proteins, mRNAs and micro-RNAs, are now supposed to mediate 

most of the endocrine effects, apart from the site of MSC presence [67].  

 

3.4 In vivo fate of injected MSC  

3.4.1 Biodistribution and pharmacology  

Various techniques have been used to track MSC following their 

administration, such as in vivo imaging using bioluminescence (luciferase) or 

fluorescent tracking (GFP), or molecular biology using quantitative PCR, allowing the 

tracking of male MSC infused into female mice using SRY gene amplification for 

instance. However, these techniques lack sensitivity while Alu-sequences tracking of 

hMSC infused into animals by qPCR has been shown to be far more sensitive. 

Considering the human-species specificity of Alu sequences and the high number of 
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repetitions of these short interspersed elements on the genome, this technique 

displays a higher sensitivity and allows detecting one single hMSC among 100,000 

murine cells [68,69]. These studies revealed that a majority of MSC was detected in 

lungs within 15 minutes following intravenous (IV) infusion, while only trace amounts 

could be found in circulation or in other tissues (i.e. liver, spleen, brain, or heart) 

[70,68] [71] [72]. Indeed, for rheological reasons as well as receptor-mediated 

chemo-attraction, IV-infused MSC are mostly trapped in lung vasculature [73]. More 

importantly, MSC do not persist in lungs more than a couple of days, even in 

syngeneic conditions or using SCID mice to avoid immune rejection of MHC 

unmatched cells [31]. Interestingly, biodistribution of cells may be affected by 

pathological conditions, with a preferential homing to injured parts of the lungs in 

case of acute lung injury, or even an extra-pulmonary migration to injured tissues [52]. 

Thus, the role of pro-inflammatory environment and more precisely of 

chemokines such as stromal cell derived factor-1 (SDF-1) or its receptor chemokine 

C-X-C motif receptor 4 (CXCR4) seem crucial in the process [74]. The migration 

through blood vessels also implies crossing endothelium and thus MSC expression 

of adhesion molecules such as vascular cell adhesion molecule (VCAM) [31]. Neither 

the presence of cells nor their persistence in tissues seem necessary for MSC long-

lasting benefits, and this argues for a “hit and run” mechanism of action, mostly 

based on paracrine secretion of molecules or extracellular vesicles [31] [67]. Of note, 

the route of administration can affect the kinetics of MSC distribution, with liver as the 

main target using intra-peritoneal (IP) infusion. In case of local intra-articular (IA) 

injection of high amounts of hASC into SCID mice, a long-term persistence could be 

observed (15% of cells the first month and 1,5% after six months), with a significant 



 17 

redistribution to the classical stem cell niches (bone-marrow, adipose tissue and 

muscle) [69].  

Beside the route of administration, another pharmacological issue concerns 

the “dose” to be administered, namely the number of MSC to be injected. Few dose 

escalation studies have been published and positive dose-related effects were 

usually observed [75,76]. Conversely, other authors and our group have reported 

inverse dose effects using MSC [56,77,78] [70]. These inconsistent results can be 

explained by distinct sources of MSC, variable pathological environment, route and 

time of injection. Another explanation to these inverse dose-effects can be related to 

an increased probability of microembolia and MSC lung entrapment after infusing 

highest doses of MSC. Cumulatively, as claimed by Murphy et al [78], “more is not 

always better, and the effective doses must be determined based on the clinical 

application”. 

  

3.4.2 Immunogenicity of MSC 

MSC have long been considered as immune privileged since they display no 

or low expression of class I MHC and of co-stimulatory molecules (CD40, 

CD80/CD86) [79] and do not induce potent allo-reactivity when infused into another 

organism [31]. Nonetheless, in contradiction to what had been initially thought, they 

do not completely escape immune surveillance, since they can be recognized and 

cleared by NK cells [80]. In addition, they have been shown to elicit cellular and 

humoral responses in vivo [81,31,82], sometimes in association with a lack of effect 

[83]. However, according to the proposed “hit and run mechanism” of action, immune 

rejection appears to not preclude their efficacy at least on the short- or middle-term 

[31,54]. As a whole, MSC transplantation across MHC barriers seems possible and 
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probably as effective. Still, the question of autologous or allogeneic condition has to 

be taken into consideration in the design of clinical trials using MSC in Humans. 

 

3.4.3 Safety  

Even if we have hindsight on safety considering the wide-scale use of MSC in the 

last decade, MSC-biotherapy still raises some questions, and some of them remain 

unanswered. The first issue concerns the possible ectopic tissue formation using 

multipotent progenitors that possess ability to differentiate. As said earlier, these 

abilities have rarely been shown in vivo, where only a low amount of MSC remains, 

with no long-term engraftment. Although heart calcifications have been reported [84], 

ectopic tissue formation after MSC infusion is assumed very unlikely. Second, 

contrary to induced pluripotent cells (iPSC) or embryonic stem cells, MSC are not 

associated with a risk of teratoma formation, because they are adult stem cells with 

restricted potential of differentiation. The third issue concerns the oncogenic risk of 

such a biotherapy [85,86]. Indeed, genetic instability has been noted in culture [87], 

but was associated to extended time in culture and high passages. Reassuringly, no 

immortalization of hMSC was noted in culture, and karyotype abnormalities did not 

lead to the emergence of oncogenes. If sarcoma transformation has been suspected 

once [88], the majority of studies did not show any malignant transformation of cells 

in the short and middle terms [89] [90]. In fact, early studies have been retracted due 

to MSC contamination by tumor cells during cultures. Eventually, caution should be 

exercised using MSC in patients with past history of cancer, since MSC 

immunosuppression may limit antitumor immunity and consequently favour tumour 

growth [48,91]. On the whole, based on a recent meta-analysis gathering more than 

1000 patients, the only adverse event significantly associated to MSC treatment was 
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transient fever at the time of infusion [92]. No association with acute toxicity, organ 

system complications, infection, malignancy or death was to be noted.  

