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Abstract  

Luminance contrast is a fundamental visual cue. Using a dedicated neuroimaging framework, we 

sought to characterize typical Blood Oxygen Level Dependent (BOLD) responses in two 

subcortical regions, the superior colliculus (SC) and the lateral geniculate nucleus (LGN), and 

V1, the primary visual cortex area, and how they change over the lifespan. For imaging 

subcortical activity related to luminance contrast modulation, specific measurements were 

introduced to rule out possible signal contamination by cardiovascular activity and vascular 

alterations with age that could hamper the BOLD signal interpretation. Clearly, BOLD responses 

increased in these three regions with luminance contrast, with a statistically significant 

diminution in LGN and V1 for older compared to younger participants, while basal perfusion 

remained unchanged. Additionally, perceptual responses, as assessed with psychophysical 

experiments, were highly correlated to BOLD measures in the three studied regions. Taken 

together, fMRI and psychophysics results indicate an alteration of luminance contrast processing 

with normal aging. Based on this knowledge we can better recognize when age-related brain 

changes vary from these expectations especially during neurodegenerative diseases progression 

where the functioning of subcortical structures is altered. The proposed fMRI-physchophysics 

methodology allows performing such investigation. 
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1. Introduction 

 Besides cognitive impairments, visual deficits, frequently reported in normal aging, may 

impact daily life. Age-related visual decreases, including loss in sensitivity to motion, spatial 

frequency processing or luminance contrast sensitivity, are not solely due to changes in the 

optical properties of the eye (Elliott, Whitaker and  MacVeigh, 1990; Owsley, 2011). They 

probably result also from age-related neuronal changes occurring along the visual pathway, at 

retinal (photoreceptors and ganglion cells degeneration), subcortical and cortical levels. Indeed, 

electrophysiological studies in animal models demonstrate that many aspects of neural and 

behavioral responses, such as latency (Wang, Zhou, Ma et al., 2005; Yu, Wang, Fu et al., 2005; 

Ball, Edwards and  Ross, 2007), color discrimination (Knoblauch, Saunders, Kusuda et al., 1987; 

Knoblauch, Vital-Durand and  Barbur, 2001), motion/speed tuning (Atchley & Andersen, 1998; 

Yang, Zhang, Liang et al., 2009) and contrast sensitivity (Yang, Liang, Li et al., 2008), change 

with aging along the multiple stages of the visual pathway. Knowledge about how in human, 

subcortical and cortical processing of retinal information is affected by normal aging is still 

missing.  

 Information from the retina is processed through two main pathways: the parvocellular (P) 

and magnocellular (M) pathways. Whereas the P pathway is responsive to chromatic and static 

stimulation of high spatial frequency and underlies form and chromatic discrimination along the 

L-M axis, the M pathway responds to achromatic stimuli with low spatial and high temporal 

frequencies and underlies motion and depth information processing. The majority of axons of the 

retinal ganglion cells (90%) that leaves the eye via the optic nerve projects to the Lateral 

Geniculate Nucleus (LGN), a small (5-10 mm) primary thalamic relay between the retina and the 

visual cortex (Sherman & Guillery, 2006). M and P pathways are mostly represented in the LGN 

(Felleman & Van Essen, 1991) and connected to corresponding sublayers in the primary visual 

area (V1).  In addition to retinal afferent, LGN receives strong cortico-thalamic feedback 

projections from V1 (Sherman & Koch, 1986; Sherman & Guillery, 2006). This pathway is called 

the “retino-geniculo-striate” route. In parallel, a minority of fibers originating from the retina 

takes a secondary route and reachs the superficial layers of the Superior Colliculus (SC) (Kuypers 

& Lawrence, 1967; Hendrickson, Wilson and  Toyne, 1970; Schiller & Malpeli, 1977). 

Additionnally, these layers receive inputs from the striate and extrastriate cortex (Wilson & 

Toyne, 1970; Benevento & Fallon, 1975; Benevento & Yoshida, 1981; Fries, 1984) and the 
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frontal eye field (Kuypers & Lawrence, 1967; Kunzle & Akert, 1977). There is also a projection 

coming from the dorsal and ventral LGN (Benevento & Fallon, 1975), especially from its M 

layers. In these layers visual neurons are organized in a topographical manner (DuBois & Cohen, 

2000; Schneider & Kastner, 2005; Kaytal, Zughni, Greene et al., 2010) and respond to transient 

or moving visual stimuli (Schiller & Koerner, 1971; Cynader & Berman, 1972; Marrocco & Li, 

1977). This second pathway, bypassing V1 and sending projections to extrastriate areas, is called 

the “retino-tectal” route. Compared to the well-established P pathway alteration in normal aging 

(Owsley, Sekuler and  Siemsen, 1983; Elliott, 1987; Elliott et al., 1990; Elliott & Werner, 2010), 

the influence of age on the M pathway is less documented. Even if some studies suggest that 

there are no alterations of this pathway with aging (Owsley et al., 1983), selective loss of contrast 

sensitivity to relatively low spatial frequency has nonetheless been documented (Lux, Marshall, 

Thimm et al., 2008; Elliott & Werner, 2010; Bordaberry, Lenoble and  Delord, 2012; Allard, 

Renaud, Molinatti et al., 2013). These controversal results about the preservation or not of the M 

pathway in normal aging could, in part, be due to the fact that only psychophysical data have 

been available. It is of interest, then, to introduce the fMRI technique for a finer non-invasive 

exploration of subcortical and cortical visual information processing along the M pathway and its 

possible alteration with age. 

Advances in fMRI technique have allowed the non-invasive functional investigation of 

subcortical nuclei in the human brain under certain conditions (Schneider & Kastner, 2005; 

Sylvester, Jiosephs, Driver et al., 2007; Wall, Walker and  Smith, 2009; Linzenbold, Lindig and  

Himmelbach, 2011). However, it remains difficult to measure the functional activity in SC 

(Poncelet, Wedeen, Weisskoff et al., 1992; DuBois & Cohen, 2000) because of its small size, 

deep location and proximity to pulsating vascular structures that may hinder the BOLD signal 

measurement. Moreover, SC is highly sensitive to luminance changes with a response that rapidly 

saturates (Schneider & Kastner, 2005) restricting the conditions of stimulation. To overcome 

these difficulties, we developed a low luminance contrast varying stimulus to modulate the SC 

activity and accordingly, a specific fMRI setting to record and analyse the corresponding BOLD 

signal variations in SC, LGN and V1 regions of interest. We took specific care to rule out 

possible signal contamination by cardiovascular activity and vascular alterations with age. We 

used psychophysical tests to estimate luminance contrast perception. The strong correlation we 

observed between perceptual and BOLD responses clearly demonstrated the validity of our 
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approach to non-invasively investigate the functional response of subcortical visual regions in 

human.  We report an alteration of luminance contrast processing along the M pathway with 

normal aging beside the well-documented functional deficit of the P pathway. These control data 

and the proposed methodology allow detecting when age-related brain changes differ from these 

expectations in particular in neurodegenerative diseases (Rupp, Dzemidzic, Blekher et al., 2012; 

Rolland, Carcenac, Overton et al., 2013; Hutchinson, Isa, Molloy et al., 2014; Brace, Kraev, 

Rostron et al., 2015). 

