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Summary: Joint modelling is increasingly popular for investigating the relationship between longitudinal and time-

to-event data. However numerical complexity often restricts this approach to linear models for the longitudinal part.

Here we use a novel development of the Stochastic-Approximation Expectation Maximization algorithm that allows

joint models defined by nonlinear mixed-effect models. In the context of chemotherapy in metastatic prostate cancer,

we show that a variety of patterns for the Prostate Specific Antigen (PSA) kinetics can be captured by using a

mechanistic model defined by nonlinear ordinary differential equations. The use of a mechanistic model predicts that

biological quantities that cannot be observed, such as treatment-sensitive and treatment-resistant cells, may have a

larger impact than PSA value on survival. This suggests that mechanistic joint models could constitute a relevant

approach to evaluate the efficacy of treatment and to improve the prediction of survival in patients.

Key words: Joint model; Metatastic prostate cancer; Nonlinear mixed effect model; Prostate specific antigen ;

SAEM algorithm; Survival.
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1. Introduction

The field of joint modeling, which aims to characterize the relationship between longitudinal

biomarkers and a time-to-event, has received a lot of attention from biostatisticians in the

last decade (Tsiatis and Davidian, 2004; Rizopoulos et al., 2009; Wu et al., 2011). Moreover

large efforts have been made to reach out beyond the academic community and packages

in R or codes and macro in SAS are now available (Guo and Carlin, 2004; Rizopoulos,

2010; Garcia-Hernandez and Rizopoulos, 2015). However a major limitation of these tools is

that they essentially rely on linear models for the longitudinal part (Tsiatis and Davidian,

2004; Rizopoulos, 2012; Asar et al., 2015). Although these models are often sufficient to

describe sparse longitudinal data, such as those obtained in epidemiological studies, they

may not be appropriate to describe the kinetics of frequently sampled markers such as those

obtained in clinical trials for treatment evaluation. In this context, nonlinear mechanistic

models, for instance based on ordinary differential equations (ODEs), may be necessary to

characterize the dynamic changes in the longitudinal markers but the difficulty to calculate

the likelihood in nonlinear mixed effect models (NLMEM) complicates considerably the use

of these models. In the last years, several stochastic methods have been developed to propose

efficient algorithms for inference in NLMEM (Kuhn and Lavielle, 2005; Plan et al., 2012).

One of them is the Stochastic Approximation Expectation-Maximization (SAEM) algorithm

(Delyon et al., 1999). As in other EM algorithms, the algorithm is an iterative process where

each iteration is divided into a step where the complete likelihood conditional on observations

is calculated (E-step), and a step where the complete likelihood is maximized (M-step). In

addition, in the SAEM algorithm, the E-step is divided into two parts: a simulation of

individual parameters using a Markov Chain Monte Carlo (MCMC) algorithm (S-step), and

then a calculation of the expected likelihood using a stochastic approximation (A-step).

Recently the SAEM algorithm implemented in Monolix (www.lixoft.eu) has been expanded
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to the context of joint models and was shown by simulation to provide precise estimates

when the longitudinal marker was defined by a NLMEM (Mbogning et al., 2015; Desmée

et al., 2015).

Here we applied this approach to characterize, on real data, the relationship between

the kinetics of the Prostate-Specific Antigen (PSA) and survival in metastatic Castration-

Resistant Prostate Cancer (mCRPC) using data from a phase 3 clinical trial (Tannock et al.,

2013). In this context of patients with advanced disease, the incidence of death is high and the

PSA kinetics is closely monitored after treatment initiation to rapidly detect a breakthrough

in PSA and propose rescue strategies. Thus, unlike studies where long-term PSA levels can

be described by linear models (Proust-Lima et al., 2008) here, the rapid changes in PSA

levels require dynamical nonlinear models. Similarly to what is done to characterize the

effect of an anti-viral treatment on a pathogen (Perelson and Guedj, 2015), the PSA kinetics

can be schematically viewed as a dynamic interaction between the chemotherapy and the

process of production and elimination of cancer cells (Seruga, Ocana, and Tannock, 2011).

