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Automatic detection of diffusion modes
within biological membranes using back-
propagation neural network
Patrice Dosset1,2, Patrice Rassam1,2†, Laurent Fernandez1,2†, Cedric Espenel3, Eric Rubinstein4,5,
Emmanuel Margeat1,2 and Pierre-Emmanuel Milhiet1,2,6*

Abstract

Background: Single particle tracking (SPT) is nowadays one of the most popular technique to probe spatio-
temporal dynamics of proteins diffusing within the plasma membrane. Indeed membrane components of
eukaryotic cells are very dynamic molecules and can diffuse according to different motion modes. Trajectories are
often reconstructed frame-by-frame and dynamic properties often evaluated using mean square displacement
(MSD) analysis. However, to get statistically significant results in tracking experiments, analysis of a large number of
trajectories is required and new methods facilitating this analysis are still needed.

Results: In this study we developed a new algorithm based on back-propagation neural network (BPNN) and MSD
analysis using a sliding window. The neural network was trained and cross validated with short synthetic
trajectories. For simulated and experimental data, the algorithm was shown to accurately discriminate between
Brownian, confined and directed diffusion modes within one trajectory, the 3 main of diffusion encountered for
proteins diffusing within biological membranes. It does not require a minimum number of observed particle
displacements within the trajectory to infer the presence of multiple motion states. The size of the sliding window
was small enough to measure local behavior and to detect switches between different diffusion modes for
segments as short as 20 frames. It also provides quantitative information from each segment of these trajectories.
Besides its ability to detect switches between 3 modes of diffusion, this algorithm is able to analyze simultaneously
hundreds of trajectories with a short computational time.

Conclusion: This new algorithm, implemented in powerful and handy software, provides a new conceptual and
versatile tool, to accurately analyze the dynamic behavior of membrane components.

Keywords: Single molecule tracking, Membrane, Diffusion, Trajectory, Neural network

Background
Diffusion and partition of components of the plasma
membrane into specialized areas, especially their lateral
segregation and organization into micro or nanodo-
mains, are key events in cell function. Different domains
involving lipid-protein-protein interactions have been
identified at the cell surface and most of them are
enriched in specific lipids such as sphingolipids and

cholesterol. It has been proposed that these lipids create
peculiar physical properties within membranes, which
are known as liquid ordered phase (reviewed in [1, 2]).
Proteins anchored to the actin cytoskeleton could also
be a barrier confining membrane components in small
regions of plasma membrane [3]. In order to better
understand the molecular mechanisms underlying this
lateral segregation, the diffusive behavior of membrane
components has been investigated in living cells using
techniques such as fluorescence recovery after photo-
bleaching (FRAP), fluorescence correlation spectroscopy
(FCS), and single particle tracking (SPT) (reviewed in
[4]). It has been shown that diffusion of membrane
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proteins in cell membranes is not limited to pure
Brownian diffusion. Indeed, two other modes of motion
have been so far identified within membranes, namely
directed and confined, that includes tethered diffusion
or diffusion in the presence of obstacles [5]. In addition
numerous studies have highlighted that single molecules
could present complex behavior, namely switching be-
tween the different modes of diffusion described above.
For instance, it was early described by Jacobson’s group
that the glycosylphosphatidylinositol (GPI)-anchored pro-
tein Thy1 could be transiently confined (here alternating
between free diffusion and confinement) in specific areas
identified as raft microdomains [6]. More recently, a simi-
lar behavior was observed with another GPI-anchored
proteins (CD59) that can be transiently trapped in con-
finement zones named STALL (Stimulation-Induced
Temporary Arrest of Lateral Diffusion) [7]. A combination
of confined and Brownian diffusion modes within a trajec-
tory has also been observed for transmembrane proteins
such as tetraspanins [5], the epidermal growth factor
(EGF) receptor [8] and the cystic fibrosis transmembrane
conductance regulator (CFTR) channel [9]. Also transient
directed motion was observed for gamma amino butyric
acid (GABA) receptors in nerve growth cones [10].
SPT that consists in visualizing diffusing single mole-

cules and frame-by-frame reconstruction of their trajec-
tories is especially relevant to probe the dynamics of
heterogeneous systems such as biological membranes or,
more generally, diffusion and transport of molecules or
cargos in cells. SPT can locate each particle with sub-
diffraction resolution by reshaping the optical point
spread function and measure its dynamics, instead of an
ensemble average. Nowadays, tracking is mainly per-
formed using fluorescent proteins or chemical dyes. In the
case of single molecule tracking, very stable fluorescent
probes are required such as the organic dye Atto647N
(e.g. [11, 12]) or quantum dots [13]. Labeled molecules are
then detected using high numerical aperture objectives
and highly sensitive and rapid cameras. Using such strat-
egy, it is now possible to track fluorescent single mole-
cules within membranes of living cells and to analyze their
behavior, i.e. diffusion coefficient, velocity and motion
modes. Analysis of diffusion in SPT experiments is gener-
ally performed by connecting the position of fluorescent
dots at different time points into a trajectory and by plot-
ting the mean-square displacement (MSD) < r2 > versus
time lag. From this plot, one can discriminate between
Brownian, confined or directed trajectories (reviewed in
[14]). However, it is also important to identify different
modes of diffusion within a trajectory and three main
types of methodologies have been developed so far. The
first one is based on MSD analysis. Jacobson’s group has
early created an algorithm, which is based on the deter-
mination of a confinement index that corresponds to the

