Web-based Supplementary Materials for Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients

Solène Desmée^{1,2}, France Mentré^{1,2}, Christine Veyrat-Follet³, Bernard Sébastien⁴ and Jérémie Guedj^{1,2}

 $^1\mathrm{INSERM},$ IAME, UMR 1137, F-75018 Paris, France

²Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France

³Drug Disposition, Disposition Safety and Animal Research Department, Sanofi, Alfortville, France ⁴Biostatistics and Programming, Sanofi, Chilly-Mazarin, France

Web Appendix A: Preliminary sensitivity analysis

We present below the results of the sensitivity analysis for p and g using the longitudinal PSA data and the model which assumed a treatment effect on cell angiogenesis. Four orders of magnitude for p and g were explored and selection was made according to the BIC (Web Table 1).

The parameters values were largely insensitive to the change of p and g values, except N_{max} , the maximum number of PSA-producing cells, which, as expected, decreased when p, the rate of PSA production, increases (Web Tables 2 and 3).

			1	D	
		0.2	2	20	200
	10^{-5}	10488~(6)	10586(5)	10492(7)	10491(7)
~	10^{-6}	10184(8)	10208~(7)	10238~(7)	10207(8)
g	10^{-7}	10166(8)	10186(8)	10155~(7)	10194(7)
	10^{-8}	10188 (8)	10165(7)	10181(8)	10182(7)

Web Table 1: Estimated BIC (s.e.) according to the values of p and g using only the PSA measurements in the 400 patients of the training dataset

16	
$_{\mathrm{the}}$	
for	
et j	
tas	
de de	
Jing	
raiı	
le t	
f t]	
ts c	
ien	
pat	
00	
le 4	
ı th	
ii S	
etic	
kin	
SA	t).
fР	par
0 ((rst
8	ff.
ror	ysis
l er:	unal
lard	ty <i>ɛ</i>
anc	tivi
e st	isne
tive	e se
rela	th
SS SS	d in
ıat∈	use
stin	les
S G	valı
eter	l g
am	anc
Par	d
	Ψ
\sim	lo sı
ble 2	tions of
Table 2	inations of
/eb Table 2	mbinations of

	b = 0	.2) = d).2	p = 0	.2) = d).2	= d	2	= d	2	= d	2	d = d	2
	g = 10	$)^{-5}$	g = 1	0^{-6}	g = 1()-2	g = 10	0^{-8}	g = 1	0^{-5}	g = 10	9-0	g = 10)-2	g = 10	-8
$\alpha_S \; (\mathrm{day}^{-1})$	0.055	(3)	0.064	(3)	0.059	(3)	0.059	(3)	0.055	(3)	0.061	(3)	0.055	(3)	0.067	(3)
RF	0.9813	(0)	0.9976	(0)	0.9997	(0)	0.99999	(0)	0.9806	(0)	0.9977	(0)	0.9996	(0)	0.99999	(0)
RE	0.80	(1)	0.81	(1)	0.78	(1)	0.78	(1)	0.81	(1)	0.81	(1)	0.77	(1)	0.81	(1)
ω	0.56	(4)	0.44	(4)	0.49	(4)	0.47	(4)	0.55	(4)	0.47	(4)	0.53	(4)	0.41	(4)
$PSA_b (\mathrm{ng.mL}^{-1})$	21.6	(8)	22.0	(8)	22.1	(8)	22.2	(8)	21.4	(8)	22.1	(8)	22.2	(8)	22.3	(8)
$N_{max} \ ({ m mL}^{-1})$	4403	(2)	6248	(2)	4817	(2)	4492	(2)	518	(3)	639	(3)	508	(3)	518	(3)
ω_{α_S}	0.51	$(\overline{5})$	0.53	(4)	0.49	(4)	0.52	$(\overline{5})$	0.54	$(\overline{5})$	0.50	$(\overline{5})$	0.51	(4)	0.47	(2)
ω_{RF}	1.89	(4)	2.28	(4)	2.57	(4)	2.84	(4)	1.92	(4)	2.36	(4)	2.58	(4)	2.73	(4)
ω_{RE}	0.72	(2)	0.69	(4)	0.72	(4)	0.67	(2)	0.75	(4)	0.66	$(\overline{5})$	0.69	(4)	0.64	(4)
$\omega_arepsilon$	1.30	(9)	1.19	(9)	1.26	(9)	1.28	(9)	1.38	(2)	1.22	(2)	1.32	(9)	1.03	(2)
ω_{PSA_b}	1.63	(4)	1.63	(4)	1.63	(4)	1.64	(4)	1.62	(4)	1.63	(4)	1.63	(4)	1.64	(4)
$\omega_{N_{max}}$	2.09	(2)	2.19	(9)	2.14	(2)	2.23	(9)	2.07	(9)	2.25	(9)	2.32	(9)	2.31	(9)
σ	0.33	(1)	0.32	(1)	0.32	(1)	0.32	(1)	0.33	(1)	0.32	(1)	0.32	(1)	0.32	(1)

