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Abstract 

Melatonin receptors are seven transmembrane-spanning proteins belonging to the G protein-

coupled receptor super-family. In mammals, two melatonin receptor subtypes exit MT1 and 

MT2 encoded by the MTNR1A and MTNR1B genes, respectively. The current review provides 

an update on melatonin receptors by the corresponding sub-committee of the International 

Union of Basic and Clinical Pharmacology. We will highlight recent developments of 

melatonin receptor ligands, including radioligands and give an update on the latest 

phenotyping results of melatonin receptor knockout mice. The current status and perspectives 

of the structure of melatonin receptor structures will be summarized. The physiological 

importance of melatonin receptor dimers and biologically important and type 2 diabetes-

associated genetic variants of melatonin receptors will be discussed. The role of melatonin 

receptors in physiology and disease will be further exemplified by its functions in the 

immune system and the central nervous system. Finally, antioxidant and free radical 

scavenger properties of melatonin and its relation to melatonin receptors will be critically 

addressed. 
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Abbreviations: 

ADHD, attention-deficit/ hyperactivity disorder;  

ASD, autism spectrum disorders; 

AD, Alzheimer’s disease; 

BRET, bioluminescence resonance energy transfer;  

CaMKII, Ca2+/Calmodulin (CaM)-dependent kinase II; 

cAMP, cyclic adenosine monophosphate; 

CNS, central nervous system; 

ERG, electroretinogram; 

fMLP, N-formyl-l-methionyl-l-leucyl-l-phenylalanine; 

FPG; fasting plasma glucose; 

GPCRs, G protein-coupled receptors; 

HD, Huntington disease; 

ICR, Imprinting Control Region; 

IL-2, interleukin 2; 

IOP, intraocular pressure; 

IUPHAR, international union of basic and clinical pharmacology;  

KO, knockout; 

LPS, lipopolysaccharide; 

MLT, melatonin; 

MTR, melatonin receptor 

MS, multiple sclerosis;  

NREM, non-rapid eye movement;  

PD, Parkinson disease;  

REM, rapid eye movement;  
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SCN, suprachiasmatic nucleus;  

QR2, quinone reductase 2;  

T2D, type 2 diabetes. 
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dopamine 
EFPPEA 
fMLP 
GR 196429 
GR 128107 
(hydroxymethyl)phenyl agomelatine 
IIK7IL-2 
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Luzindole 
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ramelteon 
S22153 
S24014  
S24773 
S26131  
S26284 
tasimelteon 
TNF 
TIK 301 
UCM 454 
UCM 765 
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Introduction 

The hormone melatonin (MLT) is mainly produced by the pineal gland following a 

circadian rhythm, with high levels during the subjective night. MLT can also be produced by 

extra-pineal sites like the retina, the gastrointestinal tract and the innate immune system. 

MLT regulates a variety of physiological and neuroendocrine functions through activation of 

two G protein-coupled melatonin receptors (MTR) called MT1 and MT2 in mammals. Both 

receptors are typically coupled to Gi/o-type proteins and MT1 in addition to Gq-type proteins. 

In humans, the MTNR1A gene encoding MT1 is located on chromosome 4q35.1 and the 

MTNR1B gene encoding MT2 on chromosome 11q21-q22.  
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This article will review and discuss recent updates by the MTR sub-committee of the 

International Union of Basic and Clinical Pharmacology (IUPHAR) database 

(http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=39), which 

include the development of new MTR ligands, radioligands and structural perspectives of 

MTRs. The discovery of MTR dimers with physiological function in vivo as well as genetic 

variants and mutants of MTRs will be discussed as they provide a new dimension to 

understand MTR pharmacology and function. An update on the latest results obtained with 

MTR knockout (KO) mouse models will be provided. Among the multiple physiological 

effects of MTRs, we chose to focus on those of the immune system and the central nervous 

system (CNS). At the end, MTR-independent effects, including antioxidant and free radical 

scavenger properties of MLT will be critically addressed.  

For more complete or other specific aspects of MTR the reader is referred to other 

recent expert reviews (Dubocovich et al., 2010; Jockers et al., 2008; Liu et al., 2016; Markus 

et al., 2013; Tosini et al., 2014; Zlotos et al., 2014). 

 

Melatonin receptor ligands 

MT1 and MT2 share a high degree of sequence homology and bind both the natural 

ligand, MLT, with high affinity. Important progress has been made in the identification of 

synthetic MTR antagonists and agonists and subtype-selective ligands by diversifying the 

chemical scaffolds. Indeed, MTR ligands from different structural classes show distinct 

structure activity relationships on native and recombinant MTRs (Dubocovich et al., 2010; 

Dubocovich et al., 1997; Spadoni et al., 2011; Zlotos, 2012; Zlotos et al., 2014). The 

methoxy group and the acetamido side chain of MLT determine the intrinsic activity and the 

binding affinity, respectively, at both hMT1 and hMT2 (Audinot et al., 2003; Browning et al., 

2000; Dubocovich et al., 1997). Replacement of the amide methyl group by ethyl and propyl 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=39
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substituents enhances affinity (Sugden et al., 1995). Exchange of the indole ring by various 

aromatic scaffolds maintains high binding and agonist potency.  

Substitutions at the 2-position with a halogen or a phenyl group generate agonists with 

~10-fold increased binding affinity. The majority of nonselective MT1-MT2 ligands, 

including drugs used in humans, i.e.,  ramelteon (Rozerem
®
, (Kato et al., 2005; Mini et al., 

2007; Rawashdeh et al., 2011)), agomelatine (Valdoxan
®
, (de Bodinat et al., 2010)), and 

tasimelteon (Hetlioz
®

, (Lavedan et al., 2015; Rajaratnam et al., 2009)), are agonists (Figure 

1). Ramelteon and tasimelteon are MTR selective, while agomelatine is also an antagonist at 

the 5-HT2c  receptors, a pharmacological property believed to contribute to its antidepressant 

action. The therapeutic effects of approved drugs acting on hMT1 and/or hMT2 as agonists 

was recently reviewed (Liu et al., 2016). Other nonselective MTR agonists include 6-

chloromelatonin, 6-hydroxymelatonin, 2-iodomelatonin, GR 196429 (Audinot et al., 

2003; Browning et al., 2000; Dubocovich et al., 1997), UCM 793 (Rivara et al., 2007) and 2-

methoxy-α,β-didehydro-agomelatine (Morellato et al., 2013). This latter ligand shows the 

highest affinity for hMT1 (Ki = 0.03 nM) and hMT2 (Ki = 0.07 nM) receptors and ~3,500-fold 

greater potency than MLT in the melanophore aggregation assay. TIK 301 (Mulchahey et al., 

2004) acts also as an antagonist at the serotonin receptor subtypes 5-HT2C and 5-HT2B, 

(Landolt et al., 2009). 5-HEAT has a unique pharmacological profile acting as a full agonist 

at the hMT1 and antagonist at the hMT2 (Nonno et al., 2000). EFPPEA, a high-affinity hMT1 

(Ki = 0.062 nM) and hMT2 (Ki = 0.420 nM) agonist, decreases the percentage of wakefulness 

and increases the percentage of slow wave sleep in cats (Koike et al., 2011). The competitive 

MTR antagonist luzindole lacks the methoxy group, which led to the suggestion that this 

group is necessary for intrinsic activity (Dubocovich, 1988). Similarly, S22153 acts as a 

partial agonist (Audinot et al., 2003). Luzindole, with a 15- to 25-fold higher affinity for 

hMT2 than for hMT1, is widely used for pharmacological characterization of functional 
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MTRs (Browning et al., 2000; Dubocovich et al., 2010; Dubocovich et al., 1997; 

Dubocovich et al., 1998).  

A ligand is considered selective for a specific receptor type when its affinity or 

potency is at least 100-times higher than that for the other(s) receptor types in the family 

(Dubocovich et al., 2010). This concept holds true for in vitro studies where ligand 

concentrations can be easily adjusted.  However, ligand selectivity might be more difficult to 

reach in vivo, in the body fluids reaching the receptors. Depending on ligand dose and 

pharmacokinetics, concentrations could easily raise to levels activating on both receptors 

(e.g., MT1 and MT2). This is particularly of concern for MLT and synthetic MTR ligands 

activating receptors at picomolar concentrations (Audinot et al., 2003; Browning et al., 2000; 

Dubocovich et al., 1997).  Therefore caution should be taken when interpreting selective 

MTR activation in vivo using MTR-selective ligands, unless pharmacological selectivity or 

lack of is confirmed by KO models with deletion of each receptor type. 