 

4 TISSUE ORIGIN OF MSC 

4.1 Sources 

First isolated from bone marrow (BM), MSC have been described in numerous 

adult tissues such as periosteum, perichondrium, synovium, muscle, adipose tissue 

(AT), dental pulp, lymphoid tissues, and virtually all tissues may contain MSC in 

various proportions [93,94] [95]. Other potential sources are menses [96] and fetal or 

neonate annexes such as placenta, amniotic membrane, umbilical cord (UC) blood or 

Wharton jelly [97]. Undoubtedly, BM being the most described source of MSC, BM-

MSC are a reference in all studies. However, isolation from BM encounters 

limitations, such as the invasive and potentially painful procedure for the donor, and 

the low number of progenitors harvested due to the rarity of MSC within this tissue 

(1/100,000). For these reasons, the possibility to harvest MSC from other tissues was 

developed.  

 

4.2 Between-sources comparison 

Whatever the tissue they originate from, MSC meeting the ISCT minimal criteria 

should share common biological features. However, tissue specificity has been 

suggested, and concerns MSC phenotype (i.e. CD34+ for ASC, CD270+ for amnion 

MSC), expression profile and functionality [95,98] [99] [100] [101] [102]. For these 

reasons, the concept of a unique MSC is controversial [103]. Because of higher 

proliferative rate and stronger inhibition of T-cell proliferation, ASC are very promising 

[104] [105] [106-108].  
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Considering the accessibility and ease to harvest adipose tissue, an increasing 

number of studies are using ASC rather than BM-MSC [109]. In practice, the medical 

procedures used (lipectomy or simple lipoaspiration) are associated with very low 

donor morbidity, and a high available volume of tissue. Once adipose tissue collected, 

collagenase digestion and centrifugation separates stromal vascular fraction (SVF) 

from fat and blood fluids. Among other mature cells and progenitors, this SVF 

contains ASC in a variable proportion reaching 2-10% of cells with CFU-F capacity, 

which represents up to a 10,000 fold increased yield compared with BM-MSC 

isolation [110]. In this context, companies have gambled on the potential of adipose 

tissue and developed cell separation systems that allow immediate isolation and 

separation in the operating room [111]. Hence, ASC-containing SVF can be delivered 

to the patient in the very same procedure, if autologous and orthotopic approach is 

applicable. However such procedures do not isolate ASC and therefore lead to the 

implantation of endothelial cells as well as different immune cell types, which can 

potentially be inflammatory.  

Concerning the phenotype and functions of ASC, we already noted that naïve 

ASC express CD34, although in contradiction with ISCT criteria for MSC. In fact, 

expression of this marker is lost during ex vivo culture when cells proliferate. Besides, 

ASC phenotype is well described [112] [113] [114]. Recently, our team evaluated two 

different techniques for harvesting AT: traditional manual lipoaspirate using a cannula 

and a syringe vs water-jet assisted aspiration (Bodyjet®), a device allowing good 

esthetical results, together with better tissue protection, increased cell viability and 

lower cardiovascular adverse events for the donor. In this study, we did not show a 

significant impact of the technique in terms of SVF/ASC characteristics at isolation, 

and of in vitro and in vivo immunosuppressive functions [115]. Regarding functionality, 
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many studies agree to qualify ASC as the strongest immunosuppressors compared 

to MSC from other sources (including BM-MSC) [106-108] [116] [117], both through a 

stronger inhibition of activated B cells and Ig production, and a greater impact on 

monocyte-DC differentiation and maturation. Furthermore, ASC may display more 

proangiogenic, antiapoptotic and antioxidant capacities [118] [119] [120]. All in all, 

adipose tissue represents one of the best sources of adult mesenchymal stromal 

progenitors, and ASC stand as ideal candidates for MSC-based clinical applications. 

 

5 MSC-BASED THERAPY IN AUTOIMMUNE DISEASES - STATE OF THE ART 

5.1 General points  

AID is a group of disorders caused by a dysfunction of the immune system, 

resulting in a break of self-tolerance and auto-reactivity. On the one hand, organ 

specific AID, such as autoimmune thyroiditis or type 1 diabetes, can lead to mono-

organic failure, and may require long term substitutive therapy or organ 

transplantation; on the other hand, systemic AID, notably Systemic Lupus 

Erythematosus (SLE) or Systemic Sclerosis (SSc), whose features can be highly 

variable, may require immunosuppressive therapy. Actual immunosuppressant 

expose patients to loss of protective immune response against infectious agents (i.e. 

bacteria, viruses, fungi or parasites) or tumour development. These opportunistic 

infections are as frequent using target therapies as using conventional 

immunosuppressants [121]. One advantage of MSC-based therapy would lie in the 

specificity of the response according to the pathological environment, resulting in 

local and time-limited immunosuppression. Interestingly, alterations of resident MSC 

have been reported in various AID including SLE, Rheumatoid Arthritis (RA) and SSc, 

resulting in premature senescence of cells and impaired functionality, in particular in 
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terms of immunosuppression [122] [123] [124-126]. The question remains whether 

these alterations are a consequence of the pathological environment or the primum 

movens of AID pathogenesis.  