 

2. Materials and methods  

 

2.1. Subjects  

Thirty healthy subjects participated in this study. Three age-dependent groups were considered: 

Young, with 10 participants, 7 females, 26±3 years; Middle Age, with 10 participants, 5 females, 

47±4 years and Elderly, with 10 participants, 7 females, 65±3 years. A visual examination by an 

ophthalmologist was performed for middle age and elderly participants. They had normal or 

corrected-to-normal vision. Participants requiring visual correction wore the MediGoggle Adult 

Research Set (Cambridge Research Systems Ltd, England; http://crsltd.com/), interchangeable 

prescriptive goggles suitable for use in MR environment. All participants provided written 

informed consent before participating in the study and were screened according to standard MRI 

exclusion criteria. The study was approved by the local ethics committee (ID-RCB 2012-

A00310-43). 

 

2.2. Psychophysical procedure 

Prior to the collection of imaging data, all observers performed a Maximum Likelihood 

Difference Scaling (MLDS) task (Maloney & Yang, 2003; Knoblauch & Maloney, 2008; 

Knoblauch & Maloney, 2012) to estimate the perceived magnitude of luminance contrast 

changes. 

2.2.1. Stimuli conditions 

The stimuli (Figure 1) were composed of achromatic radial checkerboards (mean spatial 

frequency: 2.3 cpd, varying from 3 cpd in the center to 1.5 cpd at the periphery) with ten levels of 
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luminance contrast from 2 to 20%, logarithmically spaced, displayed on a neutral grey 

background. These stimuli were generated using Matlab (MathWorks, MA, USA). A Python 

homemade program was used for displaying and running the experiment, using PsychoPy2 

(Peirce, 2007; Peirce, 2009) under the Windows 8 operating system. Spectral and luminance 

calibrations of the computer screen were performed with a PR650 SpectraScan Colorimeter 

(Photoresearch) and used for screen gamma-correction in stimulus specification. Stimuli had a 

mean luminance of 147 cd/m² equal to the grey background (CIE xy = 0.29, 0.30). Participants 

viewed the screen at a distance of 70 cm and the stimuli under a visual angle of 2.04°.  

2.2.2. Experiment 

In a dark room, each participant performed a three session experiment. Each session consisted in 

a 5 minute random presentation of 120 trials. On each trial, a randomly selected triad of 

checkerboards was presented with three luminance contrasts (a, b, c), chosen from a series of ten 

contrasts described above, with a < b < c. Stimulus b was always the upper stimulus in the 

middle, and stimuli a and c were below randomly positioned on the left or right side, respectively 

(see Figure 1). Stimuli were presented for 500ms. The observer was instructed to fixate the 

fixation cross and respond with no limit of time when he/she could choose which of the bottom 

patterns (left or right) was most similar to the upper pattern with respect to the luminance 

contrast. The observer’s response initiated the next trial. The average experiment duration was 15 

min. No feedback was provided to observers. After a short period of training, observers 

performed the task rapidly. 

 

Insert Figure 1. 

 

2.3. fMRI design and procedure 

Subjects were presented a series of stimuli of variable luminance contrasts in each hemi-field. 

During the scanning run, in order to maintain and control his/her attention, the participant was 

instructed to fixate during the whole duration of each run the fixation cross in the center of the 

screen and to respond, as quickly and as accurately as possible, by pressing a button, each time 

the orientation of the fixation cross changed (from + to x and back to +). This task was designed 

in order to avoid any potential effect of unequal allocation of attention between different blocks 

of luminance contrast.  
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2.3.1. Stimuli 

The stimuli were composed of achromatic radial checkerboards (mean spatial frequency: 0.42 

cpd) with four levels of luminance contrast (1, 3, 5 and 9%), flashing at a frequency of 4 Hz and 

alternatively presented in each visual hemi-field on a grey background. Contrasts below 10% 

were chosen because SC response is highly sensitive to contrast with a low modulation response 

at higher contrast stimuli (Schneider & Kastner, 2005). Moreover, stimuli with low luminance 

contrast and low spatial frequency stimulate preferentially the M pathway including the SC 

(Derrington & Lennie, 1984; Merigan & Maunsell, 1990; Denison, Vu, Yacoub et al., 2014; 

Zhang, Zhou, Wen et al., 2015). Luminance contrast was defined as Michelson contrast, 

௅೘ೌೣି௅೘೔೙

௅೘ೌೣା	௅೘೙
, where Lmax and Lmin were the maximum and minimum luminance in the stimuli 

respectively. These stimuli were generated using Matlab (MathWorks, MA, USA) and displayed 

with the Psychophysics toolbox extension (Brainard, 1997; Pelli, 1997) running on the same 

computer as that used for the psychophysical experiments. Stimuli were back-projected using a 

LCD video-projector projector (Epson 7250M, Epson Inc., Long Beach, CA) onto a translucent 

screen positioned at the rear of the magnet. Spectral and luminance calibrations of the display 

were performed with a PR650 SpectraScan Colorimeter (Photoresearch) and used for screen 

gamma-correction in stimulus specification. Stimuli had a mean luminance of 147 cd/m² equal to 

the grey background (CIE xy = 0.29, 0.30). Participants viewed the screen at a distance of 128 cm 

via a mirror fixed on the head coil and the stimuli under a visual angle of 14° horizontally and 

14° vertically. 

