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Abstract—Fetal heart rate discrimination is an evolving field
in biomedical engineering with many efforts dedicated to avoid
preterm deliveries by way of improving fetus monitoring methods
and devices. Entropy analysis is a nonlinear signal analysis
technique that has been progressively developed to improve the
discriminability of a several physiological signals, with Kernel
based entropy parameters (KBEPs) found advantageous over
standard techniques. This study is the first to apply KBEPs to
analyze fetal heart rates. Specifically, it explores the usability
of the cutting-edge nonlinear KBEPs in discriminating between
healthy fetuses and fetuses under distress. The database used in
this study comprises 50 healthy and 50 distressed fetal heart
rate signals with severe intrauterine growth restriction. The
Cascade analysis investigates six kernel based entropy measures
on fetal heart rates discrimination, and compares them to four
standard entropies. The study presents a statistical evaluation
of the discrimination power of each parameter (paired t-test
statistics and distribution spread). Simulation results showed that
the distribution ranges in 80% of the entropy parameters in
the distressed heart group are higher than those in the healthy
control group. Moreover, the results show that it is advantageous
to choose Circular entropy then Cauchy entropy (p < 0.001) over
the standard techniques, in order to discriminate fetal heart rates.

Index Terms—Circular, Triangular, Exponential, Gaussian,
Cauchy and Spherical Entropy Parameters, Alternative Entropy
Parameters, Fetal Heart Rate, Discrimination, Statistical Signal
Processing.

I. INTRODUCTION

Nonlinear and statistical analysis of Fetal Heart Rate (FHR)
is crucial for evaluating the fetal condition. Despite the
widespread use of electronic FHR monitoring, its effect on
decreasing the risk of fetal mortality has not been fully
established [1], [2], [3]. To reduce inter- and intra- observer
variability of visual analysis, computerized analysis was devel-
oped, but it did not result in significant clinical improvement
[2]. Accordingly, there have been many efforts to develop new
monitoring methods to provide an automatic differentiation
between healthy and distressed fetal conditions [4]. In 2006,
the identification of risky conditions during pregnancy was
thought to be open to univariate analysis, multivariate or
to both to determine the potential of FHR in screening for
distressed fetuses [5]. Later, Ferrario et al. considered mul-

tiparametric approaches which improved the identification of
risky conditions specifically in Fetal Heart Variability (FHV)
[6]. Entropy quantification was used for such discrimination
and for prediction purposes. Entropy analysis measures the
correction and persistence of a signal in a nonlinear mathe-
matical approach to quantify the irregularity or disorder and
complexity of a system [7], [8], [9], [10], [11], [12], [13].
Ferrario et al have used both approximate entropy and sample
entropy, Ferrario et al have also used ANOVA test [6]. In
2013, Liu et al. have used different entropy measures including
the Approximate entropy (ApEn), Sample entropy (SamEn),
fuzzy entropy and multi-scale Fuzzy entropy to discriminate
between healthy fetuses and fetuses with heart failure [14].
Later, these methods have also been used by Lim et la.
to discriminate between healthy, severe intrauterine growth
restricted fetuses and non severe intrauterine growth restricted
fetuses [4]. In 2015, Mekyska et al. used cutting edge kernel
based entropy parameters (KBEPs) in speech signal processing
[15], and Zaylaa et al. applied few of these parameters to
Electroencephalogram (EEG) [10]. However, according to our
literature research kernel-based entropy parameters were not
applied on FHR discrimination.

As severe intrauterine growth restricted fetuses reveal dis-
tressed fetal heart rate, the most sensitive parameter (i.e.
considered as a predicting parameter) to the change in the heart
rate remains under study. For this purpose, it was essential for
us to carry out an exploratory study on the nonlinear entropy
parameters to detect the parameters that are utmost sensitive
to heart rate changes. We aim to utilize different cutting edge
kernel-based entropy parameters. Our database includes data
from 50 healthy individuals and 50 individuals with distressed
FHRs. The analysis is applied on healthy fetuses and severe
intrauterine growth restricted fetuses (distressed fetuses) in
the third trimester. To evaluate the results quantitatively, we
make use of the paired t-test, and qualitatively we visualize
the kernel entropy results using the box plots. To improve the
classification algorithm of fetal heart rates and to predict fetus
distress, it is essential to choose the best classifier [16]. How-
ever, classifiers require the optimization of feature selection.

The used methodology to extract features of FHR data is
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Fig. 1: The flowchart of FHR recording and complexity analysis through standard and kernel-based entropy.

analogous to the work of Mekyska et al. and our previous work
Zaylaa et al. which was carried out on Electroencephalogram.
The scenario is to use a cascade of nonlinear and statisti-
cal analysis. This includes investigating the performance of
entropy measures on fetal heart rates, and comparing them
with standard ApEn and SamEn as used by Liu et al, and the
modified Shannon’s entropy, i.e. Renyi entropy order (2) and
(3). The second step is to use paired t-test analysis to compare
the extracted entropy features between healthy and distressed
subjects.