Indeed, because MSC are involved in immune peripheral tolerance (for 

instance suppressing T cell reactivity), primary alteration in MSC niche could impair 

immune homeostasis and generate auto-reactivity. In that context, beside direct 

immunosuppressive benefits, allogeneic MSC administration could help counteract 

the process in the niche and restore healthy resident MSC phenotype through the 

supply of trophic factors. The first demonstrations of MSC-associated immune 

tolerance were made in animal models of allografts, where syngeneic MSC were able 

to decrease immune rejection of MHC unmatched cells or tissues [127], for review 

see [13]. Moreover, our team reported that MSC administration allowed allogeneic 

tumour growth in vivo [48]. Numerous studies thereafter demonstrated the 

immunosuppressive properties of MSC in animal models of auto-immunity, first in 

experimental acute encephalomyelitis (EAE), a murine model for multiple sclerosis 

[128], in collagen induced arthritis (CIA), a murine model for rheumatoid arthritis [129] 

[130], in genetic models of murine lupus [131], in Graft versus Host Disease (GvHD) 

[132], or autoimmune type 1 diabetes [133]. The possibility to prime in vitro of MSC 

before injection could amplify their immunosuppressive function as reported in GvHD 

[134]. Therefore, the question of route of administration, source of cells and the 

possibility of autologous approach has to be raised in each case.  

 

5.2 Systemic Lupus Erythematosus (SLE) 

SLE is a heterogeneous multi-systemic AID affecting young women and 

displaying variable clinical features, from cutaneo-articular to systemic life-
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threatening manifestations with kidney, heart or central nervous system (CNS) 

involved [135-137] [138] [139] [140] [141,142] [143]. While B cell activation is pivotal 

in SLE pathogenesis and associated with the production of anti-double strain DNA 

auto-antibodies (anti-dsDNA Ab) [144], impaired clearance of apoptotic bodies and 

defective regulatory T cells are also involved [145]. SLE often requires long-term 

conventional immunosuppression, in particular corticosteroids, cyclophosphamide, or 

mycophenolate mofetil, and is not devoid of metabolic and infectious adverse effects 

associated with reduced life span [146-149] [150]. Recent specific therapies targeting 

B lymphocytes (i.e. rituximab through CD20), T/B cooperation (co-stimulatory 

molecules), or BAFF (belimumab, anti-Blys monoclonal antibody) failed to improve 

significantly the overall prognosis of this disease [151] [152] [153] [121]. Thus, 

through their immunomodulatory properties, MSC could help extend the therapeutic 

arsenal in refractory cases of SLE, as well as reducing long-term exposure of 

patients to steroids and other immunosuppressants [154] [7]. 

 Regarding MSC from SLE patients, studies have reported alterations in their 

haematopoietic support function [155], and osteogenesis capacity [156]. Moreover, 

MSC from SLE patients display senescent features such as large cells with low 

proliferation rate [122,157], alterations in gene expression [158] and cell cycle 

through p16ink4A, ERK1 and wnt/beta-catenin pathways modulation [159,160]. 

Increased apoptosis of MSC related to downregulation of bcl-2 has also been 

mentioned [161], as well as high levels of intracellular reactive oxygen species (ROS). 

On the whole, MSC impairment in SLE results in reduced ability to generate 

regulatory T cells. These defects of endogenous MSC in SLE prompted to allogeneic 

approaches, as confirmed by preclinical data obtained in two different strains of 

genetic murine models for SLE (Fas mutated MRL/lpr and (NZB/NZW)F1) [162]. In 
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this study, the authors demonstrated that adult MSC from lupus-prone mice failed to 

alleviate disease features compared with MSC from healthy mice. However, MSC 

from young mice displayed the same therapeutic effect, independently of the disease. 

Altogether, these results suggested an impact of the pathological environment on 

MSC rather than an intrinsic alteration of MSC preceding the disease onset. 

Nevertheless, in another study, the same group showed that SLE patients’ MSC 

lacked therapeutic effects in MRL/lpr mice, compared with healthy donors’ MSC [163]. 

All these data prompted to design studies using allogeneic healthy MSC rather than 

autologous cells.  

Doing so, a therapeutic benefit has been observed using hBM-MSC from 

healthy donors as compared with conventional cyclophosphamide administration in 

two genetically-prone mouse models for SLE: MRL/lpr mice [164] [165] and BXSB 

mice [156]. Of note, conflicting results have been obtained in another major mouse 

model (NZB/NZW)F1: one study reported a complete failure of MSC-treatment [166], 

while another one showed protective effects only on glomerular involvement [167]. In 

studies with positive results, MSC-related benefits were associated with reduced 

levels of anti-ds-DNA Ab, less glomerular immune (IgG/C3) depositions, improved 

renal function and proteinuria, as well as bone formation. Interestingly, the successful 

use of human ASC in murine lupus has been reported [168-171], as well as human 

UC-MSC [172,173], with improved overall survival in both cases.  

In human disease, a report of 2 patients by Carrion et al. in 2010 confirmed 

the lack of efficacy when using autologous SLE BM-MSC in this disease: no benefits 

observed, despite increased regulatory T cell population [174]. In parallel, the first 

Chinese pilot clinical studies from Sun et al. shed light on the safety and potential 

benefits, using allogeneic BM-MSC (1 to 10x10e6 cells per kg) in 4 patients in 2009 
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[156], and with 15 additional patients in 2010 [175], then using UC-MSC in 16 

patients in 2010 [176]. In 2013, promising results were reported in 35 SLE patients 

with refractory cytopenia, who experienced good outcome on haematological 

manifestations following BM- or UC-MSC infusion. Patients exhibited decreased 

Th17 response and induced regulatory T cells [177]. UC-MSC transplantation was 

also reported in lupus alveolar haemorrhage, a very rare feature of the disease 

[178,179]. Of note, the same research group recently reported sustained results after 

a 4-year follow-up in these refractory cases where UC-MSC had been used. The 

good results were considered independent of cyclophosphamide administration, with 

about 50% remission, and 23% relapse [180]. Later on, Sun et al. described the 

benefits of allogeneic intra-familial BM-MSC administration (10e6/kg IV) in refractory 

lupus nephritis through an open label single centre study involving 81 patients [181]. 