probability that a given protein would stay in a region for
a period of time [6] (see also an improvement of this
method in [15]). An algorithm to detect transient directed
motion has also been developed by Dahan’s group by cal-
culating a speed correlation index describing the high
temporal correlations of the speed in directed motions
compared to Brownian motion [10]. In both techniques a
sliding time window is used to achieve a local analysis.
The second methodology is based on Bayesian analysis.
Masson’s group developed a Bayesian decision tree for the
classification of the mode of motion of single molecule
trajectories, especially suitable to discriminate between
Brownian and confined trajectories [16] whereas Bathe’s
group applied Bayesian model selection to hidden Markov
modeling to infer transient transport states of mRNA-
protein complexes often displaying trajectories alternating
directed and Brownian trajectories [17]. The third meth-
odology is based on a supervised support vector classifica-
tion (called SVM) suitable to segment a trajectory into
different motion modes including directed and confined
behaviors, without sliding windows [18]. Another way to
describe the heterogeneity of plasma membrane is to
evaluate the anomalous sub-diffusion, a hindered diffusion
in which the hindrances change the actual form of the
time dependence, not just the numerical value of the dif-
fusion coefficient [19]. Anomalous diffusion is described
by the power law < r2 > ~Dtα where α equal to 1 for
Brownian diffusion, <1 for sub-diffusion and >1 for super-
diffusion. The presence of multiple diffusion regimes
within a trajectory can also be determined by analyzing
the probability distribution of square displacement
(PDSD) [20–22]. In this case, PDSD describes the prob-
ability that a particle will be found within a circle of radius
(r) at time (t). With the two last methods, it is impossible
to know when and where the change in the diffusion
mode occurs.
In this paper we present a new approach to automat-

ically discriminate between different modes of mem-
brane diffusion within the same trajectory using back-
propagation neural network (BPNN). BPNN is the most
widely used type of artificial neural networks (reviewed
in [23]). It typically consists in many simple processing
elements called neurons, which are grouped in layers.
All nodes of a layer are connected to all the nodes in
the adjacent layers by interconnections called synapses
(Fig. 1a). Here BPNN was trained using simulated
Brownian, confined, or directed trajectories to deter-
mine the motion modes of single molecule within a tra-
jectory thanks to a sliding window. Validation of the
algorithm in identifying different motion modes was
achieved using synthetic data. The algorithm was then
tested with trajectories recorded in living cells, espe-
cially a transmembrane protein diffusing within the
plasma membrane.
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Results
A. Backpropagation Neural Networks Architecture and
algorithm
BPNN was created with one hidden layer between input
and output units (Fig. 1). All nodes of a layer were con-
nected to all the nodes in the adjacent layers. The BPNN
included two working phases, the learning and the recall

phase. During the learning phase, known data sets were
used as a training signal in input and output layers. The
first operation for the learning phase is the feed-forward
operation. During this operation, each input neuron re-
ceives an input signal and broadcasts this signal to the
connected neurons in the hidden layer. Each neuron in
the hidden layer computes its activation and sends the

Fig. 1 Architecture of the neural networks. a Upper panel: schematic view of the three-layer back propagation neural network (BPNN). Each input
value is passed through the neural network. The output value is compared with the desired target output, an error is computed and this error is
propagated backward through the network to each node. Lower panel: graphical representation of the model neuron j or threshold unit. The
threshold unit receives input, called Xi, from m other units. The associated weight is called Wi. The total input Aj is the sum over all inputs. The
activation function f (Aj) of the neuron is a sigmoid and Yj is the output of the neuron. b Schematic diagram of the algorithm used to detect 2D
diffusion modes within a trajectory. The trajectory is split in overlapping segments of length S1 using a sliding window. The MSD curve is calculated for
each segment, normalized, presented to the neural network and classified according to three main diffusion modes (Brownian, directed or confined). A
score (output value) is obtained for each frame of the movie and attributed to all the frames of the sliding window
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result to the output neuron. Mathematically, a 3-layer
BPNN with m, n, and p, the number of input, hidden
and output nodes, respectively, is based on the following
equation:

Ok ¼ f ð
Xn
j¼1

Wjk � f ð
Xm
i¼1

WijXiÞÞ ð1Þ

Ok is the calculated output of the kth neuron in the
output layer, Xi the input values of the network, Wij the
connection weight from node i (input layer) to node j
(hidden layer), Wjk the connection weight from node j
(hidden layer) to node k (output layer), f is the activation
function of the neuron which is classically a sigmoid
function as defined in Eq. (2).

f xð Þ ¼ 1
1þ e−x

ð2Þ

Targeted outputs from each training pattern are com-
pared with the actual activation level of the output units
and the difference between the two determines the sys-
tem error (Eq. 3).