16		x
the	200	10^{-1}
for	= d	
set		5
lata		
പ്പ	200	2-0-
inir		
e tre	l	9
the		
s of	00	0-0
ient	7	
pat	d	9
f00		
he	00 ,	о_(
in t	2	=
ics	d	9 :
cinet		
A k art).	0	∞^{-1}
d p	12	= 10
) of con	d	g =
(%) i (se		
ror lysis	0	2
d er ana	12	= 10
daro ity	d	g =
stan		
sens	0	0
elation	5	= 10
s (r	d	g =
nateo useo		
stin 1es 1	,	-0 -
rs e valı	= 2(. 10
d g	d	g =
uran) an		
$\operatorname{Pa}_{\operatorname{of} p}$		
e 3: ons		
labl 1ati		
L dé lidu		
We col		

	=d	20	c = d	20	b = c	00	c = d	20	z = d	00	p=2	000	p = 2	00	p = 2	00
	g = 1	0^{-5}	g = 10	9-0	g = 10	2-(g = 10)-8	g = 1	0^{-5}	g = 1	0^{-6}	g = 1	2-0	g = 10	9-6
$\alpha_S (\mathrm{day}^{-1})$	0.065	(3)	0.059	(3)	0.070	(3)	0.063	(3)	0.078	(3)	0.063	(3)	0.068	(3)	0.063	(3)
RF	0.9842	(0)	0.9968	0	0.9998	(0)	0.99999	(0)	0.9869	(0)	0.9974	(0)	0.9997	(0)	0.99999	(0)
RE	0.83	(1)	0.79	(1)	0.83	(1)	0.80	(1)	0.87	(1)	0.81	(1)	0.82	(1)	0.80	(1)
ω	0.45	(4)	0.48	(4)	0.39	(4)	0.44	(4)	0.37	(4)	0.45	(4)	0.41	(4)	0.43	(4)
$PSA_b (\mathrm{ng.mL}^{-1})$	21.6	(8)	22.1	(8)	22.2	(8)	22.2	(8)	21.5	(8)	21.8	(8)	22.2	(8)	22.5	(8)
$N_{max} (\mathrm{mL}^{-1})$	72	(4)	48	(4)	62	(4)	50	(4)	∞	(8)	9	(6)	9	(6)	9	(6)
ω_{lpha_S}	0.52	(5)	0.49	(5)	0.45	(4)	0.51	(5)	0.49	(5)	0.51	(4)	0.50	(5)	0.48	(2)
ω_{RF}	1.84	(4)	2.35	(4)	2.62	(4)	2.79	(4)	1.93	(4)	2.38	(4)	2.71	(4)	2.66	(4)
ω_{RE}	0.68	(2)	0.61	(4)	0.64	(2)	0.60	(4)	0.59	(4)	0.66	(2)	0.57	(4)	0.61	(4)
$\mathcal{U}_arepsilon$	1.14	(9)	1.38	(9)	1.07	(9)	1.25	(9)	1.06	(2)	1.20	(9)	1.16	(9)	1.22	(9)
$\omega_{PSA_{b}}$	1.63	(4)	1.63	(4)	1.64	(4)	1.65	(4)	1.63	(4)	1.63	(4)	1.63	(4)	1.64	(4)
$\omega_{N_{max}}$	2.26	(9)	2.17	(9)	2.10	(9)	2.08	(2)	2.15	(2)	2.29	(9)	2.12	(2)	2.27	(9)
σ	0.33	(1)	0.32	(1)	0.32	(1)	0.32	(1)	0.33	(1)	0.32	(1)	0.32	(1)	0.32	(1)