After a 12-month follow-up, they noted 60,5% complete remission, associated with 

significant decrease in BILAG and SLEDAI scores, increased glomerular filtration 

rate, allowing tapering mean doses of prednisone, cyclophosphamide and 

mycophenolate mofetil. Of note, 2 patients died from heart failure (one severe 

pulmonary arterial hypertension) and 2 succumbed to disseminated pulmonary 

infections, which were considered as MSC-independent events.  

Recently, the same group conducted a multicentre study on 40 patients with 

active refractory SLE (BILAG score A), who were treated by two consecutive 

infusions of 10e6 UC-MSC per kg at day 0 and day 7 [182]. They obtained 32.5% 

major clinical response (BILAG C or better), 27.5% partial response and 17.5% 

relapse, responding to another infusion at 6 months in most cases. 

Immunosuppressants were tapered significantly in most patients. Adverse events, 

not considered to be linked to MSC treatment included HSV infections in 3 cases, 
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and tuberculosis in one case and three patients died. The causes of death were also 

considered as independent from MSC treatment and were acute heart failure 7 days 

after MSC infusion, severe pulmonary arterial hypertension at 8 months, and 

pulmonary infection during follow-up.  

On the whole, the extensive work by L. Sun et al. is promising, but some 

limitations have to be noted. First, no randomized controlled trial has been published 

so far; second, all the studies concerned SLE patients from Asian ethnicity, and thus 

can hardly be extrapolated to other ethnic groups considering the variability in clinical 

features and prognosis according to ethnic origin in SLE. Hence, there is an urgent 

need for multicentre randomized controlled trials evaluating MSC-based treatment in 

SLE [7]. 

 

5.3 Rheumatoid arthritis (RA) 

RA is one of the most frequent rheumatologic AID affecting about 1% of the 

population and associated with severe disability, altered quality of life but also 

systemic complications and a shortened life-span. Biotherapies targeting cytokines, 

B-lymphocytes or T/B cooperation, combined with methotrexate today allow optimal 

control of patients [183-186]. Nevertheless, biotherapies fail in 30% of patients and 

the potential of MSC-treatment has been evaluated early in RA. The first preclinical 

assays were in murine models such as collagen induced arthritis (CIA), a model 

based on specific antigen immunization using bovine collagen II. In this model, 

conflicting results have been reported, according to administration route, number and 

time of injections [187-189,36,85,129]. Notably, our team showed that beneficial 

effects required two IV injections in a narrow therapeutic window, around collagen 

boost [36]. On the whole, when positive, these studies reported a reduction in the 
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incidence and the severity of arthritis (clinical scores based on the number of swollen 

joints and the measurement of paw swelling), a restoration of the balance between 

pro- and anti-inflammatory cytokines in lymph nodes and joints (down-regulation of 

Th1 and Th17 cells, up-regulation of IL10 producing regulatory T-cells), and less joint 

damage (histological scores). Neither MHC compatibility nor tissue origin of MSC did 

affect the results in CIA, with good outcome using ASC [190]. Of note, the articular 

benefits were due to systemic immunosuppressive effects, since MSC did not 

migrate to joints, and intra-articular injection of cells was less effective than 

intraperioneal or intravenous routes [68].  

In human disease, a phase I/II uncontrolled study enrolling 136 patients 

recently reported the benefits of UC-MSC (4x10e7 cells IV) with an 8-month follow-up 

[191]. The authors described an improvement in all activity scores (DAS28, HAQ, 

ACR responses), in C-reactive protein and rheumatoid factor levels, together with an 

enhanced regulatory T-cell response. In case of relapse, a second dose at three 

months (M3) allowed 58% patients to achieve ACR20 response, and no serious 

adverse effects were noted (notably, biological parameters were systematically 

screened). The same group conducted a similar study in juvenile idiopathic arthritis 

(JIA) where 10 patients received 2 doses of 4x10e7 UC-MSC IV at M0 and M3, and 

observed an improvement from M3 to M6, with reduced pro-inflammatory cytokines 

and enhanced regulatory T-cells population [192]. This study brought safety data 

using UC-MSC in children. However, results from this study have to be examined 

cautiously, since all patients received glucocorticoids concomitantly to MSC infusion. 

 

5.4 Sjögren syndrome (SgS) 
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SgS associates glandular inflammatory infiltration responsible for sicca syndrome 

and various systemic manifestations, with a risk of B-cell lymphoma transformation. 

BM-MSC have been recently evaluated favourably in an animal model of SgS (NOD 

mice) [193]. The Chinese group of L. Sun also published a very elegant study in 2012, 

reporting impaired immunomodulatory properties of murine (NOD/Ltj) and human 

SgS MSC, as well as therapeutic effects of healthy MSC, both in SgS mice (10e5 

BM-MSC) and in 24 SgS patients (10e6 UC-MSC per kg) [194]. Of note, these 

patients presented various involvements ranging from mere sicca syndrome to 

systemic threatening events like nephropathy or neurological involvements. Good 

outcomes concerned SSDAI score, saliva flow rate and anti-SSA antibodies levels, 

after a 12-month follow-up. In mice, BM-MSC treatment was also associated with 

suppressed Th17 and Th1 responses, a switch towards regulatory and Th2 

responses and a migration of cells to inflammatory salivary glands via SDF-1. 