E ¼ 0:5
Xp
k¼1

Ok−Tkð Þ2 ð3Þ

p is the number of output neurons, Ok and Tk are the
calculated output and the target output, respectively, of
the kth neuron in the output layer.
The second operation of the learning phase is the back-

ward pass in which a gradient descent method is used to
minimize the error in the training set. Starting from the
output layer, the error is backward propagated through
the network, layer by layer, by recursively computing the
local gradient error of each neuron. The connection
weight is then changed in proportion to the negative of an
error derivative using the following equation:

ΔWi;j t þ 1ð Þ ¼ −η
∂E

∂Wi;j
þ αΔWi;j tð Þ ð4Þ

ΔWi,j(t + 1) is the weight increment minimizing E be-
tween the jth neuron and the ith neuron at the (t + 1) th

iteration. η is the learning rate and α is the momentum
parameter. α is chosen between 0 and 1, typically 0.9, a
value allowing high learning rates [24]. Using a momen-
tum term is the simplest method to avoid oscillation
problems when searching the minimum value of the
error surface. This forward-backward process is repeated
for each input signal.
The BPNN is trained by repeatedly presenting a series

of input/output pattern sets to minimize the mean
squared error (MSE) (Eq. 5):

MSE ¼ 1
nxp

Xn
l¼1

Xp
k¼1

Tlk−Olkð Þ
2

ð5Þ

n is the number of input vector and p is the number
of output neurons. Olk and Tlk respectively denote the
calculated output and the desired output of the kth

neuron when the input vector l is applied to the net-
work. The recall phase is performed in one pass using
the weight obtained in the learning phase.
The input signal of this BPNN is the normalized

mean square displacement (MSD) of a trajectory as a
function of time. MSD analysis is one of the most
widely used approaches to extract reliable values of the
diffusion coefficient D and consists in plotting the MSD
versus time lag (δt) according to the equation:

MSD nδtð Þ ¼ 1
N−1−n

XN−1−n

j¼1

n
x jδt þ nδtð Þ−x jδtð Þ½ �2

þ y jδt þ nδtð Þ−y jδtð Þ½ �2
o

ð6Þ
where δt is the time interval between two successive

frames, x (t) and y (t) are the particle coordinates at time
t, N is the total number of frames, and n is the number
of time intervals [25] (for more details, see the Methods
section). For Brownian motion, the MSD curve increases
linearly with time increment δt. The curve exhibits an
upward or downward curvature for directed or confined
motions, respectively. In our system, the 3 types of
movements described above are discriminated by analyz-
ing the trajectory with the algorithm using a sliding win-
dow with a size S1 (Fig. 1b). A three-layer BPNN with
three output nodes was constructed, one for each mo-
tion type, namely Brownian, directed and confined. We
chose one hidden layer with five hidden nodes (see more
details in the Materials and Methods section). Input var-
iables were normalized and scaled into values in the
range of 0.0–1.0). Three output values are assigned to
each motion mode and normalized.

Training procedure and validation sets
The network was trained using data sets of simulated tra-
jectories. One thousand trajectories of 3.1 s duration (31
frames, the size of the sliding window in this example)
were simulated for each type of diffusion mode with a
100 ms time increment. For confined diffusion, the par-
ticle displays a Brownian diffusion in a constrained area
with a variable diameter value L. For directed diffusion, a
term of constant drift velocity V in one direction all along
the trajectory is added to the Brownian movement. One
part of the data sets is used for training, the other one for
cross validating with different parameters (see Material
and Methods).
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The performance of a trained BPNN was first evalu-
ated using new naive simulated patterns and by comput-
ing the percentage error between calculated output and
expected values (probability of detection). It increased
for a given diffusion coefficient when the confinement
size decreased for confined trajectories (Fig. 2a) or when
the velocity increases for directed trajectories (Fig. 2b).
The learning procedure was performed with 3 different
datasets of trajectories of 2.1, 3.1 and 4.1 s durations.
Under our conditions, a similar probability of detection
of directed diffusion modes was obtained for 31 and 41
frames. The size of the sliding window was therefore
fixed to 31 frames (blue curve in Fig. 2), a value at which
the probability of detection of 1 μm diameter confine-
ment (a reasonable size of confinement in cell mem-
branes) is still possible and obviously allows detecting
smaller segments as compared to 41 frames. Considering
2 directed trajectories T0 and T1 with respective diffu-
sion coefficient D0 and D1 and velocity V0 and V1, the
normalized MSD curves will be similar if:

V 1 ¼ V 0

ffiffiffiffiffiffi
D1

D0

r
ð7Þ

Similarly the normalized MSD curves will be similar
between 2 confined trajectories T0 and T1 with respect-
ive diffusion coefficient D0 and D1 and confinement
diameter L0 and L1, if:

L1 ¼ L0

ffiffiffiffiffiffi
D1

D0

r
ð8Þ

Determination of the detection threshold of confined and
directed motion within a trajectory
The 31 frames sliding window described above is used
to split the trajectory in different segments and is posi-
tioned at the point i = (S1-1)/2 of the trajectory in order
to define a first segment containing the first 31 points.
The MSD curve is calculated for this 31 frames trajec-
tory and is presented as an input to the neural network
after normalization. The 3 output values of the neural
network OB, OC and OD correspond to the probability of
the particle to diffuse according to one of the 3 diffusion
modes (Brownian, confined and directed, respectively).
These 3 values are attributed for each frame of the slid-
ing windows. The sliding window is then translated to
the point i + 1 in order to analyze the next segment of
the trajectory and the procedure is repeated up to the
point i + n = N-[(S1-1)/2]. For each frame of the trajec-
tory, the average of output values (OB, OCand OD) corre-
sponding to the probability of assignment of one of the
3 diffusion modes of each frame during BPNN analysis,
are plotted as a function of time (several output values
are provided for a given frame due to the sliding

windows). However, statistically, some pure Brownian
trajectories can transiently display a behavior that is
similar to confined or directed ones. Therefore, we de-
termined a threshold value in order to distinguish the
true confined or directed part of the trajectory from that

Fig. 2 Percentage of detection of confined and directed diffusion
modes as a function of the size of the sliding window S1. The
probability of detection of confinement or directed motion in
simulated trajectories was calculated for different length of segment
used to calculate the MSD (S1 equal to 21 (red), 31 (blue) or 41
(green) frames). The probability of detection of confinement in
trajectories is expressed as a function of the diameter confinement L
(a) whereas the probability of detection of directed motion is
expressed as a function of the velocity (b)
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due to Brownian fluctuations. To do so, 100 Brownian
trajectories of 1000 frames were generated (increment of
time, 100 ms; D, 0.25 μm2/s) and analyzed. We then
plotted the BPNN output values threshold YC (or YD) as
a function of the number of consecutive frames (from 5
to 45 frames) for which the percentage of falsely attrib-
uted as confined (or directed) segments by the neural
network did not excess 5 % of the total number of
frames of the Brownian trajectory (95 % confidence)
(Fig. 3). These thresholds are used to identify the seg-
ments that are confined or directed within a trajectory
(see an example in Fig. 4c).

B. Validation of the algorithm
The algorithm was first validated using 200 synthetic
trajectories of 400 frames, containing one 50 frames seg-
ment of both confinement and directed motion (1 μm
for the confinement diameter and 1.2 μm/s for the vel-
ocity, respectively; 100 ms for the time increment and
0.25 μm2/s for the diffusion coefficient), tested with or
without a 30 nm localization noise. The percentage of
decision based on BPNN corresponds to the number of
positive decision for a specific motion mode detected for
a given frame and normalized to 1 or -1 for confined or
directed trajectories, respectively (Fig. 4a). Confined and
directed segments were detected by the BPNN with
good accuracy (99 and 78 % detection of the confined
and directed segments within a 50 frames segment). An
example of trajectory is shown in Fig. 4b and c. Duration
of confinement and directed segments was slightly

underestimated by the BPNN, respectively 4.6 s and
4.7 s instead of 5 s. Data from part of the trajectory
identified as directed or confined were respectively fitted
with the equations 2 and 3 described in the Methods
section. The confinement diameter and the velocity were
estimated to be 1.06 μm and 1.2 μm/s, respectively.
These values are in good agreement with the parameters
of the simulation. As expected, apparent diffusion coeffi-
cients from Brownian segments were estimated around
0.25 μm2/s. No changes in the BPNN-based decision
were observed when adding 30 nm positioning noise.
We also evaluated the capacity of BPNN to detect