This interaction can naturally be modeled using a system of nonlinear ODEs where both

parameters and processes have a biological interpretation. Here, we aimed to show how a

mechanistic joint approach can be used to characterize the relationship between the nonlinear

kinetics of a biomarker and the time-to-death in the context of treatment evaluation.

The outline is as follows: in Section 2, we introduce the clinical data and the methods used

to characterize the relationship between PSA kinetics and survival. In Section 3, we show

how to construct and evaluate a joint model in the context of a mCRPC clinical trial. Lastly,

in section 4, we conclude by pointing out the advantages and the limits of this approach.
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2. Material and Methods

2.1 Description of the Data

We analyzed the data of 598 men with metastatic Castration-Resistant Prostate Cancer

(mCRPC) treated with docetaxel and prednisone, the first-line reference chemotherapy,

which constituted the control arm of a phase 3 clinical trial (Tannock et al., 2013). In

the protocol, PSA had to be measured within 8 days before treatment initiation, every 21

days during treatment and then every 84 days after treatment. Baseline available covariates

were body size, age, race and time elapsed since hormone therapy. Two patients had no PSA

measurement and were not included in the analysis.

For the sake of internal validation, the dataset was randomly split into a training and a

validation dataset of 400 and 196 patients, respectively. In the training dataset, 6,627 PSA

measurements were collected, among which 1,385 (20.9%) were pre-treatment and 3,934

(59.4%) were on treatment. The median [minimum ; maximum] duration between the first

PSA measurement and the treatment initiation was 104 days [2 ; 1,195]. The median number

of measurements per patient was 15 [3 ; 57] with a median number of pre-, on- and post-

treatment measurements of 4 [1 ; 14], 9 [0 ; 48] and 2 [0 ; 26], respectively. The limit of

quantification (LoQ) was 0.1 ng.ml−1 and 165 observations (2.5%) from 21 patients (5.3%)

were below LoQ. In the validation dataset, the median numbers of PSA measurements per

patient was also equal to 15 and the total number of PSA measurements was 3,185. In the

training dataset 286 patients deceased (71.5%), leading to a median survival [Kaplan-Meier

95% confidence interval] of 656 days [598 ; 741]. In the validation dataset, 145 patients

deceased (74.0%), leading to a median survival of 598 days [547 ; 732]. Unlike it is stated

otherwise, all results given below are obtained using the training dataset only.
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2.2 Mechanistic PSA Kinetic Model

In this model (Figure 1), PSA is produced by two types of cells, namely treatment-sensitive

cells (S) and treatment-resistant cells (R) (Seruga et al., 2011). In absence of treatment,

sensitive and resistant cells proliferate with rates αS and αR, respectively, and are eliminated

with a similar rate d. The total number of sensitive and resistant cells is limited by a

saturation term, noted Nmax. Mutations from S to R and from R to S occur with an identical

rate, noted g. PSA is secreted by both treatment-sensitive and -resistant cells with a rate p

and is cleared from the blood with a rate δ.

The associated system of ordinary differential equations (ODEs) is:
dS
dt

= αS(1− S+R
Nmax

)S + g(R− S)− dS

dR
dt

= αR(1− S+R
Nmax

)R + g(S −R)− dR

dPSA
dt

= pS + pR− δPSA

(1)

Let PSAb, Sb and Rb be the initial values of PSA, sensitive and resistant cell counts,

respectively, i.e., their values at first PSA measurement. In order to determine their values,

we used the fact that by definition the treatment resistant cells are less fit to grow than the

treatment-sensitive cells (RF = αR/αS < 1). Therefore treatment-sensitive cells should be

largely predominant at baseline (Sb � Rb) and thus quasi-steady state approximations can

be made to derive baseline conditions:

Sb =
δ

p
PSAb

Then one can obtain after few calculations on equations (1):

Rb =
g

d−RF × (g + d)
× δ

p
PSAb

.