2.3.2. Experiment 

We used a block-design paradigm with four luminance contrast levels (1, 3, 5 and 9%). These 

levels were selected to maximize the perceptual effect as assessed with the MLDS test (see 

Results Section). The functional session consisted of nine scanning runs, each run lasting 4 

minutes and 12 seconds. Each run was composed of four main blocks of visual stimulation (see 

Figure 2), each being composed of four 12-second blocks (one block per luminance contrast 

level), plus five 12-second fixation intervals (fixation cross in the center of the screen) including 

one at the start, one at the end and one between each main block. The order of luminance contrast 

levels was randomized within blocks. In total, each contrast level was presented 36 times. 

 

Insert Figure 2. 
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2.3.3. MRI acquisition  

Experiments were performed using a whole-body 3-Tesla Philips Achieva MRI scanner at the 

Grenoble MRI facility IRMaGe in France. A 32 channel SENSE head coil was used for image 

acquisition. For functional scans, a gradient echo planar imaging (EPI MS-FFE) sequence was 

used with the following main parameters: TR/TE=2000/30ms, flip angle=80°, acquisition 

matrix=128x144, FOV=192x216, 25 transverse slices, slice thickness 1.5mm, with an 

acquisition/reconstruction voxel size=1.5x1.5x1.5mm. Slices were oriented to cover the 

structures implicated in the first steps of visual processing: the SC, LGN and the primary visual 

area (V1).  One EPI image with the same parameters and covering all the brain (89 transverse 

slices) was acquired to eventually facilitate the realignment of functional and structural data. We 

acquired high-resolution structural images using a T1-weighted 3D MP-RAGE sequence with a 

spatial resolution of 1x1x1mm3, 180 sagittal slices, acquisition matrix=256x240, 

TR/TE/TI=4.8/2.3/616ms and flip angle=9°.  Finally, we used a T1-weighted FGATIR sequence 

with a spatial resolution of 0.75x0.75x1mm3, transversal slices, acquisition matrix=268x233, 

TR/TE/TI=7.7/3.8/342ms and flip angle=8°, to facilitate the manual delineation of the LGN.  

For brain perfusion measurement, the subjects were in a resting-state condition. A whole-brain 

pseudo-continous ASL (pCASL) sequence was performed with the following parameters: 1800 

ms label, 1634 ms post-label delay and multi-slice single-shot EPI readout (3.5x3.5x5mm3, 20 

slices, TE/TR = 4230/12 ms). Thirty pCASL images plus an ASL reference scan and a T1 map 

were acquired for cerebral blood flow quantification.  

For each subject the sequencing of the experiment was the following: five functional runs, 96 

images each, one structural (MPRAGE) image, one whole brain EPI image, four functional runs, 

one structural (FGATIR) image and ASL perfusion imaging. During the acquisition, the subject 

was comfortably placed in a supine position with the head surrounded by soft foam to reduce 

head movements. 

2.3.4. Physiological data acquisition 

During each functional run acquisition, the cardiac signal was indirectly recorded at 100 Hz using 

a finger photoplethysmography (pulse plethysmography unit of the MR scanner), sensitive to the 

hemodynamic pulse at fingertip. The scanner software automatically recorded the maximum of 
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the plethysmographic signal (R-peak) and registered their occurrences and the marker of 

beginning and end of the fMRI acquisitions in the so-called ScanPhysLog file. 

 

2.4. Psychophysical data analysis 

The observer’s choices associated with each trial from the psychophysical experiment were 

analyzed with the MLDS package (Knoblauch & Maloney, 2008, 2012) in the OpenSource 

software R (R Core Team, 2015) to obtain a perceptual response scale.  The method uses a 

maximum likelihood criterion to estimate scale values that best predict observer’s choices and 

generates a scale that has interval properties, i.e., equal differences in response are perceptually 

equal.  The individual sessions of each group were averaged to obtain means and standard errors 

per group for the perceptual scale. Specific details on the procedure can be found elsewhere 

(Knoblauch & Maloney, 2012; Devinck, Gerardin, Dojat et al., 2014b). 

 

2.5. Physiological data analysis   

Heart rate variability (HRV) is an indicator of the cardiovascular activity. The spectral analysis of 

HRV provides a reliable and quantitative assessment of its fluctuations. Such an analysis was 

performed using a home-made program developed in R and detailed in (Rubio, Van Oudenhove, 

Pellissier et al., 2015). Briefly, the times corresponding to photoplethysmographic R-peaks were 

read from the ScanPhysLog file and the peak-to-peak intervals were computed. Aberrant values 

(outliers) could occur when the optical sensor localized at fingertip moved during the acquisition. 

Such outliers were automatically detected (values higher than the mean peak-to-peak value ±3 

standard deviations) and replaced by the previous valid value. Peak-to-peak time series were 

resampled at the sampling frequency of the functional MRI i.e. 0.5 Hz and filtered using wavelet-

transform in three low frequency (LF) sub-bands: the LFhigh-HRV band from 0.12 to 0.25 Hz; the 

LFmid-HRV band from 0.06 Hz to 0.12 Hz and the LFlow-HRV band from 0.03 to 0.06 Hz. The 

border effects and the time-shift introduced by the wavelet filtering were further corrected for. The 

three so-defined heart rate signals were further introduced in our model as covariates of non-

interest. 
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2.6. MRI Data analysis: Individual analysis 

Functional data analysis was performed using the single-participant general linear model (GLM) 

(Friston, Holmes, Worsley et al., 1995)  for block-designs with SPM12 (Wellcome Department of 

Imaging Neuroscience, London, U.K.; http://www.fil.ion.ucl.ac.uk/spm) implemented in 

MATLAB. For each individual, functional volumes were first realigned to correct for head 

movements with a rigid body transformation using the first functional image acquired after the 

first structural scan as the reference. A mean functional volume was computed on which the 

whole brain EPI was realigned. The structural volumes (3D MP-RAGE and FGATIR) were then 

realigned to this volume. Times-series for each voxel were high-pass filtered (1/128 Hz cutoff) to 

remove low-frequency noise and signal drift. The random field theory we used for multiple 

comparison correction requires that the size of the spatial filter to smooth the data should be the 

same size as the spatial extend of the effect to be measured. We searched for clusters of 

activation in subcortical structures (SC and LGN) of small size, and then each functional volume 

was spatially slightly smoothed using a 2-mm FWHM (Full Width at Half Maximum) Gaussian 

kernel.  