small segments within a trajectory. 200 simulated trajec-
tories of 300 frames containing confined segments of
various lengths were created and the probability of de-
tection named decision based on BPNN was calculated
as a function of the segment length. A similar process
was used for directed motion mode (Additional file 1:
Figure S1). Our results indicate that our algorithm is
able to detect 99 and 90 % of the confined or directed
motion modes within a 40 frames segment, respectively.
These values dropped down to 74 and 72 % for 30
frames segments and to 27 and 43 % for a 20 frames seg-
ment. The percentage of detection dropped below 10 %
when the length of the segment is smaller than 10
frames. It is important to indicate that this evaluation
has been performed with diffusion parameters close to
those often encountered within biological membranes
(100 ms time integration, a 0.25 μm2/s diffusion coeffi-
cient of the particles, velocity ranging from 1 to 3 μm/s
for directed trajectories and confinement diameter from
0.5 to 1.2 μm). The percentage of detection could be
largely improved for a higher velocity (60 % and 100 %
detection for V = 4 μm/s using 10 and 20 frames, re-
spectively; data not shown). Similarly decreasing the
sliding window improves the detection accuracy for con-
fined trajectories. Our objective here was to provide as a
proof of concept a tool with efficient detection of both
directed and confined segments within the same
trajectory.

C. Comparison with other methods
As mentioned in introduction, several algorithms have been
developed to segment different types of motion within tra-
jectories. We then compared our BPNN-based method to 3
freely available algorithms. Two methods are based on
Bayesian analysis and specialized in the detection of con-
fined (Bayesian Information Criteria named BIC [16]) or
directed (Hidden Markov Modeling (HMM)-Bayes [17])
segments within a trajectory. The third method is a ma-
chine learning method based on trajectory segmentation
using supervised support vector (SVM) classification [18].
The comparison was performed using setting parameters
and simulated trajectories similar to what is described

Fig. 3 Determination of the detection threshold of confined and
directed diffusion modes. The BPNN output thresholds for confined
diffusion mode YC (empty circles) and directed diffusion mode YD
(empty squares) were calculated for confined diffusion (YC) mode
(empty circles) and directed diffusion mode (empty squares) by
plotting as a function of the number of consecutive frames (the
length of detected segment) the BPNN output for which the neural
network falsely indicated, in 5 % of the cases, a confined or directed
motion for a Brownian trajectory
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above, namely trajectories of 300 frames including one
directed motion segment and one confinement segment al-
ways localized at the same position, both with a length of
50 frames, the velocity randomly ranging from 1 to 3 μm/s
for directed motion and one confinement segment with di-
ameters ranging from 0.5 and 1.2 μm for confined motion
(Additional file 2: Figure S2). Under theses conditions, the
four methods were found very specific with detection ac-
curacy larger than 95 % (the SVM method was the most
specific with 99.9 % detection accuracy). Larger differences
were observed in terms of sensitivity and our algorithm was
able to respectively detect 75.3 and 83.1 % of confined and
directed 50 frames segments within a 300 frames trajectory
(Additional file 2: Figure S2). We also evaluated the time of
calculation that is important to take into account since SPT
requires a large sampling to get significant results. Most
likely because our algorithm was developed in the Visual C
++ environment, the computational time was very low, typ-
ically less than 1 s for analyzing a 300 frames trajectory (D,
0.25 μm2/s; integration time, 100 ms) using a PC Windows
7 Intel (R) Core 5TM) i7-2640 M CPU 2.8 GHz (data not
shown).

D. Segmentation of real trajectories
The algorithm was then used to segment trajectories
reconstructed from movies recorded in living cells. The
BPNN was used in the context of the tracking of YFP-
labeled Moloney Murine Leukemia viruses (MLV) in hu-
man embryonic kidney (HEK) cells using total internal

a

b

c

Fig. 4 Analysis of the motion modes within synthetic trajectories. a
Detection probability using BPNN. 200 trajectories of 400 frames
including one directed motion segment with 1.2 μm/s velocity and
one confinement segment with 1 μm diameter were analyzed with
BPPN (confined in light grey, directed in dark grey; D = 0.25 μm2/s,
integration time = 100 ms; each 50 frames segment is always
localized at the same position). The percentage of decision based on
BPNN corresponds to the number of positive decision for a specific
motion mode detected for a given frame over 200 trajectories and
normalized to 1 or -1 for confined or directed trajectories,
respectively (black, confined trajectories; grey, directed trajectories).
The algorithm was also tested with a 30 nm localization noise
(dotted lines in the graph). b The upper panel shows a synthetic
trajectory of 40 s (400 frames) including a transient confinement
(from 10 to 15 s) with a diameter of 1 μm (red trace, zoomed in the
red circle) and a transient directed motion (30 to 35 s) with a
velocity V = 1.2 μm/s (blue trace). The Brownian part is in black. The
diffusion coefficient D is 0.25 μm2/s and the integration time
100 ms. Scale bar, 1 μm. c The Lower panel is the plot of the
probability of detection of motion mode (BPNN output values) as a
function of the duration time of the trajectory for confined (red) or
directed (blue) motion. Confined (bold red trace) and directed (bold
blue trace) segments are respectively detected between 10.0 and
14.6 s and between 30.6 and 35.3 s as shown by grey lines. The
detection threshold values correspond to a probability of detection
with a 95 % confidence (see Fig. 4). The calculated diameter of
confinement is 1.06 μm