Time t = 0 indicates the beginning of treatment that has a constant and non-null effec-

tiveness against the treatment-sensitive cells (ε > 0) while it has no efficacy against resistant

cells. Two mechanisms of actions for docetaxel were considered (Herbst and Khuri, 2003;
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Petrylak, 2005): it can either inhibit angiogenesis (i.e., decreases the cancer cells proliferation

from αS before treatment initiation to αS × (1 − ε) afterwards) or increase cell apoptosis

(i.e., stimulates the cancer cells elimination from d before treatment initiation to d× (1 + ε)

afterwards).

[Figure 1 about here.]

The following reparameterizations were done to improve the model identifiability. First

since before treatment initiation PSA increased, the proliferation rate of sensitive cells is

necessarily larger than the apoptosis rate (αS > d). Second after treatment initiation, no

patient achieved a sustained low level of PSA, which means that the proliferation rate of

resistant cells is also larger than the apoptosis rate (αR > d). Thus αS > αR > d and

we parameterized d as d = RE × RF × αS with 0 < RE < 1. For the sake of parameter

identifiability, we fixed δ to 0.23 day−1, corresponding to a PSA half-life in blood of about 3

days (Ruffion, Rebillard, and Grima, 2005) while p and g were determined by a sensitivity

analysis (see Web Appendix A).

Finally, the mathematical model for PSA kinetics was defined by the vector parameter:

µ = (αS, RF, RE, ε, PSAb, Nmax).

2.3 Statistical Model for PSA Measurements

Nonlinear mixed-effect models (NLMEM) were used to analyze all the longitudinal PSA

measurements (before, during and after treatment).

Let N be the number of patients and yi = (yi1, . . . , yini
) the vector of observations

in patient i, where yij is the observed Naperian logarithm of PSA+1 for the patient i,

i = 1, . . . , N , at time tij, j = 1, . . . , ni. A constant error model is assumed on the logarithm

of PSA+1:

yij = log(PSA(tij,ψi) + 1) + eij (2)
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where ψi is the vector of the individual parameters, PSA(tij,ψi) is given by the system

of ODEs (1) and eij is the residual Gaussian error of mean 0 and variance σ2. ψi is

decomposed as a vector of fixed effects µ representing median parameters of the population

and random effects ηi specific for each individual. It is assumed that ηi ∼ N (0,Ω2) with

Ω = diag(ωαS
, ωRF , ωRE, ωε, ωPSAb

, ωNmax). We assumed log-normal distribution for αS,

PSAb and Nmax and logit-normal distribution for RF and RE. Regarding ε, we used a

logit-normal distribution when an effect in blocking cell proliferation was evaluated and a

log-normal distribution when an effect of treatment in enhancing cell death was evaluated

(see section 2.2).

2.4 Characterization of the Relationship between PSA Kinetics and Survival

Let Xi and Ci denote the time-to-death and the censoring time, respectively, for patient

i. Ti = min(Xi, Ci) and δi = 1{Xi6Ci} are observed. The time-to-death was modeled using

a parametric risk-proportional model assuming a Weibull function for the baseline hazard

function: for t > 0,

hi(t|PSA(t,ψi)) = h0(t) exp(γTwi + βTf(t,ψi)) (3)

where PSA(t,ψi) = {PSA(s,ψi); 0 6 s < t} denotes the history of the true unobserved

longitudinal process up to t, h0 is the Weibull baseline hazard function h0(t) = k
λ
( t
λ
)k−1, γ

is the vector of coefficients associated with the vector of baseline covariates wi and β is the

vector of coefficients associated with the ODE model outputs f(t,ψi) (Eq. 1).