Numerous ligands with high selectivity for hMT2 over hMT1 have been identified 

(Zlotos et al., 2014). MT2 possess a lipophilic pocket close to the N1−C2 binding region of 

MLT, which is absent in MT1 (Rivara et al., 2005). Accordingly, most MT2-selective ligands 

bear a flexible bulky hydrophobic substituent in a position equivalent to C2 or N1 of MLT 

(Figure 2). The tetrahydroquinoline analogue UCM1014 is the most potent MT2-selective 

ligand reported to date. It shows picomolar binding affinity (Ki = 0.001 nM) at hMT2, > 

10,000-fold selectivity over hMT1, and full agonist profile in the GTPγS test (Spadoni et al., 

2015). Other agonists with approximately 800-fold hMT2 selectivity are BOMPPA (Chan et 

al., 2013; Heckman et al., 2011; Hu et al., 2013), and CIFEA (Koike et al., 2011). In 

imprinting control region (ICR) mice, CIFEA reeintrainment effects to a new light/dark 

cycle indicate the involvement of MTRs in the regulation of chronobiotic activity (Koike et 

al., 2011). The dose of CIFEAA used in this study most likely reached µM concentrations, 
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which would activate both MT1 and MT2, precluding any conclusion about the specific 

receptor type involved in the regulation of chronobiotic processes. Similarly, doses of the 

MT2-selective antagonist 4P-PDOT (90 µg/mouse s.c.) used to block the MLT-mediated 

phase advance of circadian activity rhythms in mice (Dubocovich et al., 1998) may have 

resulted in micromolar circulating 4P-PDOT concentrations hence blocking both MT1 and 

MT2.  

Two moderately selective MT2 ligands, the agonist IIK7 (Faust et al., 2000) and the 

partial agonist UCM 765 (Rivara et al., 2007) have been used to examine the role of each 

MTR type in the modulation of sleep architecture. UCM 765 promoted non-rapid eye 

(NREM) movement sleep in rodents and this effect was blocked by the MT2 antagonist 4P-

PDOT (Ochoa-Sanchez et al., 2011). In contrast, the non-selective MT1-MT2 agonist 

UCM793 decreased sleep onset without having an effect on NREM sleep maintenance 

suggesting that dual MT1 and MT2 agonistic activity accounts for the effect on sleep onset, 

whereas selectivity for MT2 has an additional effect on NREM sleep maintenance. IIK7 was 

also reported to reduce NREM sleep onset latency and transiently increase the time spent in 

NREM sleep in rats without altering REM sleep latency or the amount of REM sleep (Fisher 

et al., 2009).  

Among the hMT2-selective partial agonists GR 128107, 5-methoxyluzindole, S 

24014, S 24773 (Audinot et al., 2003; Dubocovich et al., 1997), and isoamyl agomelatine, 

the latter shows the highest affinity (Ki = 0.01 nM) and selectivity (7,200-fold) (Ettaoussi et 

al., 2012). 4P-PDOT, an hMT2-selective antagonist with 300- to 1,500-fold higher affinity 

for hMT2, is still considered the gold standard for pharmacological characterization of MTRs 

(Dubocovich et al., 1997). Other MT2-selective antagonists, such as K185 (Faust et al., 2000; 

Sugden et al., 1999), UCM 454 (Rivara et al., 2005), and 2-(indolin-1yl) melatonin (Zlotos 

et al., 2009) display ~100-fold higher affinity for hMT2. For (hydroxymethyl)phenyl 
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agomelatine, the affinity for hMT2 is 750-times higher than for hMT1 (Poissonnier-Durieux 

et al., 2008).  

 

Discovery of MT1-selective ligands remains a challenge, and only few compounds 

with preference for hMT1 have been reported (Zlotos et al., 2014). Ligands preferentially 

binding to hMT1 reach maximally 100-fold selectivity, and, when investigated, this 

selectivity is significantly reduced in functional in vitro studies (Figure 3). A common 

structural feature conferring MT1 selectivity is a bulky, hydrophobic ether replacing the 

methoxy group. The first hMT1-selective agents were obtained by connecting two 

agomelatine units via their ether oxygens by (CH2)3- and (CH2)4-linker to give S 26131 

(antagonist) and S 26284 (partial agonist), both displaying ~100-fold selectivity (Audinot et 

al., 2003; Descamps-Francois et al., 2003). A similar approach led to the UCM 793 dimer 

with 100-fold hMT1 selectivity and partial agonist activity (Spadoni et al., 2011). Monomeric 

ligands, such as CBOBNEA (Mèsangeau et al., 2010), and AAE M PBP amine (Rivara et 

al., 2012) are partial agonists showing similar, ~100-fold hMT1 selectivity. N-Acetyl-O-

phenoxypropyl serotonin is a full agonist obtained by exchange of the methoxy group of 

MLT with an O(CH2)3OPh moiety. Although it shows only 10-fold binding preference 

toward hMT1, its MT1-MT2 binding ratio and hMT1 affinity were higher than that for the 

MT1-selective reference S 26131 that was retested under the same experimental conditions 

(Markl et al., 2011). A 140-fold MT1 selectivity could be accomplished by introduction of 

two fluorine atoms into the N-acetyl group of agomelatine. The resulting 

difluoroagomelatine shows high hMT1 binding (Ki = 0.03 nM), and is a nonselective MT1-

MT2 full agonist (Ettaoussi et al., 2012). Very recently, tetrafluoro S26131, the 

difluoroacetamide analogue of S 26131, has been reported to show higher affinity and 

selectivity toward hMT1 than the parent ligand (Zlotos et al., 2015).  
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In summary, while numerous MTR ligands selective for the MT2 subtype are 

available, discovery of ligands with at least >100-fold selectivity for MT1 remains a 

challenging task. None of the MT1-selective ligands has been tested in vivo. Future progress 

on the elucidation of the structure of MTRs will hopefully foster the discovery of such 

ligands. The MT1-MT2 nonselective receptor antagonist luzindole and the MT2-selective 

antagonists 4P-PDOT are still considered the gold standards for pharmacological 

characterization of MTRs. 

 

Radioligands - update  

Radioactive- and fluorescent-labeled ligands are indispensable tools for the 

pharmacological characterization of G protein-coupled receptors (GPCRs). A major 

breakthrough in the field of MTR research was the labelling of 2-iodomelatonin with 
125

I at 

carbon 2 resulting in a high affinity radioligand with high specific activity (Vakkuri et al., 

1984) for use in the localization (Vanecek, 1988) and pharmacological characterization of 

MTR in tissues (Dubocovich et al., 1987). The radioligand, 2-[
125

I]iodomelatonin (2-[
125

I]-

MLT), has been extensively used as a high-affinity radioliogand for both MT1 and MT2 , 

which  was until now the only available radioligand for the characterization and localization 

of MLT binding sites in native tissues (Figure 4). Studies performed with [
3
H]-melatonin 

([
3
H]-MLT) established the pharmacological profile of the human recombinant MT1 and 

MT2, as being identical to that established using 2-[
125

I]-MLT as a radioligand. However due 

to the rather low specific activity of this 
3
H-MLT its use to characterize and/or localize MLT 

sites in tissues with low MTR density is hampered (Browning et al., 2000). 
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Three new iodinated radioligands have been recently characterized for use in the 

pharmacological characterization and localization of MTRs (Figure 4). These radioligands 

are: SD6 (N-[2-(5-methoxy-1Hindol-3-yl)ethyl]iodoacetamide), S70254 (2-iodo-N-2-[5-

methoxy-2-(naphthalen-1-yl)-1H-pyrrolo[3,2-b]pyridine-3-yl])acetamide and DIV880 2-(2-

[(2-iodo-4,5-dimethoxyphenyl)methyl]-4,5-dimethoxy phenyl) (Legros et al., 2016; Legros et 

al., 2013). [
125

I]-SD6 has a similar pharmacological profile than 2-[
125

I]-MLT with the same 

affinity for MT1 and MT2. On the contrary, the two other radioligands [
125

I]-S70254 and 

[
125

I]-DIV880 show selectivity for MT2 with pKd values of 9.6 and 9.7, respectively, in the 

absence of any specific binding to MT1. All radioligands are agonists, either partial agonists 

([
125

I]-S70254, [
125

I]-DIV880) or full agonists (2-[
125

I]-MLT, [
125

I]-SD6, [
3
H]-MLT) which 

means that their Kd values not only depend on the affinity of the ligand for the receptor but 

also on the activation of the G protein in the ternary Ligand-Receptor-G protein complex. 