For each participant five conditions of interest (1%, 3%, 5%, 9% and fixation) were modeled as 

five regressors, constructed as boxcar functions convolved with a canonical hemodynamic 

response function. Movement parameters derived from realignment corrections (three translations 

and three rotations) were entered into the design matrix as additional nuisance factors. Including 

these factors led to an increase of the number of activated voxels. To specifically study the 

involvement of the first steps of visual information processing, we conducted a region-of-interest 

(ROI) analysis in SC, LGN and V1, individually defined. Left and right ROIs were functionally 

defined as contiguous clusters of activated voxels, i.e. voxels activated during all visual 

stimulation versus fixation condition (p<0.001 uncorrected). V1 was defined as the part of the 

occipital activation that lay in and around the calcarine sulcus. We considered that such a ROI 

delineation contain mainly voxels from V1 (and in part from V2). Additionally, for LGN and SC 

anatomical masks were manually delineated using MRICro software (Rorden & Brett, 2000), 

using respectively FGATIR and MPRAGE structural sequences and used to refine the LGN and 

SC ROI definition. Figure 3 shows examples of individual ROIs. In realigning each individual 

structural image to a reference space (MNI) with a non-linear high degree of freedom 
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transformation (Ashburner & Friston, 2005) we verified that our individual coordinates for SC 

and LGN were in accordance with those reported in the literature (O'Connor, Fukui, Pinsk et al., 

2002; Schneider, Richter and  Kastner, 2004; Schneider & Kastner, 2005; Schneider & Kastner, 

2009) (see  Supplementary Material: Table 1).  

Insert Figure 3. 

Contrast images were computed based on the GLM relative to each stimulus condition compared 

to the baseline (fixation) across all experimental runs. For each ROI (SC, LGN and V1) the 

voxels were sorted according to their response (t-statistic maps). Voxel number for each ROI was 

equated across individuals by restricting the pattern size to those voxels that showed a significant 

t-value (p<0.001 uncorrected). The number of voxels included for each individual ROI was 20 

for SC, 80 for LGN and 200 for V1. For each subject voxels of contrast images were averaged in 

each ROI.  

Similarly to functional data all individual ASL perfusion images were firstly realigned with a 

rigid transformation. A mean ASL image was then computed onto which the structural images, 

MPRAGE and FGATIR, were realigned. ASL signal amplitude was scaled in order to express the 

difference between control and tag images in units of ml/100g/min. Statistical maps were 

thresholded at p<.05 FWE-corrected for multiple comparisons. Finally, cerebral blood flow 

(CBF) measures were extracted from our primary ROIs (SC, LGN and V1) as well as from 

secondary ROIs (cingular, frontal, occipital, parietal and temporal cortex, insula and grey and 

white matters). These latter were extracted using a homemade atlas realigned to the structural 

image.   

All further statistical analyses were performed using the statistical software Statistica for PC 

version 12 and the open source software R (R Core Team, 2015). 
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3. Results  

 

3.1. Psychophysical data 

3.1.1. Estimated perceptual response to luminance contrast change 

A linear mixed-effect model with Contrast, c, as fixed effect and Subjects as random effect 

revealed a main effect of the contrast factor on the perceptual response estimated using the 

MLDS procedure (p<10-15). To model this response, we consider the Michaelis-Menten function, 

ܴ ൌ ܴ௠
ܿ

ሺܿ ൅ ሻߪ
 

where ܴ௠ is the maximal response amplitude and σ is the contrast at which the response 

amplitude is half Rm (= semisaturation contrast). This model provides a reasonable description of 

the increase perceptual scale with the contrast luminance (see Figure 4a). The initial slope of the 

contrast response function is often estimated as 
ோ೘
ఙ

 in electrophysiological studies, which is 

termed “contrast gain”. This model correctly fits the contrast response function of cortical cells 

adapted from the Naka-Rushton equation (Naka & Rushton, 1968; Baylor, Hodgkin and  Lamb, 

1974). It was valid for each individual (see Supplementary Material: Figure 1). 

3.1.2. Age effect on the estimated perceptual response to contrast change  

A non-linear mixed-effect model with Age and Contrast as fixed effects and Subject as random 

effect revealed an interaction between Age and Contrast (p<10-7) (see Figures 4b and 4c). 

Difference of contrast response varied significantly between groups. Nested likelihood ratio tests 

were used to compare the Michaelis-Menten model parameters between groups. Analyses 

showed that Rm and σ values for the oldest groups, i.e. Middle age and Elderly, differ 

significantly from the Young group values. Rm as well as σ parameters decreased with age 

(middle age and elderly vs young: Rm = -3.24±1.19, p<.005;  σ-±0.01, p<.05) (for the 

values per group see Supplementary Material: Table 2).  

Insert Figure 4. 

3.2. Cerebral perfusion data 

3.2.1. Age effect on cerebral blood flow in primary ROIs 
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Mean cerebral blood flow (CBF) across subjects for each group and ROIs (SC, LGN and V1) are 

reported in Table 1. A 3x3 analysis of variance (ANOVA) with Age as between-subjects factor 

and ROI as within-subjects factor revealed a main effect of ROI  (p<.10-3) but no main effect of 

age  (p=.13). Post hoc analysis (Tuckey’s HSD test) showed that participants present higher CBF 

values in V1 (56.46±18.30) compared to SC (48.82±19.77) (p<.01) and LGN (42.93±17.51) 

(p<10-3) values (see Figure 5). The interaction Age x ROI did not reach significance (p=.11).  No 

gender difference was observed (p=.16). 

 

Insert Table1.  

 

Note that a main effect of age was significant in other regions of the brain (Young CBF > Middle 

Age or Elderly CBF, p<.05): bilaterally for the cingular, frontal and parietal cortex, the right 

temporal cortex and globally for grey matter (see Supplementary Material: Figure 2). 

Insert Figure 5. 

3.3. fMRI data 

3.3.1. Attentional task  

Statistical analysis was performed on the average number of errors (= no detection or 

misdetection of the fixation cross orientation changes) at the attentional task. No difference 

between groups was observed (error rates: young = 5±1.1%; middle age = 6.35±0.8%; elderly = 

3.9±0.9%, p=.76).   

3.3.2. Bold responses to luminance contrast change 

 A main effect of contrast was observed for each ROI (p<.10-5, Friedman analysis with contrast as 

within-subjects factor for each ROI), as illustrated in Figure 6. However, no effect of ROI was 

observed for each contrast (p>.5, Friedman analysis with ROI as within-subjects factor for each 

contrast). We performed post hoc comparisons using Wilcoxon rank test in each ROI to examine 

whether the luminance contrast level influenced the BOLD response. These analyses showed 

that, for each ROI, responses were significantly modulated by luminance contrast on the tested 

range (1<3<5<9, p<10-5). No gender difference was observed (p>.1). Similar analyses performed 

in Hippocampus, a non-visual subcortical area, showed no effect of contrast on BOLD responses 

(p=.9), i.e. no modulation of its activity by the luminance contrast of the stimuli. 
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Insert Figure 6. 