The following models for the relationship between survival and PSA kinetics were considered:

• No link: f(t,ψi) = 0,

• Initial PSA: f(t,ψi) = log(PSA(0,ψi) + 1),

• Current PSA: f(t,ψi) = log(PSA(t,ψi) + 1),
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• Current PSA slope: f(t,ψi) = d log(PSA(t,ψi)+1)
dt

,

• Area under PSA: f(t,ψi) =
∫ t
0

log(PSA(u,ψi) + 1)du,

• Current S: f(t,ψi) = log(S(t,ψi)),

• Current R: f(t,ψi) = log(R(t,ψi)),

• Current S and R: f(t,ψi) = (log(S(t,ψi)), log(R(t,ψi))). In this model β has two compo-

nents, β = (β, β′).

Of note the last three models exploit the mechanistic nature of the model as they relate

to quantities that are not observed.

2.5 Maximum Likelihood Estimation

The log-likelihood for subject i is given by:

LLi(θ) = log

∫
p(yi|ηi;θ)p(Ti, δi|ηi;θ)p(ηi;θ)dηi (4)

where θ = (µ,Ω, σ, λ, k, γ,β) is the vector of parameters to estimate, p(yi|ηi;θ) is the

probability density function of the longitudinal observations conditionally on the random

effects ηi, p(Ti, δi|ηi;θ) = hi(Ti|PSA(Ti,ψi);θ)δiSi(Ti|PSA(Ti,ψi);θ) is the likelihood of

the survival part, with Si(t|PSA(t,ψi);θ) = exp(−
∫ t
0
hi(s|PSA(s,ψi);θ)ds) and p(ηi;θ)

is the probability density function of the random effects.

The likelihood was maximized using the SAEM algorithm (Delyon et al., 1999; Kuhn

and Lavielle, 2005) implemented in Monolix version 4.3.2. The likelihood was estimated by

Importance Sampling with a Monte-Carlo size of 200,000 to ensure efficient precision. SAEM

was run using one chain after checking that using 3 chains gave similar results (Vigan et al.,

2014). All calculations were performed in a i7 64bits 3.33 GHz.

2.6 Model Selection and Evaluation

We first selected the model for the longitudinal data using only longitudinal data. For each

couple of parameters (p, g) explored in the sensitivity analysis (Web Appendix A), the two
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possible mechanisms of action of treatment were tested and only the model giving the lowest

Bayesian Information Criterion (BIC) was retained.

Next the selection of the joint model was based on the BIC (Park and Qiu, 2014). Of note

baseline covariates were tested in the joint model only if they were significant in univariate

analysis using a Weibull survival model and a likelihood ratio test with a significance level of

20%. Then, the model evaluation relied on the analysis of the model individual predictions

and residuals in the training dataset, as well as the analysis of the survival predictions in the

validation dataset. The residuals for the longitudinal part were assessed using the Individual

Weighted Residuals, noted IWRES, defined by IWRESij =
yij−log(PSA(tij ,ψ̂i))

σ̂
where σ̂ is

the estimated standard deviation of the residual error and ψ̂i is the vector of the estimated

individual parameters, i.e., the Empirical Bayes Estimates (EBEs) defined as the mode of

the conditional distribution p(ψi|yi; θ̂) with θ̂ the estimation of the population parameters

θ. IWRES were plotted versus time and versus predicted PSA values.

Because it is difficult to interpret the individual predicted hazard functions, the evaluation

of the survival part of the model essentially relied on the residuals. Cox-Snell and Martingale

residuals, noted rCSi and rMi , respectively, are defined by rCSi =
∫ Ti
0
hi(s|PSA(Ti, ψ̂i))ds

and rMi = δi − rCSi , i = 1, ..., n. The Kaplan-Meier curve for the rCS was compared to the

survival curve of the unit exponential distribution exp(−t), while the Martingale residuals

were displayed versus the predicted values inferred from the PSA kinetics and introduced in

the final joint model (Rizopoulos, 2012; Sène, Bellera, and Proust-Lima, 2014). In addition

to the residuals and in order to evaluate the overall prediction for the survival, the mean

survival curve, defined by S(t) = 1
N

∑N
i=1 Si(t|PSA(t, ψ̂i); θ̂) was calculated and compared

to the Kaplan-Meier curve.