The extensive pharmacological characterization of these three new radioligands in 

comparison with 2-[
125

I]-MLT and [
3
H]-MLT on membrane preparations from CHO-K1 cell 

lines stably expressing hMT1 or hMT2 showed that [
125

I]-S70254 and [
125

I]-DIV880 mainly 

differ from 2-[
125

I]-MLT in its dissociation kinetics, which are faster for [
125

I]-S70254 and 

[
125

I]-DIV880 than for 2-[
125

I]-MLT (Legros et al., 2016). Interestingly, [
125

I]-SD6 labeled 

only approximately half of the binding sites detected with 2-[
125

I]-MLT in cells expressing 

hMT1 while comparable amounts were detected in cells expressing hMT2 (Legros et al., 

2013). This suggests the existence of different receptor sub-populations for hMT1 of which 

[
125

I]-SD6 labels a more restricted number than 2-[
125

I]-MLT. In contrast, for hMT2 similar 

sub-populations would be detectable by both radioligands. The nature of these receptor sub-

populations is currently unknown but could be related to the differential engagement of hMT1 

into complexes with different G proteins or ß-arrestins following the binding of these 
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agonistic radioligands. [
125

I]-SD6 detected as 2-[
125

I]-MLT binding sites in sheep retinal 

membranes, while the MT2-specific ligands [
125

I]-S70254 and [
125

I]-DIV880 failed to do so. 

The MT2-specific [
125

I]-S70254 was successfully used for autoradiography studies in 

rat and sheep brain and retina slices (Legros et al., 2016). A similar labeling pattern to 2-

[
125

I]-MLT (detecting MT1 and MT2) was observed in several areas but also distinct labeling 

in others. Absence of labeling by [
125

I]-S70254 in regions that are labeled by 2-[
125

I]-MLT 

can be explained by low(undetectable) MT2 expression levels. Absence of 2-[
125

I]-MLT 

labeling in regions labeled by [
125

I]-S70254 could be due to the detection of different receptor 

complexes (see above). 

 

Altogether, the new radioligands considerably expand the repertoire of 

pharmacological tools for MTRs with the development of MT2-specific radioligands and 

radioligands detecting distinct receptor populations revealing a previously unrecognized 

diversity. The availability of a radiolabeled antagonist would largely contribute in a better 

characterization of these different populations. Further advances can be expected from the 

development of fluorescent-labeled ligands. 

 

Structural perspectives for melatonin receptors 

Currently, crystal structures of MT1 and MT2 are not available. Despite a sequence 

identity lower than 30% between MTRs and the closest crystallized GPCRs, several 3D 

models have produced some structural hypothesis for binding of (non)selective MT1 or/and 

MT2 agonists (Table I). According to site-directed mutagenesis data, most of these models 

corroborate the importance of both serine residues 3.35 and 3.39 in MT1 as well as His5.46 in 

both MT1 and MT2. Although His5.46 seems to be an anchoring residue for polar interactions 

with the methoxy or amide group of MLT, only a few MT1 models display a direct 
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participation of serine residues in MLT binding (Chugunov et al., 2006; Farce et al., 2008), 

which could be otherwise involved in an essential bending of helix 3 for binding site 

plasticity. Models take also into account several receptor-ligand interactions with amino acids 

conserved within GPCRs and known to play a role in aromatic switch activation (F5.47, 

W6.48). 

Such homology modelling methods make predictions of flexible receptor regions 

difficult. Although not directly proven for MTRs, E2 and I3 loops are known to be key 

features for ligand accessibility and G protein binding of GPCRs. Moreover amino acid 

sequences of MTRs show several singularities like the presence of a 
3.49

NRY
3.51

 motif instead 

of the classical 
3.49

DRY
3.51

 motif of other rhodopsin-like GPCRs. Another specificity is the 

replacement of the proline by an alanine residue in the conserved 
7.49

NPXXY
7.53

 motif. 

Buried in the vicinity of the cytoplasmic surface, these marked differences are likely to 

impact on receptor activation and/or signalling specificity of MTRs rather than the ligand 

binding process. 

Whereas 3D models of MTRs were up to now dedicated to the discovery and 

optimization of new efficient drugs, the next generation of 3D models should be expanded 

towards larger, multimeric systems and not be restricted to receptor monomers. Computation 

of the energy landscape of GPCRs by enhanced molecular dynamics simulations, together 

with NMR and X-ray studies, provided valuable molecular insights on the dynamics of ligand 

recognition, receptor activation and oligomerization (Johnston et al., 2014). Depicting free 

energy landscapes of MTRs should address biasing molecular dynamics simulations from the 

inactive apoform transiting toward the active trimeric L-R-Gi or L-R-arrestin forms of 

receptors (Figure 5). As ligands modulate these free energy landscapes (Dror et al., 2013; 

Provasi et al., 2011), in silico optimization of new efficient ligand structures could be 

explored by predicting its functional selectivity through arrestin or Gi-mediated pathways. 
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These approaches also open the way for the exploration of homo- and heterodimers, 

particularly MT1/MT2 and MT1/GPR50 complexes, as discussed in the following section. 

 

Melatonin receptor dimers  

MTRs are part of dynamic signaling complexes that contain proteins involved in 

receptor biosynthesis, export, signaling, desensitization, internalization and cytoskeleton 

modulation (Daulat et al., 2007; Maurice et al., 2008) (IntAct database, 

http://www.ebi.ac.uk/intact/search/do/search?searchString=pubid:26514267). The core of these complexes is often 

composed of receptor dimers, either homodimers of the same receptor or heterodimers 

composed of two different receptors (see (Ferre et al., 2014; Maurice et al., 2011) for 

review). Initial observations have been made in 2002 in transfected HEK293 cells 

demonstrating the capacity of MT1 and MT2 to form homo- and heterodimers (Ayoub et al., 

2002) with MT1/MT2 heterodimers showing a pharmacological profile distinct from MT2 

homodimers (Ayoub et al., 2004). Shortly after, MT1 and MT2 were reported to form 

heterodimers with the orphan GPR50, which completely abolished the function of MT1 in 

MT1/GPR50 heterodimers (Levoye et al., 2006a). Sporadic reports on Western blots with 

endogenously expressed MTRs in chicken astrocyte cultures (Adachi et al., 2002) and 

Xenopus tectal cells (Prada et al., 2005) further indicated the possible existence of MTR 

homodimers. However, the physiological relevance of these dimers remained largely unclear 

(Levoye et al., 2006b) until 2013 when compelling in vivo evidence for the functional 

significance of MT1/MT2 heterodimers was obtained. In retinal photoreceptor cells, MLT 

enhances the light sensitivity during the night. The phenotype of MT1 KO (MT1
-/-

) and MT2 

KOs (MT2
-/-

) mice, the use of type-selective ligands and over-expression of a dominant 

negative form of MT2 in photoreceptor cells of transgenic mice indicated the exclusive 

involvement of MT1/MT2 heterodimers in this physiological effect of MLT (Baba et al., 

http://www.ebi.ac.uk/intact/search/do/search?searchString=pubid:26514267
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2013). Interestingly, this effect was dependent on the activation of the Gq/PLC pathway by 

MLT, an observation that could be confirmed in vitro in cells co-expressing MT1 and MT2. 

Whether MTR heterodimers could become novel drug targets remains an open 

question. Recent evidence on the antidepressant agomelatine suggests this possibility (Kamal 

et al., 2015). Previous studies showed that agomelatine is a high affinity agonist for MT1 and 

MT2 and an antagonist with moderate affinity for serotonin 5-HT2C receptors (Audinot et al., 

2003; Millan et al., 2003). Of note, the antidepressant effect of agomelatine involves both 

pathways in a synergistic manner (Racagni et al., 2011). Formation of MT2/5-HT2C 

heterodimers was demonstrated in transfected HEK293 cells and these heterodimers are 

targeted by agomelatine (Kamal et al., 2015). Agomelatine behaved as a biased ligand, 

activating the Gi/cAMP pathway and antagonizing the Gq/PLC pathway. Whether the MT2/5-

HT2C heterodimer participates in the antidepressant effect of agomelatine remains to be 

shown. 

Formation of receptor dimers offers the possibility to design dimeric ligands targeting 

receptor dimers. Several dimeric ligands with two identical pharmacophores have been 

synthesized for MTRs and their binding properties have been determined (Audinot et al., 

2003; Descamps-Francois et al., 2003; Journe et al., 2014; Mesangeau et al., 2010; Spadoni 

et al., 2011). Binding of the two pharmacophores of these dimeric ligands to the two 

protomers of the same receptor dimer has been only shown in one study using a 

bioluminescence resonance energy transfer (BRET) approach (Journe et al., 2014). 

Compounds linked through 22–24 atom spacers were able to bind to MT1 and MT2 protomers 

in pre-existing homo- and heterodimers and to induce conformational changes detected by 

BRET. Induction of receptor dimerization was not observed. The functional properties of 

these compounds remain to be studied. Taken together, the existence and physiological 

relevance of MTR dimers is increasingly recognized but its functional role and 
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pharmacological exploitation are still ongoing. 