II. MATERIALS AND METHODS

The major steps of this study are summarized in the flow
chart in Fig. 1. Fig. 1 showcases the fetus, the electrodes,
Doppler ultrasound unit/device and the entropy methods uti-
lized to extract complexity parameters. The statistical evalua-
tion used comprises the descriptive distribution plots and the
quantitative paired t-test.

A. Doppler Ultrasound Machine

To collect FHR data, University of Tours and Altais Tech-
nology in Tours, France developed a pulse Doppler Ultrasound
system, it is composed of four transducers and five gates. Sin-
gle element transducers were placed on the maternal abdomen.
These non-focused transducers are circular with a radius of
6.75 mm. Ultrasound waves transmitted to the fetus were of
sinusoidal pulses of 2.25 MHz frequency with an acoustic
power limited to 1 mW/cm2. The signals backscattered by
the fetal heart were acquired with a pulse repetition period of
1 ms and quantized over 12 bits. For each recording, forty
demodulated signals (twenty signals in quadrature and twenty
signals in phase) were then amplified to compensate for the
attenuation of 1 dB/cm/MHz. From the forty signals, the FHR
was evaluated every 250 ms, yielding 7200 samples issued
every 30 minutes.

B. Subjects and Protocol

After having localized the fetal heart with the Doppler
Ultrasound scanner, 100 Doppler recordings, each observed
for 30 minutes were acquired at Bretonneau Hospital CHRU
in Tours, France. The consent of each patient was obtained

and the study was approved by the Ethics Committee of the
Clinical Investigation Center for Innovative Technology of
Tours (CIC-IT 806 CHRU of Tours). All patients were over
eighteen years of age and pregnancies were single. The data
set comprised 50 healthy and 50 distressed fetus recordings.
For this clinical protocol, the gestational ages of fetuses ranged
from 25 to 39 weeks. Distressed fetuses were identified with
severe Intra-Uterine Growth Restricted (IUGR).

Two FHR data sets were used from the recorded database.
Two distinct phases were distinguished in the third trimester
of pregnancy as healthy fetus (H-FHR) or distressed fetus
(D-FHR). Fig. 2 illustrates two FHR signals recorded for
3 minutes. The electrodes were introduced on the abdomen
of the pregnant mothers who were in the third trimester
of pregnancy. Pregnancies were either normal and ready for
vaginal labor, or abnormal pregnancies where the fetus is in
distress due to intrauterine growth restriction and should be
subject to cesarean labor.

C. Pre- and Post-Processing

A pre-processing algorithm was applied as described in
previously reported studies [5], to remove artifacts caused by
fetal and maternal movements.

After preparing FHR recordings and before commencing
nonlinear entropy analyses, the signals were post-processed.
For each recording, a window size of 250 and a shift size of
25 were applied to produce sub-signals.

D. Nonlinear Entropy Methods

The nonlinear analysis was applied on the sub-signals
produced in the post-processing step. Entropy measures help
in analyzing these signals by providing the amount of in-
formation they carry (Renyi entropy) or by estimating the
system’s complexity upon computing them (ApEn and SamEn
and others).

1) Renyi Entropy: It is a mathematical generalization of
Shannon’s Entropy, it preserves the addition of statistically in-
dependent systems, and compatible with Kolmogorov’s proba-
bility axioms [15]. The Renyi entropy of order α, where α ≥ 0
and α 6= 1 is defined as:
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Fig. 2: Fetal Heart Rate (FHR) recordings issued from different
fetuses for 30 minutes at Bretonneau Hospital in Tours, France.
(a) A healthy FHR recording and (b) a distressed FHR
recording.

Hα =
1

1− α
log

 n∑
i=(0)

Pαi

 . (1)

where X is a discrete random variable with outcomes
1, 2, ......, n and corresponding probabilities Pi = Pr(X = i)
and log is based 2. Renyi entropy has unique properties
depending on the data spread and how the probability changes
as the order increases. Therefore, it is beneficial to study Renyi
entropy of order 2, 3 etc.

2) Sample Entropy: measures the complexity without in-
cluding self similar patterns.

SamEn(m.r) =
[
φm(r)− φm+1(r)

]
, (2)

where φm(r) is given by:

φm(r) = log

(
1

N −m

N−m∑
i=1

Cmi (r)

)
, (3)

and Cmi :

Cmi =
1

N −m+ 1

N−m+1∑
j=0,i6=j

Θ(i, j, r), (4)

where Θ is the Heaviside function. The algorithm builds up
a number of runs of points matching within the tolerance r
until there is no match, and keeps track of template matches
continued until the end of the data [16].