In order to evaluate the ability of the model to predict the survival in a different dataset,

the mean survival curve was also calculated in the validation dataset. For that purpose,
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population parameters were fixed to the values found in the training dataset (e.g., θ̂) and

individual parameters ψi were estimated from the EBEs. Of note the time-to-death in the

validation dataset was not used to estimate the mean survival curve of this dataset.

Lastly, the parametric assumption for the baseline hazard function was relaxed and spline

functions for the baseline hazard h0, namely piecewise constant, linear and restricted cubic,

were tested. More details can be found in the Web Appendix B.

3. Results

3.1 Model Selection

A model assuming an effect of docetaxel on cell angiogenesis systematically provided a better

fit to the longitudinal data than a model assuming an effect on cell apoptosis. Therefore only

the results of the model with an effect on cell angiogenesis will be discussed below. The values

for the PSA production rate and for the mutation rate, noted p and g, respectively, were

fixed to 20 ng.day−1 and 10−7 day−1 after the sensitivity analysis study (see Web Appendix

A). None of the baseline covariates had a p-value lower than 0.2 in univariate analysis and

therefore none of them were tested in the joint model (γ = 0).

[Table 1 about here.]

Parameter estimates obtained with the 8 candidate joint models are summarized in Table 1.

PSA kinetic parameters were largely insensitive to the choice of the survival part of the model.

In all cases they were precisely estimated with relative standard error smaller than 8% for

both fixed effects and variance components. In particular the treatment effect in blocking

angiogenesis, ε, was consistently estimated to about 43% (p < 10−15 by likelihood ratio test)

and the fitness of resistant cells was close to that of sensitive cells (RF = 99.98%). The

model using the current PSA value outperformed all models relying on PSA in terms of

BIC. Surprisingly the models based on the current PSA slope and on the cumulative PSA
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(Area under PSA), did not lead to a large improvement in the BIC compared to the No Link

model, i.e., the parametric Weibull model with no effect of PSA on survival.

One of the advantages of mechanistic models is that unobserved quantities can also be

evaluated. Interestingly a model relying on the current number of resistant cells, R, led to a

BIC smaller to what was obtained with the current PSA model. Further in the model relying

on both the current number of treatment-sensitive and -resistant cells (Current S and R),

the shape parameter, k, was not significantly different from 1, suggesting that the inclusion

of R and S could capture most of the time-dependent change in the hazard function. This

model led to the lowest BIC and therefore was retained as the final joint model for evaluation

since no further combination was found to improve the BIC. Using this model and a Monte

Carlo size of 200,000, the CPU times for parameter estimation and likelihood estimation

were 8.72× 103 seconds and 2.13× 105 seconds, respectively.

Further, we studied the effect of relaxing the assumption of parametric baseline hazard

function. However there was no reduction in BIC using piecewise constant, linear or restricted

cubic splines on the final model (see Web Appendix B).

3.2 Model Evaluation

[Figure 2 about here.]

As shown in Figure 2, various kinetic patterns of PSA before, during and after treatment

could be well captured by the model. The analysis of the IWRES did not suggest any model

misspecification (Figure 3) in the fitting accross time or PSA values.

[Figure 3 about here.]

For the survival part, the Kaplan Meier curve of the Cox-Snell residuals (Figure 3) was

close to the theoretical survival curve (unit exponential distribution). However there was a

slight overestimation of the survival for small values of the residuals, indicating a possible
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underestimation of the risk of death in the patients with a small risk of death. Martingale

residuals (Figure 3) were satisfactory according to the number of sensitive cells but tended

to underestimate the survival in patients with large number of resistant cells. Concerning the

survival prediction, the mean survival curve was close to the Kaplan-Meier curve (Figure 4).