 

Genetic variants and mutants of melatonin receptors 

The existence of multiple rare variants in the human population was discovered in 

recent genome sequencing programs. The 1000 human genome project detected 38 million 

variants (Abecasis et al., 2012) and 172 variants, including 46 non-synonymous variants, 

have been identified on average per GPCR in a population of 14002 individuals (Karamitri et 

al., 2014; Nelson et al., 2012). Numerous variants have been identified in the MTNR1A and 

MTNR1B genes, encoding MT1 and MT2 receptors, respectively. Here, only non-synonymous 

variants, modifying the amino acid sequence of the receptors, will be considered (Figure 6). 

Variants with altered receptor function can potentially participate in disease development. 

Ebisawa et al. (1999) were searching for variants in MTNR1A and MTNR1B genes in patients 

with circadian disorders. Two non-synonymous variants were identified in the MTNR1A gene 

(R54W, A157V) which were 3-fold and 2-fold more frequent in people with non-24-hour 

sleep-wake syndrome (Table II) (Ebisawa et al., 1999). Due to small sample size (N=22) 

statistical significance was not reached.  

Alteration of MLT synthesis has been reported in autism spectrum disorders (ASD) 

triggering the search for variants in MTNR1A and MTNR1B genes in 295 patients with ASD, 

362 controls and 284 individuals from the human genome diversity panel (Chaste et al., 

2010). Six non-synonymous mutations were identified for MTNR1A and ten for MTNR1B 

(Table II, III). The majority of these mutants showed altered receptor function. Particularly 

deleterious mutants were MT1-I49N, which is devoid of any MLT binding and cell surface 

expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface 

expression and biased behavior towards the ERK1/2 pathway. No significant difference in the 



 

 
This article is protected by copyright. All rights reserved. 

prevalence of these mutations was found indicating that they do not represent major risk 

factor for ASD.  

Four non-synonymous mutations were identified for MTNR1A and four for MTNR1B 

in a cohort of 101 individuals with attention-deficit/ hyperactivity disorder (ADHD) (Table 

II, III), however, none of them was enriched in ADHD individuals as compared to the general 

population (Chaste et al., 2011). The MT1-Y170X non-sense mutation was only detected in 

one ADHD patient and introduced a premature STOP codon resulting in complete loss of 

receptor function. 

 

MTR variants have been most extensively searched in studies focused on type 2 

diabetes (T2D) based on the discovery of several frequent polymorphisms associated with 

increased fasting plasma glucose (FPG) and T2D risk close to the MTNR1B gene in genome-

wide association studies (Bouatia-Naji et al., 2009; Prokopenko et al., 2009). Sequencing of 

the coding region of the MTNR1B gene revealed six non-synonymous variants (G24E, L60R, 

V124I, R138C, R231H, K243R) of which none was associated with T2D risk. The common 

24E variant was associated with increased body mass and decreased FPG (Andersson et al., 

2010), an observation that was not replicated in a later study (Bonnefond et al., 2012). 

Whereas only subtle changes in the capacity of G24E and V124I to activate a G6qi4myr 

chimeric G protein, the L60R variant was completely inactive in transfected COS cells. A 

more extensive sequencing study discovered 40 non-synonymous variants in the coding 

region of MTNR1B (Table II, III, IV) (Bonnefond et al., 2012) of which 36 very rare mutants 

associated with T2D risk. Functional analysis of the 40 variants revealed intact cell surface 

expression for all variants, complete loss of MLT binding in 4 very rare cases (A42P, L60R, 

P95L, Y308S) and partially and severely blunted signaling (Gqi9 chimera and ERK1/2 

activation) in 1 rare cases (R138C) and 9 very are cases (W22L, A52T, A74T, R138H, 
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R138L, L166I, R222H, R330W, I353T). Carriers of the 13 very rare loss-of-function variants 

showed increased T2D risk establishing a functional link between MTNR1B and T2D (for 

review see (Karamitri et al., 2013)).  

In conclusion, the genetic variability of the MTNR1B gene in terms of non-

synonymous variants has now been well defined and an association of very rare variants with 

T2D risk established. Less is known about the variability of the MTNR1A gene in terms of 

non-synonymous variants. 

 

Melatonin receptor mouse models - update  

MT1
-/-

 mice were created in the late 90s’ followed by the generation of MT2
-/-

 mice in 

2003 (Jin et al., 2003; Liu et al., 1997). Studies using these mice have provided important 

insights on the role that MTRs play in the modulation of many different biological functions. 

In MT1
-/-

 mice, but not in MT2
-/-

 mice, the inhibitory effect of MLT on neuronal activity in the 

suprachiasmatic nucleus (SCN) is impaired suggesting the involvement of MT1. In contrast, 

in SCN slices from MT1
-/-

 mice MLT (1-10 pM) phase-shifts the peak of circadian rhythms of 

neuronal firing by approximately 3 h suggesting the involvement of MT2 (Dubocovich et al., 

2005; Liu et al., 1997). Blockade of this effect using the MT2 selective 4P-PDOT antagonist 

confirmed the latter conclusion shaping a pathway where MT2 phase-shifts the peak of 

neuronal firing through PLC-PKC signaling pathway (Dubocovich et al., 2005; Hunt et al., 

2001) (Mc Arthur et al., 1997). Liu et al. (1997) reported that the phase shift of neuronal 

firing rhythms induced by 2-iodomelatonin (10 pM) was of smaller magnitude in the SCN 

slice from MT1
-/-

 than in WT mice suggesting a role for the MT1 in this response (see detailed 

discussion in (Dubocovich, 2007)).  Together these findings suggest a potential role for both 

MT1 and MT2 in the phase shift of circadian rhythms of neuronal firing in the SCN slice in 

vitro. The use of MT1
-/-

 mice demonstrated that MT1 is required for the MLT-meditated 
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phase-shift of the onset of overt circadian rhythm of locomotor activity (Dubocovich et al., 

2005). An independent study demonstrated that C3H/HeN mice (MLT-proficient) entrained 

faster to a phase advance of dark onset than the C57BL/6J mice (MLT-deficient), suggesting 

a facilitating role of endogenous MLT on circadian reentrainment (Pfeffer et al., 2012). 

However, we should note that faster entrainment could also result from genetic differences 

between the two mouse strains rather than different endogenous melatonin levels (Adamah-

Biassi et al., 2013).  In a mice strain producing endogenous melatonin the faster entrainment 

to an abrupt advance of  dark onset persisted in MT1
-/-

 C3H/HeN mice but was lost in MT2
-/-

 

and double KOs (MT1
-/-

/MT2
-/-

) suggesting again the involvement of MT2. This apparent 

contradiction could be explained by the activation of MT2 and MT1 by endogenous and 

exogenous MLT, respectively, at different periods of sensitivity (subjective night vs. 

subjective day, respectively). Changes in efficacy could also result from desensitization 

and/or internalization of MTRs in response to exposure to physiological and 

supraphysiological MLT concentrations as demonstrated by the phase shift of the peak of 

neuronal firing in the SCN by physiological levels of MLT, which involved the 

desensitization of MT2 (Gerdin et al., 2004). 

MTR KO mice have been also used to elucidate the role played by these receptors in 

the regulation of the sleep/wake cycle. In MT2
-/-

 NREM sleep is decreased during the light 

phase (i.e., during the time that mice normally sleep), whereas MT1
-/-

 mice showed an 

increase in the amount of NREM sleep during the dark phase (i.e., during active phase) 

(Ochoa-Sanchez et al., 2011). Further analysis of the data indicated that MT1 signaling is 

implicated in the modulation of the daily rhythm of REM sleep (Ochoa-Sanchez et al., 2011). 

An additional study in which double KOs (MT1
-/-

/MT2
-/-

) were used indicated that removal of 

both receptors induced an increase in wakefulness, and a reduction in REM sleep (Comai et 
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al., 2013). Hence these data seem to indicate that removal of MTRs may affect wakefulness 

rather than sleep.  

The effect of MTR removal has been also investigated in the mouse retina, where 

these receptors are widely distributed (Baba et al., 2013; Baba et al., 2009). Removal of 

either receptor has profound effects on photoreceptors function as it abolishes the daily 

rhythms in the scotopic and photopic electroretinogram (ERGs) (Alcantara-Contreras et al., 

2011; Baba et al., 2009; Sengupta et al., 2011). Such a result also indicates that MT1 and MT2 

form heterodimers in mouse photoreceptors (Baba et al., 2013). Further studies have also 

demonstrated that removal of MTRs in addition affects the viability of the photoreceptors and 

retinal ganglion cells during aging (Alcantara-Contreras et al., 2011; Baba et al., 2009; 

Gianesini et al., 2016) as well as corneal biology (Baba et al., 2015). 

As mentioned before, recent studies have also implicated MTRs in the pathogenesis of 

T2D in humans (Bonnefond et al., 2012; Bouatia-Naji et al., 2009; Lyssenko et al., 2009). 