 

5.5 Inflammatory Bowel Diseases (IBD): Crohn’s Disease (CD) and Ulcerative 

Recto-Colitis (URC) 

MSC have been thoroughly evaluated in preclinical models of experimental 

colitis in various species, such as mice, guinea pigs, dogs, where they exerted anti-

inflammatory, anti-fibrotic and healing properties [195]. Clinical phase I studies were 

in favour of a healing potential of autologous MSC in case of fistulising complications 

during CD [195] [196]. Autologous BM-MSC were also beneficial in luminal CD [197] 

and a recent phase I/II study gave promising results using allogeneic ASC [198]. A 

dozen of clinical studies using BM-MSC, ASC or UC-MSC in IBD are on going today 

(see clinicaltrials.gov). 
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5.6 Systemic vasculitides 

Systemic vasculitides are a heterogeneous group of systemic AID characterized 

by vascular inflammation sometimes in association with autoantibodies directed 

against neutrophils (anti-neutrophil cytoplasm antibodies, ANCA). Only two 

publications have reported so far the effects of MSC in vasculitides. First, a patient 

with ANCA-associated vasculitis and threatening renal involvement (rapidly 

progressive glomerulonephritis), refractory to rituximab was successfully treated with 

autologous BM-MSC (1,5x10e6/kg IV) [199]. Within 7 days, this patient achieved 

complete clinical and biological remission (urinary sediment and autoantibodies), but 

required subsequent re-infusion for relapsing disease after 8 months. After a 20-

month follow-up, sustained remission persisted together with a reduction of auto Ab, 

pro-inflammatory cytokines and induction of regulatory T-cell population. Second, 

Iranian authors recently reported a negative study, where they failed to treat 3 

patients with intra-vitreous injection of autologous BM-MSC in severe retinal 

involvements during Behcet’s disease [200]. However, these patients presented 

refractory vasculitis and were already blind when MSC were injected. The eventuality 

that earlier treatment could have improved these cases might be discussed, but was 

not investigated. 

 

5.7 Type 1 diabetes 

Cell therapy using allogeneic islet transplantation is used in the clinic in case of 

instable diabetes [201]. However, this procedure is limited by the necessity of a large 

amount of cells (namely, several donors for one recipient), and poor engraftment of 

these cells. Interestingly, combined transplantation using MSC was shown to prevent 

immune rejection of allogeneic islets and avoid immunosuppression [27].  hBM-MSC 
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have also been evaluated in murine streptozotocin-induced diabetes and reported to 

improve glycemia [202] [133]. Current research focuses on in vitro differentiation of 

MSC into Langerhans islet beta cells for regenerative purposes [203]. 

5.8 Multiple sclerosis (MS) 

Benefits have been reported using MSC in EAE, a murine model for multiple 

sclerosis (MS) based on myelin protein immunization (MOG for myelin 

oligodendrocyte glycoprotein or PLP for proteolipid proteins). In this model, MSC 

systemic administration proved to alleviate disease severity on the basis of clinical 

scores, biological and histological parameters (less demyelination and immune cells 

infiltration in both spinal cord and CNS parenchyma), whatever the time of injection, 

the tissue origin or MHC compatibility of cells [204] [205] [2]. Interestingly, pre-

exposition of MSC to an anti-oxidant (resveratrol) augmented the neuroprotective 

potential of MSC in this model [206]. Promising results have been reported in human 

MS through phase I/II studies using various sources of MSC [207-210], and six 

studies are currently recruiting (see htpp://www.clinicaltrials.gov). 

 

5.9 Graft versus Host Disease (GvHD) 

Benefits from MSC-based therapy have been described in severe cortico-

resistant acute Graft versus Host Disease (GvHD), a complication of allogeneic 

hematopoietic stem cell transplantation (HSCT). In particular, phase II studies using 

BM-MSC demonstrated an improved survival in MSC-treated patients [132] [211]. 

Interestingly, ASC have been successfully used in murine and human disease [212] 

[213]. Clinical trials are also on going in this disease. 

 

5.10 Myasthenia gravis 
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In experimental autoimmune myasthenia gravis (in mice or rats), MSC infusion 

reduced clinical symptoms, anti-Ach-receptor Ab levels, specific auto-reactive 

lymphocytes, and led to an increase in animal weight [214-216]. These results are 

promising for the treatment of myasthenia gravis in Humans. 

 

To conclude, an important amount of data documented MSC immunomodulatory 

potential in AID, and helped decipher for each disease the best conditions of use as 

well as the mechanisms involved, mainly in preclinical models. However, since most 

clinical trials were phase I/II studies, they principally demonstrated the feasibility and 

safety of MSC-treatment in AID, and there still is an unmet need for randomized 

controlled trials to ascertain MSC efficacy in refractory AID.  