In order to evaluate the capability of the model to capture the fact that PSA value at

treatment initiation is associated with survival, we also compared the mean survival curves

and the Kaplan-Meier curves according to the initial PSA value, PSA0. Interestingly the

model still well captured the survival function in the patients with PSA0 6 40 or 40 <

PSA0 6 140. However we note that the model tended to underestimate the survival in

patients with PSA0 > 140, i.e., patients with very high baseline PSA values, but the mean

survival curve remained included in the Kaplan-Meier 95% confidence interval.

[Figure 4 about here.]

Finally we applied the joint model on the 196 mCRPC patients from the validation dataset.

For that purpose, we fixed the population parameters to the values found in the training

dataset and we calculated the EBEs for each patient (see Section 2.6). In other words, the

individual trajectories for both PSA and the hazard function in a patient were calculated

using only the observed PSA measurements of that patient and the information on the vital

status in this dataset was not used. As can be seen in Figure 5, the Kaplan-Meier curve in

the training and in the validation dataset did not exactly overlay and there was a 58 days

difference in the median survival between the two datasets. In spite of this discrepancy, the

mean survival curve well fitted the Kaplan-Meier curve of the validation dataset, showing that

the inclusion of the individual PSA kinetics was sufficient to correctly predict the survival

in this dataset.

[Figure 5 about here.]
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All data and codes needed to reproduce the results, evaluate the residuals and generate

the figures are available as supplementary materials with a README file.

4. Discussion

A mechanistic joint model was proposed to study the relationship between survival and

longitudinal data described by a system of nonlinear ODEs. Unlike what is done in virology

and bacteriology, the field of mechanistic model for treatment evaluation in oncology is still

in its infancy. Here, following the efforts of other groups that aimed to develop cancer models

that can be used for clinical purposes (Ribba et al., 2014), we showed that mechanistic joint

models could be used for prediction of time-to-event in clinical trials. Our model allowed to

capture a variety of patterns in PSA kinetics observed before, during and after chemotherapy.

Further the model predicted that two quantities, namely docetaxel-sensitive and resistant

cancer cells, may have a large impact on survival. Of note these two quantities were not

observed, and the only observed quantity was the PSA value, which was assumed to be

proportional to the total number of cancer cells. The kinetics of docetaxel-resistant cells had

a larger impact on survival than the kinetics of treatment-sensitive cells. Since the kinetics of

resistant cells drives the increase in PSA levels on the long-run, our prediction is consistent

and expands the observation that the final tumor growth rate is highly predictive of the

time-to-death (Stein et al., 2008). The relevance of the model was further reinforced by

the fact that it could be used to predict the survival curve of the 196 patients that had

not been used for model building. By including only the information on PSA and ignoring

the information on survival in these patients, the model prediction well matched with the

Kaplan-Meier curve observed in these patients.

One of the main advantages of mechanistic joint model is that parameters have a biological

interpretation. Therefore putative scenarios can be performed to anticipate the impact of

changes in experimental settings. Here, for instance, one could evaluate by simulation the
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effect of a drug that could affect the resistant cells, either by blocking the proliferation of

resistant cells or by having a complementary mechanism of action. Further, this approach

could be useful to guide and design cancer clinical trials by using model predictions (such as

here S andR) as surrogate markers and thus possibly reduce the follow-up time or the number

of patients needed to assess treatment efficacy or to compare different treatment strategies.

However, this will require to pursue the development of these models and to integrate data

that are rarely collected or analyzed longitudinally such as the count of circulating tumor cells

(CTC) (Wilbaux et al., 2015), the size of the tumors and/or drug pharmacokinetics. ODE

models are particularly suitable for that purpose since correlations between the biomarkers

can be naturally taken into account through their mechanistic interactions. Obviously these

models will need to be validated internally but also externally, which was not done here, to

assess their predictive ability in a different context.