Thus a few studies used MTR KO mice to determine the mechanisms by which these 

receptors contribute to regulation of glucose homeostasis and insulin sensitivity (Contreras-

Alcantara et al., 2010; Muhlbauer et al., 2009; Stumpf et al., 2008). Mice lacking MT1 

exhibit higher mean blood glucose levels than controls (Muhlbauer et al., 2009), and tend to 

be more glucose intolerant and insulin resistant than WT and MT2
-/-

 mice (Contreras-

Alcantara et al., 2010). Furthermore, removal of MT1 or MT2 abolishes the daily rhythm in 

blood glucose levels (Owino et al., 2016). 
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Finally, it is important to mention that although the reproductive system of mice is not 

sensitive to photoperiod, the development of MTR KO mice provided an important tool for 

dissecting the mechanisms by which MLT regulates reproduction in photoperiodic species. 

For example, MT1 signaling controls the rhythmic expression of the clock gene Period 1 in 

the pituitary gland (von Gall et al., 2002) and further studies have shown that the rhythmic 

expression of several other clock genes (Per1, Per 2, Bmal1, and Cry 1) in the mouse Pars 

tuberalis depends on MT1 signaling as well (Jilg et al., 2005). MT1 signaling has been also 

reported to be crucial for the photoperiodic response of gene expression in the ependymal cell 

layer and thus for the photoperiodic regulation of gonadal activity (Sheynzon et al., 2006; 

Yasuo et al., 2009). Finally, we should mention that a recent study reported that MT1 

signaling plays a key role in photoperiodic programming of serotonergic neurons as well as 

depression- and anxiety-related behaviors in mice (Green et al., 2015).  

In conclusion studies in the last twenty years using MTR KO mice have greatly 

helped to understand the role(s) played by these receptors in the regulation of many 

physiological functions and they have provided important insights on the mechanisms by 

which MLT signaling affects these functions. 

 

Functional role of melatonin receptors in physiology and pathophysiology 

MTRs are involved in many physiological processes that will however not all be 

covered by this review but can be consulted in other reviews (Dubocovich et al., 2010; 

Johnston et al., 2015; Karamitri et al., 2013; Tosini et al., 2012; Tosini et al., 2014). Here, we 

focused our attention on two major systems, the immune and the central nervous system. 

Important progress has been made recently in both fields and links to diseases have been 

established justifying a review of our current knowledge on these aspects. Finally, we will 

make a critical assessment of reports of receptor-independent effects of MLT, such as binding 
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of MLT to additional binding site and intrinsic antioxidant and free radical scavenger 

properties of MLT.  

 

- Melatonin receptors in the immune system 

The role of MLT as a player in immunity, first proposed by Berman in 1926, is now 

well accepted (Carrillo-Vico et al., 2013). Several reports demonstrated that MLT produced 

either by the pineal gland or immune cells can regulate the activation of an immune response. 

MLT derived from activated human lymphocytes induces the synthesis of interleukin 2 (IL-2) 

and IL-2 receptors ((Carrillo et al., 2004; Carrillo-Vico et al., 2013). Luzindole and targeted 

deletion of the MNTR1A gene (Lardone et al., 2006; Lardone et al., 2010) block the effect of 

lymphocyte-derived MLT. Interestingly, daily rhythms of plasma MLT and IL-2 are 

transiently lost in non-infectious human inflammatory conditions and the recovery of the IL-2 

rhythm follows the restoration of the daily MLT rhythm (Pontes et al., 2007). In addition, the 

daily and seasonal variation of MLT production contributes to the seasonality of some 

diseases. In multiple sclerosis (MS) MLT blocks the differentiation of Th17 cells and boosts 

the generation of protective Tr1 cells by a MT1-dependent mechanism, resulting in the 

seasonal variation on MS symptoms (Farez et al., 2015). Seasonality of regular immunity is 

also related to changes in the MLT system (Weil et al., 2015). In the spleen of several species 

extended light exposure decreases MT1 expression (Lahiri et al., 2009; Maestroni, 1993; 

Yadav et al., 2013). In healthy conditions rolling and adhesion of neutrophils to the 

endothelial cell layer is inhibited by activation of MT2 and ligands binding to the putative 

MT3 binding site, respectively (Lotufo et al., 2001). In contrast, other effects of MLT such as 

the inhibition of transcription factors that mediate acute inflammation induced by 

lipopolysaccharides (LPS) (Tamura et al., 2010) or N-formyl-l-methionyl-l-leucyl-l-
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phenylalanine (fMLP) (Cernysiov et al., 2015) are not blocked by luzindole suggesting a 

MTR-independent action mode.  

MTRs also play an important role in promoting engulfing of bacteria, fungi and 

parasites. MLT facilitates the invasion of erythrocytes by Plasmodium falciparum (Hotta et 

al., 2000) the invasion of macrophages by Leishmania amazonensis (Laranjeira-Silva et al., 

2015) and the phagocytosis of zymosan by colostrum polymorphonuclear and mononuclear 

cells (Pires-Lapa et al., 2013) and the RAW 264.7 macrophage cell line (Muxel et al., 2012). 

The entrance of different microorganisms in polymorpho and monuclear cells, including 

colostral and lineage established cell lineages is blocked by luzindole. Indeed, parasites, 

bacteria and fungi activate the NF-B pathway in these two cell models resulting in the 

expression of arylalkyl-N-acetyltransferase and the synthesis of MLT. Luzindole and 4P-

PDOT blocked the expression of dectin-1, a protein that is important for phagocytosis, 

suggesting the participation of MT2 in this effect (Muxel et al., 2016; Muxel et al., 2012; 

Pires-Lapa et al., 2013). Thus, the evaluation of binding parameters and functional states of 

MTRs in immune competent cells need to consider the masking effect of on-demand 

synthesized MLT. 

Although complex, the role of MLT on the immune system is beginning to be 

understood. MT1 and MT2 receptor types appear to play different roles, MT1 is the main 

target in acquired immune response, and MT2 the target for innate immune responses.  

 

- Melatonin receptors in the CNS  

MTRs are widely expressed throughout the CNS, and are particularly well 

characterized in the SCN of the hypothalamus, where they are known to inhibit neuronal 

firing and mediate the phase-shifting effect of MLT on circadian rhythms (see above). In 

addition to its chronobiotic effect, MLT participates in the modulation of neuronal functions, 
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neurodevelopment at early and late stages (Kong et al., 2008; Chen et al., 2014) and affects 

brain structures underlying sleep regulation (Ochoa-Sanchez et al., 2011), drug-related 

learning (Savaskan et al., 2006; Wang et al., 2005) and reward (Clough et al., 2014; 

Hutchinson et al., 2012). MTRs have been shown to mediated the MLT-induced increase in 

dendrite length, thickness and complexity of hippocampal neurons, as these effects were 

partially blocked by luzindole (Dominguez-Alonso et al., 2015). Similarly, MLT-induced 

differentiation and maturation of adult neural stem cells was almost abrogated in the presence 

of luzindole (de la Fuente Revenga et al., 2015). A recent study using MT2
-/-

 mice reveals that 

MT2 is essential for axogenesis and for the formation of functional synapses (Liu et al., 

2015). MT2 is also involved in MLT-induced protection against oxidative stress and memory 

impairment in a mice model of aging (Shin et al., 2015). Recent advances in the 

understanding of presynaptic MTRs and their role in neurodegenerative diseases are 

discussed in the following chapters. 

Presynaptic melatonin receptors. The role of MLT on the regulation of calcium-dependent 

dopamine release from axon terminals in brain and amacrine cells in the retina was shown in 

the early 1980’s (Dubocovich, 1983; Zisapel et al., 1982). However, more direct and global 

proof for the presence of presynaptic MLT heteroreceptors (i.e. receptor for a transmitter or 

hormone other than the neuron’s own neurotransmitter) capable of regulating 

neurotransmitter release was still insufficient. A recent protein interaction network analysis 

established that MT1, but not MT2, is expressed on presynaptic axon terminal membranes in 

the hypothalamus, striatum, cortex, and hippocampus, where it is part of the presynaptic 

protein network (Benleulmi-Chaachoua et al., 2016). Notably, this study shows a strong 

physical association between MT1 and presynaptic proteins such as synapsin, SNAP25, 

Munc-18 and voltage-gated Cav2.2 channels. Interaction with the latter was responsible for 

constitutive inhibition of calcium entry by MT1 in a G-dependent manner (Benleulmi-
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Chaachoua et al., 2016). 