3.3.3. Age effect on the BOLD responses to luminance contrast change 

Kruskall-Wallis analysis with age as between-subjects factor, conducted for each contrast in each 

ROI revealed a main effect of age in V1 for contrasts 3 to 9% and in LGN for contrasts 5 to 9% 

(p<.005), as illustrated in Figure 7. Indeed, a decrease of the response was observed for the 

Middle Age and Elderly participants compared to the Young participants for these two regions. A 

decrease of response with age was also observed in the SC but analysis of this effect only show a 

tendency for statistical significance (p=0.07). Post hoc comparisons were conducted using the 

Mann-Whitney U test in V1 and LGN. In LGN, results highlighted significant differences 

between Young and Middle Age (p<.05) and Young and Elderly (p<.005) participants for 5% and 

9% contrast. Similarly, in V1, the analysis showed significant differences between Young and 

Middle Age (p<.05) and Young and Elderly (p<.005) participants for all luminance contrasts but 

1%. The differences between Middle Age and Elderly participants for these contrasts were 

significant neither in LGN (p>.1) nor in V1 (p>.2). 

Insert Figure 7. 

Negative correlations between Age and BOLD response were detected using the Spearman 

correlation coefficient in V1 for 3% (r = -0.65, p<10-3), 5% (r = -0.73, p<10-4) and 9% (r=-0.68, 

p<10-3) and in the LGN for 5% (r = -0.69, p<10-3) and 9% (r = -0.68, p<10-3) (see Figure 8). 

Insert Figure 8. 

 

3.3.4. Relation between BOLD responses and estimated perceptual responses to 

luminance contrast change 

Positive correlations between BOLD responses and MLDS estimated perceptual responses to 

luminance contrast change were detected using the Spearman correlation coefficient for Young 

participants in LGN (r = 0.41, p<.01) and V1 (r = 0.71, p<10-5); for Middle age participants in SC 

(r = 0.42, p<.01), LGN (r = 0.39, p<.05) and V1 (r = 0.51, p<.01) and for Elderly in SC (r = 0.56, 

p<10-3), LGN (r = 0.53, p<.01) and V1 (r = 0.57, p<.10-3). For young participants the BOLD 
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variance in SC was high (see Fig. 4) and the correlation with MLDS values was not significant. 

This may reflect a lack of statistical power. 

 

4. Discussion 

We clearly observed that BOLD responses increased with luminance contrast in our subcortical 

regions, the superior colliculus (SC) and the lateral geniculate nucleus (LGN), and in the primary 

visual cortex area V1. A statistically significant diminution was detected in LGN and V1 for 

older compared to younger participants, while basal perfusion remained unchanged. Additionally, 

perceptual responses, as assessed using the MLDS procedure, were correlated to fMRI measures 

in the three studied regions. Consequently, we assume that the BOLD signal modulation to 

luminance contrast variations we observed reflected brain activity modulation in normal ageing. 

Our fMRI-based methodology opens the way to the exploration of pathological differences in 

visual information processing at the subcortical level notably in neurodegenerative diseases. 

 

4.1. An advanced framework for the non-invasive functional exploration of the Superior 

Colliculus  

It is challenging to measure the functional activity of SC because of its small size, deep location 

and proximity to pulsating vascular structures, such as large blood vessels within and around the 

brainstem, potentially contaminating the BOLD signal. In this study, we solved these difficulties 

by introducing several methodological improvements. To allow accurate localization of 

activation in SC and limit partial volume effect, we used a 32-channel SENSE coil, a spatial 

resolution of 1.5 mm in each direction at 3T, with an acquisition volume centered on the SC 

structure.  

Cardio-respiratory artifact removal. Several approaches to tackle possible vascular artifact may 

be introduced. In the first fMRI study of SC in human, Dubois and Cohen (DuBois & Cohen, 

2000) used cardiac triggering of image acquisition to eliminate pulsatile motion effects per se. 

Each MRI image was acquired at the same point of the cardiac cycle lowering the effect of the 

cardiac noise. They introduced a T1 correction algorithm to compensate for the intensity 

variations produced by a variable TR. The remaining variation (1.5% of mean) was not harmful 

to observe retinotopic activation in SC but might be deleterious in case of weaker induced fMRI 



 
 
 

16 
 

responses. Correction for respiratory and cardio-respiratory artifacts was not considered. A 

second approach consists in the measure or estimation of the noise sources to define 

corresponding nuisance regressors.  Wall et al. (Wall et al., 2009) proposed to estimate the noise 

from the mean time-course of voxels in a selected ROI during a rest scan. They assumed that 

fluctuations observed in the signal at rest reflected noise (physiological or technical) and entered 

the mean time-course in their statistical model as a nuisance regressor. The reference ROI was 

selected in the anterior cerebellum close to but not connected to SC. The interest of the approach 

is that no assumption about the source of noise is required. The drawback is that the reference 

ROI should be carefully chosen to be certain that the mean time-course does not contain a 

significant amount of signal related to the stimulus or reflecting functional connectivity. This is 

particularly relevant for visual stimulation for which a large network is activated.   

In this study we assumed that the main source of noise hampering SC investigation was 

cardio-respiratory effects. We measured the cardiac signal (highly correlated >0.99 to respiratory 

rate, as measured using a pressure sensor positioned around the chest) and chose to introduce 

heart rate variability components as regressors of non-interest in our general linear model. Once 

the fMRI signal linked to the cardiovascular activity was removed, the only remaining signal 

reflected brain activity. The use of such regressors of nuisance is close to the approaches 

proposed in Limbrick et al. (Limbrick-Oldfield, Brooks, Wise et al., 2012) of a Physiological 

Noise Model derived from physiological recordings (cardiac and respiratory) and in Sylvester et 

al. (Sylvester et al., 2007) with the RETROICOR method based on pulse oximetry measurement. 