Dosset et al. BMC Bioinformatics  (2016) 17:197 Page 7 of 12



reflection fluorescence (TIRF) microscopy (see the
Methods section). The behavior of such a viral particle
can be Brownian, confined when trapped within mem-
brane of host cells or directed when the particle is
exported from the cytoplasm to the plasma membrane
[26, 27]. An example of such a complex trajectory alter-
nating between different motion modes is shown in
Fig. 5a and the analysis by the neural network in Fig. 5b.
The algorithm detects three different motion modes
within the trajectory. A confinement was detected dur-
ing 6.1 s in a zone of 170 nm diameter, a size in good
agreement with a previous report for murine polyoma
virus-like particles [28]. Directed motion was also ob-
served during 4 s with a velocity of 0.38 μm/s that

compares well with that previously reported for MLV
(0.57 μm/s in [29]). The rest of the trajectory was
Brownian. We also tested the BPNN algorithm by ana-
lyzing a set of trajectories of the tetraspanin CD9
recorded in HeLa cells (Fig. 6). This molecule is a trans-
membrane protein expressed in the plasma membrane
that has been demonstrated to diffuse mostly in a
Brownian mode but can be transiently or permanently
confined in membrane areas enriched in tetraspanins
and their partners (reviewed in [30]). Trajectories in-
cluding transient confinement of CD9 molecules are
called “mixed trajectories” because of the combination
of Brownian and confined behavior. Apparent diffusion
coefficient of 1000 CD9 molecules was first determined
using the first points (D1-4) of the plot of the MSD as a
function of time (upper part of the scatter plot in Fig. 6,
each dot representing one molecule) and the mean value
of CD9 apparent diffusion coefficient (0.23 ± 0.04 μm2/s)
was similar to that previously reported in the plasma
membrane of HeLa cells [31]. Interestingly the BPNN
was able to directly detect mixed trajectories (blue dots
in the scatter plot in Fig. 6), in addition to pure Brown-
ian (green) and pure confined (red) trajectories (38.5,
45.6 and 15.9 % of the total trajectories, respectively).
These percentages also compared well with those de-
scribed in [31]. Similarly to what is described in Fig. 6,
the BPNN provided the number of frames of each iden-
tified segments and the corresponding apparent diffu-
sion coefficient (D1-4). The diameter of confinement
associated to these segments was calculated from MSD
analysis and, in agreement with a previous report, the
diameter of confinement was smaller for pure confined
trajectories as compared to the one of confined segment
in mixed trajectories (215 ± 68 nm versus 273 ± 89 nm).

Discussion
In this work we propose a new approach to identify and
automatically characterize the diffusion behavior of single
molecules encountered within biological membranes. The
novel algorithm we have developed is based on artificial
neural network analysis that has already been applied in
biology, e.g. to predict protein secondary structures [32].
Such a computational approach is especially suitable to
solve complex behavior with non-linear relationships be-
tween independent and dependent variables. We demon-
strate here that it can be applied to probe the heterogeneity
encountered within trajectories of membrane components
of eukaryotic cells by segmenting trajectories into different
modes of diffusion with a good accuracy. Based on MSD
analysis, the algorithm is able to accurately discriminate
between Brownian, confined and directed diffusion over a
wide range of confinement areas and velocity and it is
therefore possible to detect transition between these 3
modes. This is especially interesting in the light of

Fig. 5 Analysis of the motion modes within a real trajectory of a
Moloney Murine Leukemia virus (MLV) particle in HEK cells. The
upper panel shows the trajectory of a MLV particle containing YFP-
tagged Gag proteins recorded in infected 293 HEK cells, tracked
using TIRF microscopy and recorded at a 100 ms integration time.
The confinement area is zoomed in the red circle. The lower panel is
the plot of the probability of detection of motion mode (BPNN output
values) as a function of the duration time of the trajectory. A zone of
confinement is detected during 6.1 s (bold red trace) with a diffusion
coefficient of 0.01 μm2/s and a diameter of 170 nm. Directed motion is
indicated during 4 s with a diffusion coefficient of 0.012 μm2/s and a
velocity of 0.38 μm/s. Scale bar, 500 nm
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observations showing that diffusing molecules or particles
often display a complex behavior rather than a single mo-
tion mode. Such an analysis can provide important infor-
mation about the mechanisms of membrane partitioning in
living cells, especially when combining SPT and ensemble
labeling (see one example in [11]).
The new algorithm is based on a BPNN trained with

short synthetic trajectories of particles displaying Brownian,
confined or directed motion modes. We intentionally chose
sets of synthetic trajectories with diffusion parameters close
to the values mainly described in the literature for proteins
diffusing within biological membranes using single mol-
ecule fluorescence microscopy. The algorithm could be
eventually further developed by training the BPNN with a
larger range of values for the different modes of diffusion,
but could also included new mode of diffusion such as slow
and fast drifting motion (this detection is already available
with the SVM method). It could probably be extended to
the analysis based on anomalous diffusion.