These recent findings provide strong support for the involvement of MTRs in synaptic 

functions, particularly in neurotransmitter release as indicated by previous studies.  Indeed, 

activation of MTRs has been implicated in the inhibition of 
3
H-dopamine release from the 

ventral hippocampus, medulla pons, preoptic area and hypothalamus (median and posterior) 

(Dubocovich, 1983; Zisapel et al., 1982). This effect followed a diurnal rhythm in the 

hypothalamus with a maximum and a minimum observed at ZT 5 and ZT 13-15, respectively 

(Zisapel et al., 1985). 6-Chloromelatonin-mediated modulation of norepinephrine turnover 

via activation of presynaptic MLT heteroreceptors was demonstrated in hypothalamus (Fang 

et al., 1990). In this model, luzindole, applied during the night when MLT levels are high, 

accelerated norepinephrine turnover suggesting the involvement of MTRs stimulated by 

endogenous MLT (Fang et al., 1990). The presence of presynaptic MLT heteroreceptors on 

retino-hypothalamic fibers innervating superficial retinorecipient layers of the avian optic 

tectum has been inferred by the presence of 2-[
125

I]-IMLT binding sites and its decrease 

following transsection of the retinotectal pathway (Krause et al., 1992; Krause et al., 1994). 

The function of these presynaptic MTR is currently unknown but a modulatory role of light 

input to visual and circadian target responses is likely. Recent electrophysiological evidence 

suggest that MLT acting through presynaptic MTRs increases glutamatergic 

neurotransmission in the habenula, an effect blocked by luzindole (Evely et al., 2016). 

Finally, it is worth mentioning in this context that MTRs have been first shown to be 

involved in the inhibition of depolarization-evoked calcium-dependent neurotransmitter 

(dopamine) release from amacrine cells in the chick and rabbit retina (Dubocovich, 1985; 

Dubocovich, 1983). These mammalian functional presynaptic heteroreceptors were used to 

establish the first structure-activity-relationship for MTR ligands, which correlated with the 

pharmacological profile of MT2 (Dubocovich et al., 1997), and to identify and 
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pharmacologically characterize the first competitive MTR ligands, luzindole and 4P-PDOT 

(Dubocovich, 1988). 

In summary, proteomic studies of the MT1 interactome revived interest in the function 

of presynaptic MTRs and reinforced previous functional studies indicating the role of 

presynaptic MTRs in neurotransmitter release. Use of MTR KO mouse models will be 

particularly instrumental in this context, as they will clarify the respective roles of MT1 and 

MT2. Based on current data, a predominant role of MT1 in presynaptic functions, like 

neurotransmitter release, and a potential role of MT2 in axogenesis and synapse formation can 

be postulated. 

 

Melatonin receptors in neurodegenerative diseases. Altered expression of MTRs has been 

frequently reported in neurodegenerative diseases and psychiatric disorders, including 

Alzheimer’s disease (AD), Parkinson disease (PD), Huntington disease (HD) and ASD. In 

AD patients, MT1 expression in the SCN and MT2 expression in the hippocampus are 

reduced compared to control subjects in post-mortem brains (Wu et al., 2007). Intriguingly, 

higher expression of MT1 was detected in hippocampal arteries of AD brains (Savaskan et al., 

2002), which might be due to a compensatory response to the low levels of circulating MLT 

in these patients (Zhou et al., 2003). These observations suggest that the expression of MTRs 

under pathological conditions can be differentially regulated depending on the brain area. In 

PD patients, down-regulation of MT1 and MT2 expression was observed in the substantia 

nigra and amygdala, the two most relevant areas in PD pathogenesis (Adi et al., 2010). Small 

case-control studies accessing MT1 and MT2 expressions in HD patients showed no changes 

in the SCN (van Wamelen et al., 2013), while decreased expression of MT1, but not of MT2, 

was detected in the striatum (Wang et al., 2011). Interestingly, the progressive loss of MT1 

correlates with HD severity, also confirmed in a mice model of HD (Wang et al., 2011). In 
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ASD patients no information on MT1 and MT2 expression is available but several MT1 and 

MT2 mutants with strongly reduced function have been identified (Chaste et al., 2010). 

Additional evidence supports the emerging concept of MTR dysfunction as a 

permissive condition favoring the development and/or progression of neurodegenerative 

diseases. The neuroprotective effect of endogenous and exogenous MLT has been 

demonstrated in different systems (reviewed by (Escribano et al., 2014)). In a 

neuroinflammatory model induced by LPS administration, cerebellar neuronal death was 

observed only in animals pre-treated with luzindole (Pinato et al., 2015). Similarly, depletion 

of endogenous MLT by pinealectomy caused spontaneous neuronal loss in the hippocampal 

CA1 area, which was prevented by treatment with agomelatine (Tchekalarova et al., 2016). 

The requirement of MTRs for the neuroprotective action of MLT has also been elegantly 

demonstrated in a series of in vitro studies in which luzindole treatment or siRNA-mediated 

knockdown of MT1 enhanced neuronal vulnerability to cell death (Wang et al., 2011). 

Different cell stressor conditions such as temperature shift or treatments with hydrogen 

peroxide, TNF or with the HD-related protein huntingtin, resulted in reduced levels of MT1. 

Accordingly, it has also been shown that the AD-related neurotoxic amyloid beta peptide 

(A) impairs the function of MTRs (Cecon et al., 2015), implying that MTRs and MLT 

signaling are among the primary molecular targets affected in the course of AD. 

Insights in the impact of MTRs on cognitive functions are also obtained from MTR 

KO mice. MT2
-/-

 mice show impaired long-term potentiation and performance in memory 

tests (Larson et al., 2006). However, the double KO MT1
-/-

/MT2
-/-

 mice show no clear 

differences to WT mice in memory test performances and show increased long-term 

potentiation responses, even though the deletion of MTRs negatively affected the expression 

of important proteins for synaptic activity, such as phospho-synapsin and spinophilin 

(O'Neal-Moffitt et al., 2014). The relevance of MTRs for cognitive performance was 



 

 
This article is protected by copyright. All rights reserved. 

undoubtedly evidenced using an AD mice model lacking MT1 and MT2, in which MLT 

treatment failed to improve mice performance on hippocampal-dependent spatial learning 

tasks, as observed in the AD mouse model in the presence of MT1 and MT2.  Impressively, 

the lack of MTRs per se markedly increased the mortality in young AD mice (O'Neal-Moffitt 

et al., 2015).  Finally, the therapeutic use of MLT has been proposed and tested in a number 

of mice models and clinical trials in several neurodegenerative conditions, including AD 

(Cardinali et al., 2010; Olcese et al., 2009; Peng et al., 2013; Wade et al., 2014; Zhang et al., 

2016), amyotrophic lateral sclerosis (Weishaupt et al., 2006; Zhang et al., 2013), PD 

(Medeiros et al., 2007; Naskar et al., 2015; Zhang et al., 2016) and HD (van Wamelen et al., 

2015). The therapeutic use of MLT is usually associated with sleep improvement and better 

alignment of circadian parameters, and its beneficial effect on neuroprotection and cognitive 

performance is starting to be recognized (Joshi et al., 2015; Wade et al., 2014). Dysfunction 

or down-regulation of MTRs is likely to be part of the primary pathophysiological 

mechanisms rather than a consequence of advanced neurodegeneration and, thus, 

prophylactic hormonal replacement and/or early-stage intervention strategies to restore MTR 

expression and function might provide the most efficient result.  

 

Taken together, the subcellular localization and role of MTRs in neuron functions and 

their participation in neurodegererative diseases are now starting to be understood and 

suggest a broad modulatory role of MLT in neuronal function, development and plasticity. 

 

- Melatonin as antioxidant and free radical scavenger  

The IUPHAR classifies only clearly identified pharmacological targets in mammals. 

However, some effects of MLT persist even in the absence of MT1 and MT2 or upon 

complete pharmacological blockage of MTRs indicating the existence of MTR-independent 
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mechanism, which are still not fully understood. In addition, MTR-dependent and -

independent mechanisms can participate simultaneously, as demonstrated by O'Neal-Moffitt 

et al. (2015) regarding the antioxidant and pro-cognitive effects of MLT on AD mice models, 

for example. Two predominant mechanisms have been put forward to explain MLT’s 

antioxidant and free radical properties: MLT binding to the MT3 binding site (Dubocovich et 

al., 2003; Nosjean et al., 2000) and to the cytosolic enzyme quinone reductase 2 (QR2) 

(Dubocovich et al., 2003; Nosjean et al., 2000), and MLT scavenging of free radicals, which 

has been suggested to be an electron donor (for a review see (Tan et al., 2015). Binding of 

MLT to intracellular targets is readily achieved due to the hydrophilic nature of this 

indolamine. MLT binds with nanomolar affinity to MT3/QR2 binding sites but shows a 

pharmacological profile distinct from MT1 and MT2. The order of affinities for the MT3 

binding site is 2-iodomelatonin > N-acetyl-serotonin > MLT (Dubocovich, 1995; Nosjean et 

al., 2000), the one for MT1 and MT2 is 2-iodomelatonin > MLT >>>> N-acetyl-serotonin. 