The coherence of the results we obtained indicates that the use of three regressors of nuisance 

extracted from a pulse oxymeter measurement may be sufficient to remove cardio-respiratory 

artifacts. The introduction of more regressors (33 in Limbrick et al. (Limbrick-Oldfield et al., 

2012), 12 in Sylvester et al. (Sylvester et al., 2007)) might refine the results. Indeed, the number 

of significant voxels in SC reported by Limbrick-Oldfield et al. (Limbrick-Oldfield et al., 2012) 

seems higher than the number we detected (see their Fig 4). However, their method requires the 

setup of an ECG equipment for each subject and decreases the number of degree of freedom of 

the data model.  Moreover, the increase of significant voxels they reported might be due to the 

stimulus they used (the luminance contrast was not specified) that provoked a large activation 

compared to our setting but did not allow the modulation of the activity (see below).  
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In the study of Wall et al. (Wall et al., 2009), the authors reported, for the population they 

considered (six young females), that the standard model for the hemodynamic response function 

as implemented in SPM (Friston et al., 1995) was suboptimal for SC but correct for V1 and LGN. 

Our data analysis using flexible models of hemodynamic response function (HRF) (finite impulse 

response approach) for the three groups of subjects did not confirm the need for a specific model 

of HRF for SC different from the one used for V1 and LGN. In the study of Gitelman et al. 

(Gitelman, Parrish, Friston et al., 2002) a canonical HRF was successfully used to search for SC 

activation correlations with visual search. To accurately investigate the form of the HRF in these 

three regions, methods for detection of brain activity combined with estimation of the 

hemodynamic response should be introduced (Chaari, Vincent, Forbes et al., 2013; Vincent, 

Badillo, Risser et al., 2014). 

Age-effect on BOLD signal. In functional MR imaging, BOLD signal is considered as a direct and 

non-invasive index of brain activation. This signal reflects changes in hemodynamics parameters 

i.e. cerebral blood flow (CBF), cerebral blood volume and oxygen consumption following neural 

activation (Logothetis & Wandell, 2004). A number of factors, such as baseline blood flow, 

vascularization, vascular reactivity and neurovascular coupling, influence this signal and can 

evolve with age leading to alterations in the BOLD signal (see D’Esposito et al. (D'Esposito, 

Deouell and  Gazzaley, 2003) for a review). Age-related vascular changes might then bias the 

straightforward attribution to a neural basis of age-related differences (Gauthier, Madjar, 

Desjardins-Crepeau et al., 2013).  

We introduced a measurement of basal perfusion by ASL to make sure that the observed 

differences in the BOLD signal variations with age were due to the neuronal activity changes and 

not the consequence of a modification in the basal perfusion. We showed that CBF in resting 

state condition did not vary with age (see Figure 5) in our regions of interest. Note however that 

an age effect was observed in several other cortical regions: the bilateral cingular, frontal and 

parietal cortex, the right temporal cortex and the global grey matter (see Supplementary Material: 

Figure 2). CBF values obtained for V1 (see Table 1) are coherent with the literature (Chen, Rosas 

and  Salat, 2011). To our knowledge, no values have been reported yet for SC and LGN.  We 

observed higher CBF values in V1 compared to SC and LGN for each group (see Figure 5). This 

finding is consistent with the fact that cortical structures have a higher 
ீ௥௘௬	ெ௔௧௧௘௥	ሺீெሻ

ௐ௛௜௧௘	ெ௔௧௧௘௥	ሺௐெሻ
 than 

subcortical structures and consequently a greater proportion of arteries, underlying higher CBF. 
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Moreover, a higher CBF value was measured in SC versus LGN (see Figure 5), which could be 

explained by the localization of SC close to prominent blood vessels such as the circle of Willis 

and the middle cerebral arteries. In recording perfusion imaging (ASL) at resting state, we missed 

the possible alteration with age of processes that couple demand during brain activation and 

vascular reactivity. To properly quantify cerebral perfusion differences, functional MR imaging 

of the vasoreactivity might be introduced (Krainik, Villien, Tropres et al., 2013) at the expense of 

the exam duration, a critical point in case of clinical study.  

Some fMRI studies found that older adults have overall lower BOLD cortical responses 

depending on the task performed (D'Esposito et al., 2003; Ances, Liang, Leontiev et al., 2009; 

Kannurpatti, Motes, Rypma et al., 2010). This could be a confonding factor for V1 activation 

variations. However, it is unlikely that this factor was a covarying variable here. First, we found 

no basal perfusion difference between groups of varying age. Second, vascular contributions if 

any, as assessed by heart rate variability were introduced as nuisance cofactors in our statistical 

model. Third, the stimuli we used provoked strong retinotopic activity on early visual areas. In 

these areas no significant BOLD signal difference due to age was detected for such retinotopic 

stimulation (Chang, Yotsumoto, Salat et al., 2015).  

Individual ROI analysis. Similarly to some studies (DuBois & Cohen, 2000; Schneider & 

Kastner, 2005; Sylvester et al., 2007; Wall et al., 2009), we opted for an individual ROI analysis 

of the functional data. We delineated for each participant three ROIs in SC, LGN and V1 based 

on functional and anatomical criteria (see Figure 3). Clearly, for the latter, the manual delineation 

introduced a subjective bias, not on the localization (see supplementary data Table 1), but on the 

size of the ROIs. Indeed, the mean volumes of SC and LGN ROIs in our study were incontestably 

smaller than those obtained using a delineation based on the retinotopy property of SC (Schneider 

& Kastner, 2005; Limbrick-Oldfield et al., 2012) and LGN (Schneider et al., 2004) or using 

flickering checkerboards with luminance constrast >10% (Schneider & Kastner, 2005). In these 

experiments, both magnocellular (M) and parvocellular (P) pathways were stimulated.  Because P 

cells are known to outnumber M cells, notably in the LGN (Dreher, Fukada and  Rodieck, 1976), 

this may explain the lower size of our LGN volumes. Note however that functional retinotopic 

mapping, allowing a proper delineation of these ROIS, requires a specific long lasting experiment 

(Bordier, Hupe and  Dojat, 2015), unadapted to clinical studies, our next objective.  
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4.2. Aging effect on subcortical and cortical processing of the low luminance contrast 

With such a framework, we successfully recorded a progressive increase of BOLD responses as a 

function of luminance contrast (<10%) in SC, LGN and V1 (see Figure 6), with a stronger 

modulation for V1, as previously reported by (Boynton, Demb, Glover et al., 1999). For SC, our 

results are consistent with the literature (Kastner, O'Connor, Fukui et al., 2004; Schneider & 

Kastner, 2005; Schneider & Kastner, 2009) as we show a modulation of SC responses to low 

contrast. We also extended those results with the use of luminance contrasts below 5%. To 

demonstrate the validity of our fMRI protocol to reveal potential visual dysfunction, we then 

explored the effect of aging as the visual system is well known to change with age, at least at a 

cortical level. Middle age and elderly participants had a visual exam by an ophthalmologist 

before the experiments. All participants had a normal or corrected-to-normal vision, therefore eye 

alterations can be ruled out in the effect observed.  