Similarly to other trajectory segmentation-based algo-
rithms for analyzing motion modes [8, 18, 33, 34], detection
was performed using a sliding window allowing detection
of temporal changes in the mode of motion within a trajec-
tory. Here, we applied a sliding window of 31 frames corre-
sponding to the length of synthetic trajectories used for
BPNN training. We chose a segment length small enough
to measure local behavior but large enough to get suffi-
ciently accurate output values. Under these conditions, it
was possible to confidently identify motion modes for seg-
ment sizes as short as 20 frames. This value compared well
with other algorithms that do not use a sliding window, e.g.
the segmentation of trajectories based on based on super-
vised support vector classification that requires a minimum
segment length of 25 frames to get 60 % detection rate [18].
Some algorithms are able to detect smaller segments such
as the HMM-Bayes algorithm that is very accurate in de-
tecting directed diffusion segments of 5 frames. However it
requires a minimum number of observed particle

a

b

c

Fig. 6 Single molecule tracking of the tetraspanin CD9 in HeLa cells. The (a) panel is a DIC image of a single HeLa cell and the red lines
represents some recorded trajectories of single molecules (the scale bar is 5 μm). The lower panel (b) represents the scatter plots of CD9
apparent diffusion coefficients calculated from the MSD analysis of 1000 trajectories in HeLa cells. Each point represents one trajectory and the
diffusion behavior, which has been determined using the BPNN neural network, is indicated with a color code (red, Confined named (c) green,
Brownian named (b) blue, mixed named M). The upper scatter plot corresponds to the totality of the trajectories (named all). Panel (c) shows the
confinement diameter calculated from the confinement segments identified using BPNN for confined and mixed trajectories
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displacements within the trajectory to infer the presence of
multiple motion states [17] whereas our algorithm does not
require prior information, a very important feature since
the diffusion-state switching occurrences is a stochastic
process and that the trajectories recorded with organic dyes
are generally short due to low photo-stability. Under the ex-
perimental conditions tested in this paper, which mimic the
plasma membrane of eukaryotic cells, our method was
found very sensitive, specific and versatile, able to accur-
ately detect both confined and directed segments within
trajectories. It appears to be very competitive in regards to
the results obtained with 3 other methods already freely
available, at least in the conditions tested in this study. In
addition, the computational time required by our algorithm
is very low, a very important feature since SPT requires the
analysis of several hundreds of trajectories. This is partly
due to its implementation in Visual C++, which is stable
even for high load. The BPNN algorithm could be applied
to high-throughput analysis or screens. Another interesting
property lies in its absence of sensitivity to the noise posi-
tioning (at least for 30 nm).

Conclusion
We demonstrated in this study that our algorithm pro-
vides a new conceptual, versatile and useful tool in dis-
secting complex trajectories, identifying different motion
modes and providing diffusion-associated parameters of
the identified segments. It requires the adjustment of a
minimal set of parameters. Combined with our home-
made software named PaTrack, which is freely available
on the website of the laboratory [35], our algorithm can
accurately analyze membrane dynamics of single mole-
cules or larger assemblies, such as viruses [36].

Methods
Generation of synthetic trajectories
Brownian diffusion in two dimensions was simulated as
a random walk process. X and Y coordinates of each par-
ticle were sampled step by step from normal distribution
with zero mean and standard deviation of

ffiffiffiffiffiffiffiffiffi
2Dτ

p
where

D is the diffusion coefficient and τ the time interval be-
tween 2 frames. For confined trajectories, the particles
freely diffuse inside a domain with a diameter L. Di-
rected trajectories were constructed by adding a velocity
term V.

Learning and cross validation of BPNN
We first built a BPNN with one hidden layer and used
using cross validation to evaluate over fitting and to de-
termine the optimal number of hidden neurons. 3000
synthetic trajectories of 31 frames (1000 for each mode)
were created and split in 2 sets, one for learning (3 × 700
trajectories) and one for cross validating (3 × 300

trajectories). Confinement diameter randomly varied be-
tween 0.25 and 2 μm in confined trajectories and v ran-
domly varied between 0.5 and 1.5 μm/s. Diffusion
coefficient and time intervals were 0.25 μm2/s and
100 ms, respectively. The MSD curve was calculated and
used as a BPNN input signal. During the learning phase
the mean square error (MSE) was regularly calculated
for the set of trajectories used for cross validation. Since
back propagation uses a gradient-descent procedure, the
error for the learning process was decreasing with the
number of iterations and the training was stopped when
the network started to overfit the data, which corre-
sponds to a MSE increase for the cross validation set
[23]. The learning phase was performed for different
number of hidden neurons and the combination given
the lowest MSE for the cross validation was chosen (set
to 5 here). Adding another hidden layer did not improve
the performance of the neural network.