MCA-NAT (5-methoxycarbonylamino-N-acetyltryptamine), prazosin and N-

acetyltryptamine are selective ligands for the membrane MT3 binding site (Dubocovich, 1995; 

Molinari et al., 1996; Nosjean et al., 2000). Nosjean et al. (2000) showed that a cytosolic 

binding site identified as QR2 has the pharmacological characteristics of the membrane MT3 

binding site.  QR2 is a cytosolic flavin adenine dinucleotide (FAD)-dependent flavoprotein 

that reduces menadione and other quinones by using N-ribosyl- and N-

alkyldihydronicotinamides as the co-substrates (Liao et al., 1961) thus acting as a detoxifying 

enzyme to increase the antioxidant defense (Jockers et al., 2008). There are still open 

questions as to whether the MLT binding site on QR2 corresponds to the MT3 binding site, in 

particular regarding those sites that are membrane associated. 
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Several physiological effects of MLT such as inhibition of leukocytes adhesion to rat 

endothelial cell layer were reported to be mimic by MT3 agonists (Lotufo et al., 2001). 

Similar observations were made for the expression of adhesion molecules by granulocytes 

(Cernysiov et al., 2015), the increase in dopamine levels in chick retina (Sampaio Lde et al., 

2014) 

 and the reduction of intraocular pressure (IOP) in rabbits (Alarma-Estrany et al., 2009). 

However, it has been questioned whether the functional effects of MCA-NAT are indeed 

mediated by QR2, as the lack of QR2 did not prevent the MCA-NAT-induced reduction on 

IOP, and overexpression of QR2 did not promote receptor-like responses (Vincent et al., 

2010). In addition, MCA-NAT turned out to be a partial agonist for MT1 and MT2 at 

submicromolar concentrations suggesting the possibility that some of the MCA-NAT effects 

might be mediated by MT1 and/or MT2 (Vincent et al., 2010).  

MLT and metabolites with or without open ring structures have been described to be 

potent electron donors. Cyclic-3-hydroxymelatonin, N1-acetyl-5-methoxykynuramine 

(secondary metabolite) (AMK, tertiary metabolite), and N-acetyl-N-formyl-5-

methoxykynuramine (AFMK, quaternary metabolite) scavenge free radicals neutralizing 

reactive oxygen and nitrogen species (Ressmeyer et al., 2003; Tan et al., 2007; Zavala-

Oseguera et al., 2014). Hence one MLT molecule and its associated metabolites are believed 

to scavenge a large number of reactive species and thus the overall antioxidant capacity of 

MLT is believed to be superior of other well known antioxidants (e.g. vitamin C, vitamin E, 

etc.,) under in vitro or in vivo conditions (Gitto et al., 2001; Ortiz et al., 2013; Sharma et al., 

2006). However, the ability of MLT in reducing oxidative stress does not only rely on 

donating electrons. Indeed, by acting on MT1 and MT2, low pM and low nM concentrations 

of MLT increase the expression or activity of enzymes such as superoxide dismutase, catalase 

and glutathione peroxidase, which are involved in oxygen detoxification (Rosen et al., 2009). 
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Thus, depending on the dose of exogenous or endogenous MLT, receptor-dependent or -

independent mechanisms may be involved. A further twist in the interplay between receptor-

dependent and -independent processes could arise from the fact that MLT by changing the 

redox state of the cell might influence receptor mediated functions. Indeed the function of 

several GPCRs has been shown to be sensitive to the cellular redox state. Whether this is also 

the case for MTRs, has to be addressed in future studies. Although endogenous MLT levels 

are typically considered to range from low pM to low nM concentrations much higher 

concentrations may be reached locally in the brain (Legros et al., 2014) and in activated 

immune cells (Conti et al., 2000). In addition, melatonin can be actively taken up through the 

GLUT1 glucose transporter (Hevia et al., 2015). In conclusion, the role of the MT3 binding 

site is still not fully understood and warrants further attention. Concerning the free radical 

scavenging properties of MLT, it is surprising that still opposing opinions are in the literature. 

Overall, the antioxidant effects of MLT appear to be complex, relying on a mixture of MTR-

dependent and -independent processes.  
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Figure 1. Structures of nonselective MT1/MT2 ligands. 5-HEAT, 5-hydroxyethoxy-N-

acetyltryptamine; EFPPEA, ethyl-furo-pyrazolo-pyridine-ethyl-acetamide. 
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Figure 2. Structures of MT2-selective ligands. BOMPPA, benzyloxy-methoxyphenyl-

propylamide; CIFEA, cyclohexylmethyl-indenofurane-ethylacetamide; 4P-PDOT, 4-phenyl-

2-propionamidotetralin. 
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Figure 3. Structures of MT1-selective ligands. CBOBNEA, carboxybiphenyloxy-butoxy-

naphthalene-ethylacetamide; AAE M PBP amine, acetylaminoethyl-methyl-

phenylbutoxyphenyl- amine. 
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Figure 4. Structures of radioligands used to determine binding affinity for MT1 and 

MT2. 
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Figure 5. Structures useful for the study of MT1 receptor structure-function 

relationships. MT1*-MLT (a) was derived from active forms of rhodopsin, β2-adrenergic 

and A2A adenosine receptors (unpublished data, N.R.). Docking of melatonin in the solvent-

accessible cavity was achieved by energy relaxation by 300 ns molecular dynamics 

simulations. The structure of the MT1*-MLT-Giα3 complex could be modeled on the basis of 

the sequence homology with the β2-adrenoceptor-Gαs  structure (Rasmussen et al., 2011b), 

and the homology between Gαs  and Giα3 (Soundararajan et al., 2008) (b) whereas the 

structure of  the MT1*-MLT-arrestin complex could be modeled based on the crystalized 

rhodopsin-arrestin complex (Kang et al., 2015) (c). 
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a) 

 
b) 

 
Figure 6: Distribution of non-synonymous MT1 (a) and MT2 (b) variants identified in 

various human populations. Position of variants are highlighted in light brown. Typical 

signatures of MTRs like the 
3.49

NRY
3.51

 motif and the 
7.49

NAXXY
7.53

 motif are highlighted in 

red. Residues suspected to be directly involved in MLT binding (S3.35 and S3.39 in MT1 and 

H5.46 in both MT1 and MT2) are highlighted with a blue circle. The putative palmitoylation 

site at C314 is indicated in MT1. 
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Table I: Summary of reported MT receptor homology models. 

Homology models Crystal 

templates 

Binding amino acids Reference 

MT1-ramelteon 

(non-selective agonist) 

Inactive 

rhodopsin 

(Palczewski et 

al., 2000) 

Y175(E2), S182(E2), 

V5.43, H5.46 

Uchikawa et al., 

2002
2
 

MT1-agomelatine 

(non-selective agonist) 

Inactive 

rhodopsin 

(Okada et al., 

2002) 

L2.46, M3.32, S3.35, 

S3.39, H5.46, F5.47, 

P5.50 

Voronkov et al., 2005 

MT1-melatonin 

(non-selective agonist) 

Inactive 

rhodopsin 

(Okada et al., 

2002) 

L2.46, M3.32, S3.35, 

V3.36, S3.39, H5.46, 

F5.47, F6.44, W6.48, 

L6.51, N6.52, N7.49 

Farce et al., 2008 

MT1-2phenylmelatonin 

(selective agonist) 

Active β2-

adrenergic 

(Rasmussen et 

al., 2011) 

M3.32, G3.33, Y5.38, 

H5.46, W6.48, L6.51, 

N6.52, Y7.39, A7.42, 

Y7.43 

Rivara et al., 2012 

MT2-2iodomelatonin 

(non-selective agonist) 

Inactive 

rhodopsin 

(Okada et al., 

2002) 

V5.42, H5.46, N6.52, 

L6.56, Y7.43 

Mazna et al., 2004 

MT2-UCM454 

(selective antagonist) 

Inactive 

rhodopsin 

(Okada et al., 

2004) 

V3.36, I3.37, V3.40, 

Y183(E2), H5.46, F5.47, 

P5.50, I5.51, F6.44, W6.48 

Rivara et al., 2005 

MT2-melatonin Inactive 

rhodopsin 

(Okada et al., 

2004) 

L2.46, A2.49, S3.35, 

I3.37, S3.39, V5.42, 

V5.43, H5.46, F5.47 

Voronkov et al., 2005 

MT2-melatonin Inactive 

rhodopsin 

(Okada et al., 

2002) 

S3.35, V3.36, S3.39, 

V5.42, H5.46, W6.48, 

Y7.43 

Chugunov et al., 

2006 

MT2-melatonin Inactive 

rhodopsin 

(Okada et al., 

2002) 

G3.33, V3.36, I3.37, 

N4.60, L4.57, T191(E2), 

Y5.38, H5.46 

Farce et al., 2008 

MT2-melatonin Active 

rhodopsin 

(Scheerer et al., 

2008) 

A3.29, V3.36, N4.60, 

H5.46, W6.48, L6.51 

Zefirova et al. 2011 

MT2-acylaminoethyl tetralin 

(selective partial agonist) 

Active β2-

adrenergic 

(Rasmussen et 

al., 2011) 

M3.32, V3.36, N4.60, 

H5.46, W6.48, N6.52, 

Y7.43 

Pala et al., 2013 

According to Ballesteros numbering, amino acids critical for ligand binding based on site-directed 

mutagenesis data (Conway et al., 2001; Gerdin et al., 2003; Kokkola et al., 2003) are displayed in italic 

and bold. 
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Table II: Biologically Important MT1 Variants. 