3) Kernel-Based Entropy: is a method extensively used
to assess the predictability and regularity of changes in
a time series [15]. For a given time series of entries
s(1), s(2), s(3), ....., s(N) that are equally spaced in time, we
define the embedding dimension as the length of compared
runs and denote it as m, and a filtering variable, r, which is
acts as the embedding tolerance. Furthermore a sequence of
vectors, X(i) is defined as:

Xi = [s(i), s(i+ 1), . . . , s(i+m− 1)], (5)

and for each i, 1 ≤ i ≤ N −m + 1, we define the center
of pressure position angle, φm(r), as:

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCmi (r), (6)

and we define Cmi as in Eq. 4 such that i could be equal to j,
Θ(i, j, r) is replaced by k(i, j, r) and the kernel-based entropy
is given as:

Kernel Based-En(m.r) =
[
φm(r)− φm+1(r)

]
. (7)

k(i,j,r) in Eq. 6 is the kernel, when this kernel describes a
Heaviside function Θ then the resulting entropy value is the
Approximate Entropy (ApEn). Moreover, the kernel can be
changed to the following kernels [17]:

Triangular Kernel:

k(i, j, r) = 1− ||Xi −Xj ||
r

, (8)

the corresponding entropy is called Triangular entropy and
denoted through this work by TriEn.

Spherical Kernel:

k(i, j, r) = 1− 3

2

||Xi −Xj ||
r

+
1

2

(
||Xi −Xj ||

r

)3

, (9)

the corresponding entropy is called Spherical Entropy and
denoted by SphEn.

Cauchy Kernel:

k(i, j, r) =
1

1 +
(||Xi−Xj ||)2

r

, (10)

the corresponding entropy is called Cauchy Entropy and
denoted by CaEn.

Circular Kernel:

k(i, j, r) =


(

2
πarccos

(||Xi−Xj ||)
r − 2

π
(||Xi−Xj ||)

r

)(
×
√

(1− (||Xi−Xj ||)2
r

)
,

(11)

the corresponding entropy is called Circular Entropy and
denoted by CirEn.

Exponential Kernel:

k(i, j, r) =
1

2r2
× exp (−||Xi −Xj ||)2 , (12)

the corresponding entropy is called Exponential Entropy and
denoted by ExpEn.

Gaussian Kernel:

k(i, j, r) =
1

10r2
× exp (−||Xi −Xj ||)2 . (13)

the corresponding entropy is called Gaussian Entropy and
denoted by GauEn.

III. STATISTICAL EVALUATION OF ENTROPY PARAMETERS

StatVIEW software was used to perform paired t-test and
the significant level was set to 0.05 Bonferroni corrected by
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Fig. 3: Box plots of the Nonlinear entropy analysis between healthy fetuses (vaginal delivery) coded in magenta and distressed
fetuses (fetuses undergoing emergency cesarean delivery) coded in blue. (a) The Approximate, Sample, Renyi order 2, Renyi
order 3 and Cauchy’s entropies, ApEn, SamEn, RenEn1, ReniEn2 and CauEn, respectively. (b) The Spherical, Triangular,
Circular, Gaussian and Exponential entropies, SphEn, TriEn, CirEn1, GauEn and ExpEn, respectively.

a factor 10 due to the fact that 10 comparisons are done for
the 10 entropy parameters (σ = 0.005 instead of 0.05).

IV. RESULTS

To increase the sensitivity of this exploratory study, the
entropy analysis parameters have been applied on each sub-
signal produced after windowing the FHR recording.

A. Qualitative Evaluation

To test the discrimination between healthy and distressed
FHRs, Fig. 3 sets out the box plots of the nonlinear entropy
measures between healthy fetuses, i.e. ready for vaginal deliv-
ery, coded in magenta and distressed fetuses, i.e. intrauterine
growth restricted fetuses which need emergency cesarean de-
livery, coded in blue. (a) Approximate, Sample, Renyi order 2,
Renyi order 3 and Cauchy’s entropies, ApEn, SamEn, RenEn1,
ReniEn2 and CauEn, respectively. (b) Spherical, Triangular,
Circular, Gaussian and Exponential entropies, SphEn, TriEn,
CirEn, GauEn and ExpEn, respectively.

The box plot represents the distribution of entropy methods
of healthy and distressed FHRs based on the five number
summary: minimum, first quartile, median, third quartile, and
maximum. The central rectangle of the box plot spans the
first quartile to the third quartile (the interquartile range or
IQR which is the likely range of variation).