Web Appendix B: Sensitivity analysis for the baseline hazard function

The assumption of parametric baseline hazard function was relaxed and we evaluated the effect of using piecewise constant, linear and restricted cubic splines, for the final joint model where the baseline hazard function was simply exponential. In each case, spline functions were tested using 3 knots corresponding to the 10^e , 50^e and 90^e percentiles of the observed times-to-death, i.e., $t_1 = 192$, $t_2 = 520$ and $t_3 = 947$ days, respectively (Harrell, 2001).

- The piecewise constant function was defined as followed: $h_0(t) = a_1 + a_2 \mathbb{1}_{[t_1, t_2]} + a_3 \mathbb{1}_{[t_2, t_3]} + a_4 \mathbb{1}_{[t_3, \infty]}.$
- The linear spline function was defined as followed: $\log(h_0(t)) = a_1 + a_2 t + b_1 (t - t_1)_+ + b_2 (t - t_2)_+ + b_3 (t - t_3)_+$ where $(t - t_1)_+ = \begin{cases} 0 & \text{if } t < t_1 \\ t - t_1 & \text{if } t > t_1 \end{cases}$
- The restricted cubic spline function was defined as followed:

$$\log(h_0(t)) = a_1 + a_2t + a_3[(t - t_1)_+^3 - (t - t_2)_+^3 \frac{t_3 - t_1}{t_3 - t_2} + (t - t_3)_+^3 \frac{t_2 - t_1}{t_3 - t_2}]$$

As can be seen in the Web Table 4, none of these models reduced the BIC over the exponential model.

h_0	Expone	ntial	Piecew	vise	Linea	ar	Restrict	ed
			consta	ant	\mathbf{splin}	e	cubic spl	line
-2LL	14326	(8)	14317	(7)	14325	(7)	14333 ('	7)
BIC	14421	(8)	14431	(7)	14445	(7)	14441 (*	7)
α_S	0.067	(3)	0.067	(3)	0.081	(3)	0.060	(3)
RF	0.9998	(0)	0.9998	(0)	0.9999	(0)	0.9998	(0)
RE	0.82	(1)	0.79	(1)	0.84	(0)	0.77	(1)
ε	0.43	(3)	0.43	(4)	0.33	(4)	0.48	(4)
PSA_b	21.9	(8)	21.8	(8)	22.0	(8)	22.0	(8)
N_{max}	120	(4)	80	(4)	166	(5)	64	(4)
λ	906	(7)	-		-		-	
a_1	-		0.000913	(3)	-6.79	(1)	-7.09(1)	
a_2	-		0.00041	(4)	7.6×10^{-6}	(15)	0.0014	(13)
a_3	-		0.00029	(8)	-		-3.7×10^{-9}	(18)
a_4	-		5.0×10^{-6}	(136)	-		-	
b_1	-		-		7.7×10^{-6}	(86)	-	
b_2	-		-		7.1×10^{-6}	(129)	-	
b_3	-		-		2.1×10^{-5}	(472)	-	
β	0.00032	(21)	0.0031	(5)	0.0029	(52)	0.011	(10)
β'	0.39	(7)	0.38	(5)	0.39	(5)	0.36	(11)
ω_{α_S}	0.48	(5)	0.51	(5)	0.51	(5)	0.49	(5)
ω_{RF}	2.55	(4)	2.61	(4)	2.38	(4)	2.47	(4)
ω_{RE}	0.59	(5)	0.10	(5)	0.07	(5)	0.11	(5)
ω_{ε}	0.95	(6)	0.97	(6)	0.91	(6)	1.12	(6)
ω_{PSA_b}	1.64	(4)	1.64	(4)	1.64	(4)	1.64	(4)
$\omega_{N_{max}}$	2.57	(7)	2.35	(6)	2.51	(7)	2.37	(6)
σ	0.32	(1)	0.32	(1)	0.32	(1)	0.32	(1)

Web Table 4: Parameters estimates (relative standard error (%)) of PSA kinetics and survival in the 400 patients of the training dataset for the 3 spline functions considered for h_0 compared to the final joint model (exponential h_0)