BPNN validation
In order to validate the BPNN algorithm, heterogeneous
synthetic trajectories were created by assembling different
segments with different motion modes (the properties of
synthetic trajectories are mentioned in the results section).
When mentioned, a static positioning noise Pn (localization
error) of 30 nm was added to the trajectory by an additional
displacement taken from a Gaussian distribution with
standard deviation 2Pn with an angle randomly distributed
over [0,2π]. This Gaussian noise models all sources of noise,
i.e. Poissonian photon shot noise due to signal and fluores-
cence background, detector noise, pixelization effects, and
error of the localization algorithm using a Gaussian repre-
sentation [16].

Tracking procedure
All movies or simulated data were analyzed using home-
made software named “PaTrack” developed in the Visual C
++ environment (Microsoft, Washington, USA), in which
the BPNN-based algorithm has been implemented. This
software is available online using the link “http://
www.cbs.cnrs.fr/index.php/en/platforms-facilities/softwares”
where it can be downloaded with the complete in-
structions manual. Single molecule tracking was based
on point spread function (PSF) fitting. MSD was
computed according to Equation 7. Apparent diffu-
sion coefficient values were determined from a linear
fit between the first and fourth points D1-4 of the
MSD versus time lag as previously reported [3]. Once
the associated motion modes were identified by the
BPNN, segments were fitted with the following equation:
MSD (Δt) = 4DΔt for a simple diffusion, MSD (Δt) = 4DΔt
+ V2(Δt) 2 for directed diffusion and MSD (Δt) = (1/3)
L2[1–e (-12DΔt/L2)] for confined diffusion, where V is the
constant drift velocity, L2 the area of the confined region

Dosset et al. BMC Bioinformatics  (2016) 17:197 Page 10 of 12

http://www.cbs.cnrs.fr/index.php/en/platforms-facilities/softwares
http://www.cbs.cnrs.fr/index.php/en/platforms-facilities/softwares


and D the diffusion coefficient. Data analysis of the differ-
ent particles is performed step by step.

Tracking in living cells
SPT experiments were carried out as previously de-
scribed [11, 31]. For CD9, HeLa cells were plated on 25-
mm Ø glass coverslips and incubated in culture medium
at 37 °C for 10 min with Atto647N-labeled Fab frag-
ments of the anti-CD9 mAb, SYB-1 [37]. A home made
objective-type TIRF setup allowing multicolor single
molecule imaging and equipped with an αPlan Fluor
100×/1,45 NA objective (Zeiss, Le Peck, France Brattle-
boro, VT) was used. All the experiments were done with
a 100 ms integration time. For MLV, human embryonic
kidney HEK293 cells were transfected with the MLV
YFP-GAG vector [38] using Lipofectamine (Invitrogen).
Then, they were washed and incubated with the trans-
fection mixture for 6 h. Fresh media was then added and
dynamics of Gag molecules was investigated 24 h later
at 37 °C as described above.
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the segment length of confined or directed diffusion modes within a
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corresponds to the number of positive decision for a specific motion
mode detected for a given frame over 200 trajectories and normalized to
1 or-1 for confined or directed trajectories, respectively. A 30 nm
localization noise was added to the trajectory. (PDF 303 kb)

Additional file 2: Figure S2. - Comparison of the percentage of decision
using the BPNN, Hidden Markov Modeling (HMM)-Bayes, Bayesian Information
Criterion (BIC) or Support Vector Machines (SVM) algorithms. 200 simulated
trajectories of 300 frames mimicking diffusion within plasma membranes,
including one directed motion segment with velocity randomly ranging from
1 to 3 μm/s and one confinement segment with diameters ranging from 0.5
and 1.2 μm, were analyzed with BPPN, HMM-Bayes, BIC or SVM. Within a
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The diffusion coefficient D is 0.25 μm2/s and the integration time 100 ms. A
30 nm localization noise Pn was added to the trajectory (see Material and
Methods section). The percentage of decision based on BPNN corresponds to
the number of positive decision for a specific motion mode detected for a
given frame over 200 trajectories and normalized to 1 or-1 for confined (light

grey) or directed (dark grey) trajectories, respectively. The HMM-Bayes and the
BIC algorithms can only detect directed or confined segments within a
trajectory, respectively. The tables at the bottom detail the performance
of the 4 algorithms in terms of sensitivity and specificity for detecting
confined and directed motion modes in the range of parameters tested
in this study (D = 0.25 μm2/s, 1 μm/s < v < 3 μm/s, 0.5 μm < L < 1.2 μm).
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