 

6 MSC IN SYSTEMIC SCLEROSIS: FIRST RESULTS AND PERSPECTIVES  

6.1 General comments on systemic sclerosis  

SSc (or scleroderma) is a rare AID mainly affecting middle-aged women and 

characterized by multi-organ fibrosis, primarily concerning skin tissue but also lungs, 

heart, or digestive tract [5,6,217]. Beside excessive accumulation of collagen in 

tissues promoted by abnormal fibroblast activation [218], vascular abnormalities in 

SSc cause peripheral vascular disease such as Raynaud’s phenomenon, 

telangiectasia, digital ulcers, but also pulmonary arterial hypertension and vascular 

renal crisis [219-224]. Auto-immunity in SSc is mediated by immune cell activation 

[225,226], and production of autoantibodies directed against several autoantigens 

such as topoisomerase 1 (anti-topo1 or anti-scl70), centromere or RNA-polymerase 

III [227-230]. Clinical manifestations in SSc are highly variable upon disease 

classification (limited or diffuse forms) and are constantly responsible for substantial 
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morbidity impacting quality of life [231-233]. On the whole, SSc has a severe 

prognosis associated with premature mortality, in particular in case of life-threatening 

complications such as pulmonary fibrosis, PAH and specific heart involvement or 

renal crisis [234-237]. SSc pathogenesis is a complex interplay of genetic and 

environmental factors [238-241], leading to fibroblast activation and endothelial 

impairment [242-244]. The role of endogenous and/or exogenous oxidative stress in 

SSc is crucial, as shown by the link between environmental exposure to oxidants and 

professional disease [240]. More specifically, we reported higher levels of Advanced 

Oxidation Protein Products (AOPP) in SSc patients’ sera compared with healthy 

controls, responsible for fibroblast proliferation and endothelial cell apoptosis [245]. 

To date, treatment of SSc patients is mostly palliative, based on symptomatic drugs 

alleviating Raynaud’s phenomenon, gastro-oesophageal reflux, pain, and 

immunosuppressants (methotrexate, mycophenolate mofetil, and cyclophosphamide), 

or organ transplantation in case of severe cardio-pulmonary involvement [246]. 

Although new drugs have been developed for the treatment of PAH [247], SSc 

general prognosis and mortality have not changed in the last 40 years [248], outlining 

the unmet medical need in this multifaceted intractable AID where 

immunosuppressive drugs have poor efficacy. The major breakthrough in the last 

decade came from the development of autologous haematopoietic stem cell 

transplantation (HSCT) to treat refractory SSc. Based on retrospective observations 

[249], phase I/II pilot studies [250] and more recently through a randomized 

controlled trial [251], about 500 SSc patients, who underwent HSCT procedures, 

experienced clinical benefits that no other treatment had ever offered in SSc [252-

255,7]. Indeed, in ASTIS phase III trial comparing HSCT with 12-month IV pulses of 

cyclophosphamide, a dramatic improvement in clinical parameters (mean Rodnan 
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Skin Score, mRSS) was observed, together with sustained clinical and 

immunological remission, leading to significant improvement in event-free and overall 

survival [251]. However, significant procedure-related mortality (about 1-2% of 

patients, during the first year) prompts to accurately and carefully select patients with 

the most severe progressive disease who could benefit from this exceptional 

approach. This selection is particularly difficult considering the heterogeneity of the 

disease, where we still lack reliable prognostic markers. Anyhow, the development of 

this cell therapy in SSc brought new rationale and hopes for MSC-based therapy, 

especially as MSC could counteract the three main pathogenic axes of the disease: 

fibrosis, angiogenic defect, and autoimmunity (see figure, and [256,195,3,4,7]). 

 

6.2 MSC from SSc patients:  

A growing body of data concerning MSC from SSc patients (SSc-MSC) have 

been published in the last few years. First, in a French work comparing BM-MSC 

from 12 SSc patients with 13 healthy controls, it appeared that SSc-MSC displayed 

normal phenotype as defined by number and aspect of isolated CFU-F, with similar 

differentiation potential, immunosuppressive and haematopoietic support functions 

[257].  Similar results have been reported by another group in a study comparing BM-

MSC from AID patients with healthy controls, and including one SSc patient [258]. 

The generation of CFU-F, the differentiation potential and the capacity of this 

patient’s BM-MSC to suppress lymphocyte proliferation in vitro was similar to MSC 

from healthy controls. 

However, other studies demonstrated an alteration in differentiation potential 

into osteoblasts and adipocytes [259], and a loss in angiogenic potential 

characterized by impaired ability to generate endothelial progenitors, whose capacity 
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to migrate and generate vessels was decreased [259,260]. Besides, SSc-MSC 

exhibited early senescence with higher telomerase activity [125,259], but maintained 

immunosuppressive functions and the capacity to generate regulatory T-cells through 

adaptive mechanisms [261]. Similarly, Orciani et al. showed that SSc-MSC, although 

affected by SSc oxidative environment, could still counteract oxidative stress by 

improving anti-oxidant defences [126]. Guiducci et al. confirmed the alteration in 

angiogenic potential of SSc-MSC that constitutively overexpressed pro-angiogenic 

factors (i.e. VEGF-A) and over-stimulated angiogenesis in vitro [262,243]. This raised 

the issue of MSC intrinsic alteration leading to vasculopathy in SSc, although these 

alterations could result from adaptive mechanisms in the context of this disease.  

Even more disturbingly, the aforementioned French study revealed an increase 

in TGFβ-R2 at the surface of SSc-MSC compared with healthy MSC, and a higher 

sensibility to TGFβ, leading to up-regulation of this pathway and excessive 

production of collagen 1 [263]. Lately, Cipriani et al. further investigated the possible 

link between angiopathy and fibrosis and highlighted the pivotal deleterious role 

played by SSc endothelial cells (EC) in this process, through a crosstalk with resident 

MSC [124]. In contact with SSc-EC, MSC phenotype was altered and contributed to 

tissue fibrosis (i.e. expression of α-SMA and collagen 1). Thus, it has been 

hypothesized that resident MSC could contribute to SSc pathogenesis. To date, even 

if this question is not elucidated yet and merits further investigation, these 

observations could suggest that autologous MSC approaches could be more 

questionable than the allogeneic approaches for the treatment of SSc. Interestingly, 

Scuderi et al. reported no alterations in phenotype, differentiation potential or 

population doubling in ASC from 6 SSc patients compared with healthy ASC [264]. 