Common (minor allelic frequency (MAF) >1%), rare (MAF 0.1%–1%) variants.   

Amino 

acid 

change  

Type of variant Description References 

I49N 

 

Missense mutation 

 

Rare variant identified in autism 

spectrum disorder patients, impaired 

cell surface expression, melatonin 

binding, cAMP inhibition and 

ERK1/1 activation 

Chaste et al., 2010 

R54W  Missense mutation Common variant identified in control 

population without obvious functional 

defect 

Ebisawa et al., 1999 

A157V  Missense mutation 

Common variant identified in control 

population without obvious functional 

defect 

Chaste et al., 2010; 

Ebisawa et al., 1999 

G166E    Missense mutation Common variant identified in control 

population, impaired cell surface 

expression, reduced cAMP inhibition 

and ERK1/2 activation 

Chaste et al., 2010 

Y170X    Nonsense mutation Rare variant identified in attention-

deficit hyperactivity disorder 

(ADHD) patient, premature STOP 

codon with impaired cell surface 

expression and cAMP inhibition  

Chaste et al., 2011 

I212T   Missense mutation Common variant identified in control 

population, impaired cell surface 

expression, cAMP inhibition and 

reduced ERK1/2 activation  

Chaste et al., 2010 

A266V   Missense mutation Common variant identified in control 

population with reduced ERK1/2 

activation 

Chaste et al., 2010 

K334N   Missense mutation Rare variant identified in control 

population with reduced cAMP 

inhibition 

Chaste et al., 2010 
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Table III: Biologically Important MT2 Variants. Common (minor allelic frequency (MAF) >1%),  

rare (MAF 0.1%–1%) and very rare (MAF< 0.1%) variants 

Amino 

acid 

change  

Type of variant Description References 

A8S    Missense mutation Very rare variant identified in control 

population without obvious 

functional defect  

Bonnefond et al., 

2012 

A13V    Missense mutation Very rare variant identified in control 

population without obvious 

functional defect  

Bonnefond et al., 

2012 

G21S  Missense mutation Very rare variant identified in control 

population without obvious 

functional defect  

Bonnefond et al., 

2012 

W22L     Missense mutation Very rare variant identified in type 2 

diabetes patients, associated with type 

2 diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 

G24E    Missense mutation Common variant, not associated with 

type 2 diabetes risk but associated 

with prevalence of obesity and 

increased BMI shown in one study 

but not in another 

Andersson et al., 

2010; Bonnefond et 

al., 2012; Chaste et 

al., 2010; Ebisawa 

et al., 2000  

A25T   Missense mutation Very rare variant identified in control 

population without obvious 

functional defect  

Bonnefond et al., 

2012 

P36S   Missense mutation Very rare variant identified in type 2 

diabetes patients, without obvious 

functional defect  

Bonnefond et al., 

2012 

A52T  Missense mutation Very rare variant identified in type 2 

diabetes patients, associated with type 2 

diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 

L66F  Missense mutation Very rare variant identified in control 

population without obvious 

functional defect  

Ebisawa et al., 2000  

A74T  Missense mutation Very rare variant identified in control 

population and type 2 diabetes 

patients, associated with type 2 

diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 
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Amino 

acid 

change  

Type of variant Description References 

G109A   Missense mutation Very rare variant identified in control 

population without obvious functional 

defect  

Bonnefond et al., 

2012 

M120V   Missense mutation Very rare variant identified in control 

population without obvious functional 

defect  

Bonnefond et al., 

2012 

M120I   Missense mutation Very rare variant identified in 

population with impaired fasting 

glucose and control population 

without obvious functional defect  

Bonnefond et al., 

2012 

S123R     Missense mutation Very rare variant identified in 

population with impaired fasting 

glucose and control population 

without obvious functional defect  

Bonnefond et al., 

2012 

V124I Missense mutation Very rare variant identified in several 

populations including type 2 diabetes and 

ADSD without obvious functional defect 

in one study and impaired ERK1/2 

activation in another  

Andersson et al., 

2010; Bonnefond et 

al., 2012; Chaste et 

al., 2010  

R138C  Missense mutation 
Rare variant, not associated with type 2 

diabetes risk, no Gi and ERK1/2 

activation  

Andersson et al., 

2010; Bonnefond et 

al., 2012; Chaste et 

al., 2010  

R138L  

    

Missense mutation Very rare variant identified in control 

population, associated with type 2 

diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 

R138H   Missense mutation Very rare variant identified in control 

population, associated with type 2 

diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 

Y141F   Missense mutation Very rare variant identified in type 2 

diabetes patients, without obvious 

functional defect  

Bonnefond et al., 

2012 
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Amino 

acid 

change  

Type of variant Description References 

M146V     Missense mutation Very rare variant identified in control 

population without obvious functional 

defect  

Bonnefond et al., 

2012 

R154H     Missense mutation Very rare variant identified in control 

population and type 2 diabetes 

patients without obvious functional 

defect  

Bonnefond et al., 

2012 

L166I  Missense mutation 
Very rare variant identified in control 

population, associated with type 2 

diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 

T201M  Missense mutation 
Very rare variant identified in type 2 

diabetes patients, without obvious 

functional defect  

Bonnefond et al., 

2012  

R222H    Missense mutation Very rare variant identified in type 2 

diabetes patients, associated with type 

2 diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 

I223T Missense mutation Very rare variant identified in type 2 

diabetes patients, without obvious 

functional defect  

Bonnefond et al., 

2012 

R231H  Missense mutation 

Rare variant, not associated with type 2 

diabetes risk  

Andersson et al., 

2010; Bonnefond et 

al., 2012; Chaste et 

al., 2010  

A234T  Missense mutation Very rare variant identified in control 

population without obvious functional 

defect  

Bonnefond et al., 

2012 

E237K   Missense mutation Very rare variant identified in control 

population without obvious functional 

defect  

Bonnefond et al., 

2012 
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Amino 

acid 

change  

Type of variant Description References 

S238G    Missense mutation Very rare variant identified in type 2 

diabetes patients, without obvious 

functional defect  

Bonnefond et al., 

2012 

K243R  Missense mutation Common variant, not associated with 

type 2 diabetes risk  

Bonnefond et al., 

2012 

D246N  Missense mutation 

Very rare variant identified in type 2 

diabetes patients, without obvious 

functional defect  

Bonnefond et al., 

2012 

F250V    Missense mutation Very rare variant identified in type 2 

diabetes patients with impaired 

ERK1/2 activation  

Bonnefond et al., 

2012 

R316H    Missense mutation Very rare variant identified in control 

population without obvious functional 

defect  

Bonnefond et al., 

2012 

R330W   Missense mutation Very rare variant identified in type 2 

diabetes patients, associated with type 

2 diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 

R330Q   Missense mutation Very rare variant identified in control 

population without obvious functional 

defect  

Chaste et al., 2010 

A342V   Missense mutation Very rare variant identified in type 2 

diabetes patients, without obvious 

functional defect  

Bonnefond et al., 

2012 

I353T  Missense mutation Very rare variant identified in type 2 

diabetes patients and control 

population, associated with type 2 

diabetes risk, impaired Gi protein 

activation  

Bonnefond et al., 

2012 

A359E  Missense mutation Very rare variant identified in control 

population without obvious functional 

defect  

Bonnefond et al., 

2012 
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Table IV: Mutations in the MTNR1B gene associated with susceptibility to type II diabetes. 
Very rare (minor allelic frequency (MAF) <0.1%) variants.   

Amino 

acid 

change  

Type of variant Description References 

A42P 
Missense mutation 

 

Very rare variant identified in type 2 

diabetes patients, associated with type 

2 diabetes risk, no melatonin binding 

and signaling 

Bonnefond et al., 

2012 

L60R  Missense mutation Very rare variant identified in control 

population and type 2 diabetes 

patients, associated with type 2 

diabetes risk, no melatonin binding 

and signaling 

Andersson et al., 

2010; Bonnefond et 

al., 2012 

P95L    Missense mutation Very rare variant identified in type 2 

diabetes patients, associated with type 

2 diabetes risk, no melatonin binding 

and signaling 

Bonnefond et al., 

2012 

Y308S    Missense mutation Very rare variant identified in type 2 

diabetes patients, associated with type 

2 diabetes risk, no melatonin binding 

and signaling 

Bonnefond et al., 

2012 

 