The four standard Entropies are Approximate, Sample,
Renyi order 2 and Renyi order 3, denoted ApEn, SamEn,
RenEn1 and ReniEn2, respectively. While the kernel-based

entropies are Cauchy, Spherical, Triangular, Circular, Gaussian
and Exponential entropies, denoted CauEN, SphEn, TriEn,
CirEn1, GauEn and ExpEn, respectively.

B. Quantitative Evaluation

The mean difference (MD) measure of irregularity, which
corresponds to the average value obtained for all sub-signals
extracted from the 30 minutes original data, has been com-
puted. Absolute MD measures the absolute separation between
the two different FHR data sets and the results are reported in
Table I.

Note that for statistical significance the p-value should be
< 0.05/10 = 0.005, since we did 10 paired t-test comparisons
(this is known as Benforroni correction for multiple compar-
isons). The p-value in all the tests is <0.001, thereby reveals
that the discrimination was significant.

V. DISCUSSION AND CONCLUSION

It was noted that the distribution ranges of 8 out of 10
entropy parameters (ApEn, SamEn, RenEn2, RenEn3, CauEn,
SphEn, TriEn and GauEn) in the distressed heart group are
larger than those in the healthy control group. The reason
behind this could be due to the fatal arrhythmias which
accompanies the course of the heart failure, such as supra-
ventricular ectopic beats, ventricular ectopic beats and even,
ventricular or atrial fibrillation. This can cause the acute
fluctuations in the FHR. In addition, the entropy values of
FHR recordings of the distressed fetuses without arrhythmia,
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TABLE I: Statistical evaluation of the nonlinear entropy analysis using paired t-test between healthy fetuses (vaginal delivery)
entropy, and distressed fetuses (fetuses diagnosed for emergency cesarean delivery) entropy after Bonferroni-correction.

Entropy Technique Absolute Mean Difference Absolute t-Value P-Value

ApEnH , ApEnD 0.193 22.257 <0.0001
SamEnH , SamEnD 0.180 25.255 <0.0001

RenEn2H , RenEn2D 0.042 73.783 <0.0001
RenEn3H , RenEn3D 0.004 6.528 <0.0001
CauEnH , CauEnD 0.318 22.462 <0.0001
SphEn H , SphEn D 0.062 7.793 <0.0001
TriEn H , TriEn D 0.071 8.331 <0.0001
CirEnH , CirEnD 0.380 17.362 <0.0001
ExpEnH , ExpEnD 0.081 30.016 <0.0001
GauEnH , GauEnD 0.038 8.706 <0.0001

as could be the case in the 2 out of 10 entropy parameters, have
a regular change caused by the weakening of the regulatory
functions of the autonomic nervous system. Thereby, the mean
entropy values seemed to be more regular for the distressed
group as compared to the healthy group (CirEn and ExpEn)
(see Fig. 3).

Note that as the fetal activity increases the disorder of
non-similar patterns increase, accordingly the disorder of
self-similar patterns decreases while the disorder of non-self
similar patterns increases [18]. This plays a role of a criteria
for classifying the pace of the activity of the fetus whether it
is increasing or decreasing. Before it was thought that as the
fetal activity increases, the disorder of all patterns including
self-similar patterns decreases.

The findings derived from the normalized values showcased
in Fig. 3 and table I suggest that the best parameters that
provide the distinction between healthy and distressed fetuses
is the circular entropy CirEn and Cauchy entropy CauEn
(with an absolute mean difference MD = 0.380 and 0.318,
respectively). Therefore, it was advantageous to choose cir-
cular entropy, CirEn, and Cauchy entropy, CauEn, with
p < 0.001 over the standard ApEn, SamEn and even the
modified Shannon’s entropy of order 2 and 3. Two Kernel-
based entropy parameters surpassed the standard ApEn and
the measured alternatives. Research results also showed that
the weaker parameter is RenEn3.

Table I showcases that the maximum absolute t-values
corresponds to RenEn2 (73.783) followed by ExpEn (30.016)
Therefore, the choice of the feature is dependent on the
application at hand.

Note that the paired t-test statistics was utilized after ap-
plying the Kolmogorov-Smirov test in each entropy method
and on each parameter, for both healthy and distressed FHR
groups. This test showed that most variables are either nor-
mally distributed (p > 0.05) or marginally normally dis-
tributed.

But as the distribution profiles are not only normal, further

statistical tests have to be utilized too. Besides, other entropy
features can be studied and compared with the most powerful
parameters resulting from this exploratory study. Moreover,
the extracted features (entropy parameters), being a part of
an automated analysis procedure to improve fetal heart rate
monitoring and discrimination, need to be tested in a variety
of classifiers.
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