For V1 and LGN a statistically significant decrease of neural activation is observed (see 

Figure 7), which is linear with age for the luminance contrast range of 1-9% (see Figure 8). Such 

a decrease of neural activity in our ROIs is consistent with structural brain alterations with aging. 

For V1, a significant decrease of the surface area (Brewer & Barton, 2012a) and a reduced 

response to visual stimulation (Crossland, Morland, Feely et al., 2008) were reported when 

comparing aging and young subjects. Yuang et al. (Yang, Liang, Guangxing et al., 2009) showed 

that the optimal spatial frequency and spatial resolution were decreased in aged monkeys in both 

V1 and MT, which seems to indicate that the influence of aging on V1 is not compensated by 

higher-order visual cortices but rather extends along the visual processing pathway. Age-related 

structural changes were also observed in LGN with a progressive decrease in size from 20 to 65 

years old in Human (Li, He, Shi et al., 2012), coherent with data from animal studies showing a 

LGN degeneration in normal aging (neuronal volume attenuation and neuron diameter reduction) 

(Diaz, Villena, Gonzalez et al., 1999), although the spatial and temporal properties of LGN 

neurons seem preserved in elderly monkeys (Spear, Moore, Kim et al., 1994). However, no study 

confirms this preservation in human.  

For SC, the integrative centers (Sparks, 1988) could be affected by age, as demonstrated by 

the stereological study of Diaz (Diaz et al., 1999) in old rats, highlighting a process of somatic 

and nuclear atrophy in superficial layer neurons implicated in vision. Again, no human data are 

available. In SC a non-statistically significant decrease in BOLD response with age was 
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observed. This finding could be due first to the small number of voxels available for the measure, 

second to the insufficient number of retinal cells that project to SC (10%) to bring out any age 

effect, and the absence of repercution of the age-modulated information coming from the M-

layers projections from LGN to SC (Hoffmann, 1973). An alternative hypothesis concerning the 

apparent preservation of the SC functional modulation by low contrasts with age is that our 

results reflect in fact the preserved unconscious visual part of the SC functional activity. Indeed, 

based on the “blindsight” syndrome, it has been shown that patients with bilateral occipital 

damage retained some visual capacities (Weiskrantz, 1986), supported by residual networks not 

disturbed by the cortical lesion, such as the retino-tectal pathway, that bypassed V1, a crucial area 

in visual awareness (Weiskrantz, Warrington, Sanders et al., 1974; Weiskrantz, 1986).  

SC is a structure that plays a preponderent role in visual attention. It is conceivable that aging 

altered the SC conscious activity, but because of the load required by our attentional task, i.e. the 

fixation of the central cross, the modulation of the SC conscious activity by our visual stimulus 

was then masked. In contrary, our results might indicate that the SC unconscious activity might 

be preserved with age and modulated by checkerboards varying in luminance reflecting the 

functional integrity of the SC unconscious retino-tectal visual pathway with age. The use of 

transcranial magnetic stimulation, with transient blockade of the unconscious visual pathway 

without suppression of the conscious visual pathway (Ro, Shelton, Lee et al., 2004; Jolij & 

Lamme, 2005; Allen, Sumner and  Chambers, 2014), may be an interesting neurophysiological 

approach to understand how conscious and unconscious visual pathways contribute to an age-

related sensitivity loss in SC. It would also add important information on the influence of the 

visual cortex on SC activity. 

 

4.3. Aging effect on luminance contrast perception  

In Boynton et al. (Boynton et al., 1999) contrast response functions measured using fMRI were 

found to be consistent with psychophysical data (paired-comparison) in several visual areas (V1, 

V2d, V3d and V3A). Subcortical areas were not explored. Paired-comparison methods have been 

extended to estimate perceptual scales within a signal detection framework (Maloney & Yang, 

2003; Ho, Landy and  Maloney, 2009). A maximum likelihood criterion is then introduced to 

estimate interval scales that best predict observers’ choices. Recently, Maloney and colleagues 

introduced the Maximum Likelihood Difference Scaling  (MLDS) procedure task (Maloney & 
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Yang, 2003; Knoblauch & Maloney, 2008; Knoblauch & Maloney, 2012). This method appears 

to be robust indicating, as well, how the sensitivity of the observer varies to each stimulus 

magnitude. It has been successfully applied to characterize color differences (Lindsey, Brown, 

Reijnen et al., 2010), surface glossiness (Obein, Knoblauch and  Vienot, 2004; Emrith, Chantler, 

Green et al., 2010), image quality (Charrier, Maloney, Cherifi et al., 2007), adaptative process of 

face distortion, neural encoding of sensory attributes (Yang, Szeverenyi and  Ts'o, 2008) and 

more recently to measure the strength of the watercolor effect, where an irregular chromatic 

contour generates a color percept that looks like a uniform color surface, as a function of 

luminance elevation of the inner contour (Devinck & Knoblauch, 2012). Here, we used MLDS 

procedure task to estimate luminance contrast perception. Clearly, the recorded data showed a 

modulation of the perceptual response as a function of luminance contrast from 2% to 15%, 

approaching an asymptote near 20%. We have also shown that our fMRI evaluation was 

consistent with those psychophysical data. Indeed, we found significant positive correlations 

between BOLD responses and MLDS estimated perceptual responses to luminance contrast 

change in our ROIs.  

In order to modulate SC response, we designed our stimuli to preferentially activate the M 

pathway using both low spatial frequency and luminance contrast (from 2% to 20%). This was 

clearly confirmed by the Michaelis-Menten function that perfectly fitted the estimated perceptual 

response to luminance contrast variations (see Figure 4). Indeed, this function was used to 

describe the contrast gain signatures of M cells in the retina (Lee, Pokorny, Smith et al., 1990) 

and LGN (Kaplan & Shapley, 1986). The M pathway is characterized by a logarithmic response 

curve, i.e. high contrast gain and saturation at relatively low levels of contrast, whereas the P 

pathway provides a linear response, i.e. low contrast gain and a linear response to luminance 

contrast variations (Kaplan & Shapley, 1986; Merigan & Maunsell, 1990). Many studies have 

reported contrast sensitivity decline with age. For Owsley et al. (Owsley et al., 1983), contrast 

sensitivity for stationary low spatial frequency stimuli remained the same throughout adulthood, 

whereas sensitivity for stationary high spatial frequency stimuli decreased with age, suggesting 

more pronounced impairment of  the P pathway. Similarly, Elliot and Werner (Elliott & Werner, 

2010) investigated separately M and P pathways based on their contrast gain signature (Pokorny 

& Smith, 1997) and reported a more pronounced functional deficit of the P pathway with age. 