Although these results have to be reproduced with a higher number of patients, they 
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might indicate that ASC do not display the alterations observed in BM-MSC from SSc 

patients. If confirmed, this could allow the use of autologous adipose tissue as a 

source of MSC in SSc.  

 

6.3 MSC in bleomycin murine model 

Several genetic pre-clinical models have been used to study SSc in the last 20 

years, such as tight-skin mice (TSK1, TSK2), Fra-2 mice, TGFβ-R2Δk mice and 

UCD200 chicken [265]. These models display variable features of the human disease, 

but rarely encompass the systemic nature of SSc, with simultaneous skin and lung 

fibrosis, together with vasculopathy and autoimmunity. Among chemically induced 

murine models, the bleomycin model is widely used to study fibrosis [265]. In this 

model, local injection of bleomycin, either in skin or lung (intra-tracheal, IT), triggers 

tissue inflammation and remodelling. Hence, this model allows studying acute lung 

injury, but does not induce chronic multi-visceral fibrosis, although this could be 

obtained with repeated intra-dermal injections of bleomycin [265].  

So far, whereas no publication has reported the effect of MSC in SSc-genetic 

models or in bleomycin chronic systemic fibrosis, many studies have used MSC in 

bleomycin acute lung injury [266]. In 2003, Ortiz et al. first reported the short-term 

effects using a preventive IV infusion of 5x10e5 allogenic BM-MSC at the time of 

bleomycin IT injection [51]. In this study, a reduction of fibrosis and inflammation was 

observed; MSC selectively migrated to injured parts of the lung, and were shown to 

differentiate into epithelial cells. Of note, when injected seven days after bleomycin 

challenge, MSC did not ameliorate tissue fibrosis. These observations were 

confirmed by Rojas et al. in 2005 [267], and in 2008 in bleomycin-challenged rats 

with the use of early (H12) infusion of syngeneic BM-MSC, associated with down-
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regulation of TGFβ pathway and collagen production at day 15 [52]. Kumamoto et al. 

reported similar anti-fibrotic effects using minimally vs conventionally cultured 

syngeneic BM-MSC (5x10e5 at day 3) [268]. Similarly, Moodley et al also reported 

successful use of UC-MSC (10e6 MSC at H24) into SCID mice [74]. No epithelial 

differentiation could be shown, but tissue remodelling was affected after MSC 

infusion with enhanced MMP1/TIMP1 ratio. Anti-inflammatory and anti-fibrotic effects 

were also observed using allogeneic BM-MSC or xenogeneic placenta-derived 

human MSC, whatever the route used (IT, IP or IV) [269].  Beside MSC homing to 

injured tissue (via CXCR4) and putative differentiation into epithelial cells, MSC were 

shown to reduce inflammation through IL1-RA [270] and TSG-6 secretion [271], to 

restore cytokine and NO balance (tissue down-regulation of TNF, IL1b, IL6, and 

iNOS) [272], and to modify tissue remodelling [266]. MSC antioxidant properties also 

contributed to anti-fibrotic effects and could be augmented by pre-exposition of cells 

to N-AcetylCysteine [273,266]. Altogether, these studies confirmed that early 

systemic or local administration of MSC, whatever the tissue origin and MHC 

matching, could improve the lung fibrotic manifestations consecutive to acute lung 

injury, mostly by resolving inflammation and avoiding pathological fibrotic healing. 

However, they did not offer a proof for chronic pauci-inflammatory fibrotic processes, 

nor for systemic disease, that characterize SSc. 

6.4 MSC in HOCl-SSc 

The demonstration that oxidative stress and AOPP were prominent in the 

physiopathology of SSc led to the development of a novel chemically induced model 

of SSc based on repeated exposure of mice to oxidants [274,70]. Among various 

oxidants evaluated (superoxide anions O2-, hydroxyl radicals OH., peroxynitrites 

ONOO-), hypochlorite (HOCl) was shown to trigger skin and lung fibrosis, together 
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with the production of anti-topo1 Ab and some vascular features, encompassing most 

features of SSc. The originality of this model lies in the possibility to investigate the 

systemic effects of a treatment in diffuse SSc where lung and skin fibrosis coexist. 

Hence, this relevant model, reproduced by other groups since the first publication in 

2009 [274], allowed studying various pharmacological approaches to treat SSc [275-

284,70].  

Recently, we demonstrated the therapeutic effects of BM-MSC in HOCl-SSc 

[70]. First, in a preventive approach, we compared three doses of syngeneic BM-

MSC, infused the day before HOCl-SSc induction, and showed inverse dose-effects 

on skin fibrosis, with the best reduction using the lowest dose of 2,5x10e5 BM-MSC. 