However the complexity of these models comes with a cost. In terms of feasibility these

models require frequent sampling longitudinal measurements to characterize the kinetics.

This limits their use in the context of epidemiological studies where usually large cohorts

of patients are followed with sparse measurements. Although SAEM algorithm, unlike other

methods such as adaptive Gaussian quadratures (Guedj et al., 2011; Prague et al., 2013), can

deal with a large number of random effects (Lavielle et al., 2011), it remains time-consuming.

Further, in our case and in spite of this computation time, the calculation of the likelihood

was still associated with a non-negligible standard errors, making the use of these models not

reliable to identify small effects. Lastly, it remains to be demonstrated that such mechanistic

joint models can be used in practice for dynamic predictions, i.e., to improve the prediction

of an individual patient followed prospectively (Rizopoulos, 2011).

In conclusion, we used a novel feature of SAEM algorithm of Monolix that allows joint

modelling with a longitudinal process described by ODEs to develop a mechanistic joint
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model for PSA kinetics and time-to-death. This model sheds a new light on the relationship

between PSA and death in mCRPC patients and this approach opens the way for the use of

more complex and physiological models to improve treatment evaluation and prediction.

Supplementary Materials

Web Appendices referenced in Sections 2 and 3, as well as training dataset, MLXTRAN

code, R codes and a README file are available with this paper at the Biometrics website

on Wiley Online Library.
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Figure 1. Schema of the secretion of PSA by sensitive (S) and resistant (R) cells. PSA
is expressed in ng.mL−1 and S and R in mL−1. In absence of treatment, αS and αR are
the rates of S and R proliferation (day−1), respectively, d the rate of S and R elimination
(day−1), g is the mutation rate (day−1), p the rate of PSA secretion by S and R (ng.day−1)
and δ the rate of PSA elimination (day−1). Treatment can inhibit S cells proliferation (big
cross) or stimulate S cells elimination (big arrow) with the constant effectiveness ε. This
figure appears in color in the electronic version of this article.
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Figure 2. Individual fits of PSA kinetics and hazard function in patients with various PSA
profiles. Crosses denote PSA measurements and solid lines are the model predictions using
the final joint model. The vertical lines indicate the vital status (solid=death, dotted=censor)
at the last recorded time and dashed curves are the individual hazard functions predicted
by the final joint model. The grey area indicates the treatment period. This figure appears
in color in the electronic version of this article.
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Figure 3. Residuals for the longitudinal and survival parts for the 400 patients included in
the training dataset: Top: Individual weighted residuals (IWRES) of the longitudinal PSA
model versus time (left) and versus predicted PSA values (right). Middle: Kaplan-Meier
estimates of the Cox-Snell residuals (solid black line) and its confidence interval (dashed black
lines) and the survival function of the unit exponential distribution (solid grey line). Bottom:
Martingale residuals versus predicted count of sensitive cells (left) and versus predicted count
of resistant cells (right). This figure appears in color in the electronic version of this article.
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Figure 4. For the 400 patients included in the training dataset: Top: Estimated Kaplan-
Meier survival curve (grey solid line) and its confidence interval (grey dashed line) and
mean survival curve (solid line). Bottom: Estimated Kaplan-Meier survival curves (dotted
lines) and mean survival curves (solid lines) stratified by observed PSA values at treatment
initiation (black: PSA0 6 40, dark grey: 40 < PSA0 6 140 and light grey: PSA0 > 140).
This figure appears in color in the electronic version of this article.
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Figure 5. Estimated Kaplan-Meier survival curves (thin solid lines) and their confidence
intervals (dashed lines) for the 196 patients included in the validation dataset (dark grey)
and for the 400 patients included in the training dataset (light grey) and mean survival curve
for the 196 patients included in the validation dataset (thick solid line). This figure appears
in color in the electronic version of this article.
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