More recently, Ramanoel et al. (Ramanoel, Kauffmann, Cousin et al., 2015) investigated the 
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effects of normal aging on spatial frequency processing during natural visual scenes 

categorization. They reported a low-contrast deficit in normal elderly population only for high 

spatial frequency again suggesting more age influence on the P pathway.  

While most studies have highlighted functional changes in normal aging for the P pathway, 

which are confirmed in the present experiment, the literature is more controversial concerning 

possible M pathway deficits with aging (Owsley, 2011). Our data (Figure 4b) indicate an effect of 

age on luminance contrast perception for values from 2 to 15%. Consequently, they confirm for 

low spatial frequency stimuli (<1.6 cpd) that this age effect on luminance contrast perception is 

on the P pathway, preferentially activated by luminance contrasts above 10%, but also on the M 

pathway, more sensitive to luminance contrasts below 10% (Merigan & Eskin, 1986). This 

observation is coherent with the McKendrick study (McKendrick, Sampson, Walland et al., 

2007), showing a reduction of contrast sensitivity for low spatial frequency of both the M and P 

pathways. Moreover, Bordaberry and al. (Bordaberry, Lenoble and  Delord, 2012) highlighted a 

differential functional loss for M and P pathways. Indeed, the M deficit is lower at the beginning 

of aging but keep deteriorating after 75 years old while the P deficit is larger at the beginning of 

aging and more stable from 60 years old. It is important to note that a clean disambiguation of M 

and P responses is difficult to achieve (Skottun & Skoykes, 2011). Temporal frequency 

processing is preferentially supported by the M pathway (Kaplan & Shapley, 1986). Kim and 

Mayer (Kim & Mayer, 1994) observed a sensitivity decrease for low spatial frequency flickering 

stimuli in elderly when the temporal frequency increased. Based on the data presented in the 

study of Elliott and Werner (Elliott & Werner, 2010), the flickering frequency of 4Hz we used for 

our checkerboards might be sufficiently high to alter the response in V1 and LGN for middle age 

and elderly participants. However, the good correlation between neural correlates and perceptual 

scales, as estimated from observations of static checkerboards, allows us to rule out an influence 

of the temporal frequency component in the observed deficits with age in response to luminance 

contrast modulation. 

 

4.4. Conclusion 

Taken together, fMRI and psychophysics results indicate that both M and P pathways may play a 

role in age-related luminance contrast sensitivity loss. Understanding the mechanisms underlying 

these changes occurring in normal aging is essential both for understanding the normal aging 
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process and for comparisons between healthy aging subjects and aging patients with age-related 

visual and/or cortical/subcortical disorders. In particular improving our knowledge about the 

functioning of the superior colliculus may help to distinguish changes related to healthy aging 

from those resulting of neurodegenerative processes such as Parkinson’s (Kim and Hikosaka, 

2015) or Hungtinton’s (Rupp et al., 2012) diseases but also in patients with Attention deficit 

hyperactivity disorder (ADHD) (Overton, 2008).  The methodology we propose combining fMRI 

and psychophysics will allow performing such investigations. 
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Figures captions 

 

Figure 1. MLDS experiment: Example of a triad used in the psychophysical session before 

scanning. The observer had to fixate each pattern until he/she could choose which of the two 

bottom patterns (left or right) was most similar to the upper pattern with respect to the color of its 

interior region. 

 

Figure 2. fMRI protocol and visual stimuli. Top: visual stimuli, achromatic checkerboards 

hemifield (0.42 cpd) varying in luminance (1-9%) and flashing at a frequency of 4 Hz. Below: 

experimental paradigm, a block-design paradigm with the four luminance contrast levels (1, 3, 5 

and 9%) interleaved with fixation intervals.  

 

Figure 3. The regions of interest for one participant.  Functional mask: individual functional 

activation obtained for all visual stimuli relative to fixation is projected onto the corresponding 

structural T1-weighted image. Anatomical mask is manually delineated in 3D (cyan line) and 

used to refine the ROIs definition. From left to right: Superior Colliculus, Lateral Geniculate 

Nucleus, and V1 regions. 

Figure 4. a) Average perceptual scale across all subjects as a function of luminance contrast 

levels (black dots). b-c) Average perceptual scales for each group as a function of luminance 

contrast levels: joint representation for the set of groups (b); separated representation for each 

group (c). Michaelis-Menten function was fitted by non-linear mixed-model (dash curve). 

Vertical bars indicate errors with 95% confidence intervals.  

Figure 5. Cerebral blood flow (CBF) measured across all subjects and for each group in the three 

ROIs (Superior Colliculus: SC, Lateral Geniculate Nucleus: LGN and primary visual area V1). 

Left and right parts of each ROI were combined. The vertical bars represent standard deviation. 

*p<.01  **p<10-3.   
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Figure 6. Average variations of the BOLD signal in the ROIs (Superior Colliculus: SC, Lateral 

Geniculate Nucleus: LGN and primary visual area V1) according to the luminance contrast 

changes versus fixation for all subjects (n=30). Left and right parts of each ROI were combined. 

Vertical bars indicate errors with 95% confidence intervals.  A.U.= Arbitrary Unit. 

Figure 7. Variations of the BOLD signal in the ROIs (Superior Colliculus: SC, Lateral Geniculate 

Nucleus: LGN and primary visual area V1) according to the luminance contrast change vs 

fixation for each age group. Left and right parts of each ROI were combined. Vertical bars 

indicate errors with 95% confidence intervals. * p<.05 **p<.005. A.U.= Arbitrary Unit.  

Figure 8. Correlation between Age and BOLD response for Lateral Geniculate Nucleus (LGN) 

and primary visual area V1.  Left and right parts of each ROI were combined.  

 

Table 1. Mean cerebral blood flow expressed in mg/100ml/mn measured in the ROIs (Superior 

Colliculus: SC, Lateral Geniculate Nucleus: LGN and primary visual area V1) for each group. 

Left and right parts of each ROI were combined. sd=standard deviation. 

 

 




