Reduction of skin and lung fibrosis was characterized by tissue down-regulation of 

collagen 1/3, α-SMA and TGFβ1 expression at the mRNA level, total collagen 

deposition in tissue, inhibition of SMAD2/3 pathway and histological evidence. A 

decrease of anti-scl70 Ab and AOPP in sera was also noted. Similar benefits were 

observed in a curative approach infusing BM-MSC at mid-experiment. BM-MSC 

effects were mediated through the reduction of tissue inflammation with less 

macrophage and T-cell infiltrates and lower levels of pro-inflammatory cytokines 

(TNF, IL1, IL6). Improved tissue remodelling (MMP1/TIMP1 ratio) and oxidative 

status were also associated with BM-MSC infusion. Of note, BM-MSC did not migrate 

to skin, and were cleared from lungs within a couple of days. MHC compatibility of 

BM-MSC did not appear to influence beneficial outcomes in this model or 

biodistribution, with similar results using xenogeneic, allogeneic and syngeneic MSC 

while hASC seemed to be more potent than hBM-MSC, in particular in terms of 

immunomodulation and tissue remodelling (Maria et al., under revision). On the 

whole, the preclinical studies conducted in HOCl-SSc murine model allowed to obtain 
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original data regarding BM-MSC and ASC therapeutic effects in diffuse SSc. The 

potent and pleiotropic effects of ASC are therefore very promising in sight of clinical 

perspectives. 

 

6.5 Preliminary data in human SSc  

In the clinic, the specific application of MSC to SSc remains to be investigated. 

However, MSC-based applications in other fibrotic conditions can bring a lot about 

the feasibility and potentialities of MSC [285,195,286-290]. In SSc, Christopeit et al. 

reported the first compassionate use of allogeneic BM-MSC in one patient with 

severe refractory SSc, in 2008 [291]. MSC infusion was associated with a healing of 

digital ulcers within 3 months, improved blood flow and transcutaneous oxygen 

pressure at M6, an improvement of modified Rodnan skin score (mRSS, 11 vs 25), 

but no change in immunological parameters. In 2011, the same German team 

published four more cases of refractory SSc treated with allogeneic BM-MSC [292]. 

At 18-month follow-up, no major adverse event was reported, and four over five 

patients had an improvement in mRSS, digital ulcers or distal limb necrosis. Guiducci 

et al. also reported a case of SSc acute gangrene of upper and lower limbs treated 

with autologous BM-MSC [293]. Complete healing was obtained and angiography 

showed limb revascularization after MSC infusion. 

 Recently, the benefits from SVF, obtained from adipose tissue, were reported 

in SSc. Indeed, Granel et al. evaluated the feasibility and safety of local injections of 

autologous SVF in of 12 SSc patients’ fingers, with promising results after six month 

of follow-up, in terms of doppler evaluation, skin score (-2,4 points in mRSS), 

Cochin’s Hand Functional Score, Raynaud’s condition score, and quality of life [294]. 

However, the proportion of ASC and other cells contained in SVF is variable from 
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one sample to another, leading expectedly to poor reproducibility and unpredictable 

effects. Thus, the use of SVF for broader applications is likely limited, considering 

that the heterogeneity of preparations and the difficulty of standardization are major 

obstacles to GMP applications.  

On the contrary, ASC are a rather homogeneous population of cells in terms of 

phenotype and function and the isolation and expansion procedures comply with 

GMP standards. In SSc, only one study by Scuderi et al. reported the use of ASC in 

affected skin areas (face or limbs) from six SSc patients together with the injection of 

acid hyaluronic, with a good reduction of skin thickness and no local complication of 

the injections [264]. The promising results from this study together with our findings in 

murine HOCl-SSc argue for the interest of evaluating the therapeutic effect of ASC in 

human SSc. 

 

6.6 Perspectives  

A French clinical multicentre phase I/II study, evaluating BM-MSC from intra-

familial donor in severe refractory SSc is currently on going (NCT02213705, 

clinicaltrials.gov). If promising results are expected, randomized controlled trials are 

still needed to assert MSC benefits in SSc. Considering the accessibility of adipose 

tissue, the high yield at isolation and the therapeutic potential of these cells, ASC 

offer a very attractive perspective in further clinical trials. 

 

7 CONCLUSION AND PERSPECTIVES 

Taken together, the work carried out in the last decade demonstrated that MSC might 

represent an innovative strategy to cure AID. In particular, MSC displaying 

immunosuppressive, anti-fibrotic, pro-angiogenic and anti-oxidative responses, 
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harbor new hope for the treatment of SSc, a multifaceted intractable AID with unmet 

medical need. While a first clinical trial using MSC in SSc has been launched in 

France, results obtained in preclinical models, as well as the few case reports in the 

human disease are very promising. Considering that MSC mainly act through a “hit 

and run” mechanism, involving paracrine, endocrine and extracellular vesicles 

secretion, the use of allogeneic MSC seems a reasonable setting to treat AID, where 

resident MSC might be impaired and even contribute to disease progression. 

Regarding the source for MSC, the current knowledge prompts to investigate diverse 

sources of MSC, among which adipose tissue is highly promising. In that context, the 

convincing effects obtained with ASC in the HOCl preclinical model, and in other AID, 

are particularly appealing for the treatment of SSc. However, further studies will have 

to focus on better characterization of MSC/ASC functionality and the development of 

potency assays, in order to individualize cell-therapy according to patient’s needs, 

and develop relevant randomized controlled trials in SSc.  
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Legend to figure: 

 

Systemic sclerosis (SSc) is a rare connective tissue disorder characterized by multi-

organ fibrosis, vascular dysfunction and autoreactivity against self-antigens. 

Oxidative stress and reactive oxygen species (ROS) have been shown to amplify the 

pathological process. Displaying immunosuppressive, trophic and antioxidant 

capacities, mesenchymal stem cells (MSCs) could counteract the three main 

pathological axes of the disease and restore antioxidant balance. 
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