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Abstract (200 words) 

 

Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease (SVD). 

Several magnetic resonance imaging (MRI) markers have therefore emerged, providing new information 

on the diagnosis, progression and mechanisms of SVD. Yet, the reproducibility of these SVD markers 

has received little attention despite being widely used in cross-sectional and longitudinal studies. This 

review focuses on the main SVD-related markers on MRI including: white matter hyperintensities, 

lacunes, dilated perivascular spaces, microbleeds and brain volume. The aim is to summarise, for each 

marker, what is currently known about: 1) its reproducibility in studies with a scan-rescan procedure 

either in single or multi centre settings; 2) the acquisition-related sources of variability; and, 3) the 

techniques used to minimise this variability. Based on the results, we discuss technical and other 

challenges that need to be overcome in order for these markers to bereliablyused as outcome 

measures in future clinical trials. We also highlight the key points that need to be considered when 

designing multicentre MRI studiesof SVD. 

Keywords: MRI, cerebral small vessel disease, marker, brain volume, atrophy, white matter 

hyperintensities, microbleeds, lacunes, perivascular spaces, reproducibility, repeatability, variability 
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1. Introduction 

 

Cerebral small vessel disease (SVD) is a major source of cognitive impairment and is the 

second most common cause of dementia in older aged people.1 SVD is typically sporadic and related to 

aging and vascular risk factors, but can also be caused by genetic conditions2. The most frequent 

sporadic forms of SVD are arteriolosclerosis and cerebral amyloid angiopathy (CAA). A significant 

proportion of patients with SVD have associated neurodegenerative diseases such as Alzheimer‟s 

Disease (AD), which can lead to a mixed dementia.3 In therapeutic trials for dementias, surrogate 

imaging markers of both pathophysiological processes should ideally be used to account for the 

potential mixed origin. 

Pathological features of SVD are heterogeneous and out of reach of current in vivo imaging 

techniques. Nonetheless, parenchymal lesions presumed to be caused by small vessel changes have 

been adopted as markers of SVD, giving neuroimaging a central role for diagnosis and 

characterization4.The spectrum of brain magnetic resonance imaging (MRI) manifestations of SVD is 

wide, ranging from minor white matter hyperintensities (WMH) often seen in population-based studies to 

numerous subcortical lesions. Indeed, MRI using various sequences allows an evaluation of several 

imaging markers related to SVD, including recent small subcortical infarcts, WMH, lacunes, enlarged 

perivascular spaces (PVS), cerebral microbleeds (CMB), and brain atrophy, as summarized by an 

international working group defining neuroimaging standards (STRIVE) for research into SVD5. 

The uncertain or lower reproducibility of these MRI markers, especially across centres, is a 

major concern in cross-sectionaland longitudinal observationalstudies as well as inclinical trials. Indeed, 

a key challenge is to minimize the variability caused by technological and subject-related factors. Such 

variability may confound the detection of disease- or treatment-related MRI changes, thereby limiting 

the power to detect and follow the progression of imaging markers of SVD. From the patient being 

imaged to the final imaging marker of interest, which is quantified by an expertrater or an automatic 

image-processing algorithm, there are several sources of variability. These can includesubject-related 

physiological changes or instrument-related factors such as field strength, head coil, gradients and 

sequence parameters (see Fig. 1). Each can affect the reproducibility of the marker. Additional variation 

may be introduced at the image post-processing stage, depending on which software is used for 

inhomogeneities correction or tissue segmentation, for example. The definition of lesions and the 

interpretation of images by several experts may be other sources of variability. The measurement of 

each MRI marker therefore depends on several factors, the effects of which need to be minimized, 

corrected or taken into accountin a posteriori analyses for studies to be comparable. 
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The aimsof this review are to summarise current knowledge regarding the reproducibility and 

variability of quantitative imaging markers of SVD including WMH,lacunes, PVS, CMB and brain volume 

in both single centre and multicentre contexts. To highlight technical solutions for common problems 

and to identify the remaining challengesthat need to be overcome for such markers to be considered 

valid and reliable. Other SVD-related MRI markers, due to their acute manifestation (recent small 

subcortical infarct) or their so far non-quantitative assessment (cortical superficial siderosis, cortical 

microinfarcts) have not been examined in reproducibility studies to our knowledge and hence were not 

included in the literature search. Post-processing tools or expert ratings that also contribute to the global 

variability and accuracy of the final marker measurement are beyond the scope of this review. For each 

MRI marker of SVD we review: 1) its reproducibility in studies with a scan-rescan designin single or 

across multiple centres; 2) the acquisition-related sources of variability; and, 3) the techniques that can 

be used to minimise methodological limitations. We also discuss those factors that need to be 

considered to deal with image variability inherent in MRI markers in multicentre design studies such as 

clinical trials or longitudinal studies. 

2. Methods 

Search strategy and selection criteria 

This review was designed to focus on the reproducibility and variability of well-defined MRI 

markers of SVD: WMH, lacunes, PVS, CMB andbrain volume. 

For each biomarker, taking into account the vocabulary heterogeneity of each marker (see 

supplementary material), a PubMed search has been conducted up toAugust 2015 14th with the 

associated terms “MRI” AND (“variability” OR “reproducibility” OR “reliability” OR “consistency”). Papers 

published before 2002 were not considered to focus on recent MR technology. Reviews, conference 

abstracts and articles not written in english were excluded from analysis.Articles from our personal 

databases were also incorporated to the search. To be included in the reproducibility summary (Table 

1), studies had to include subjects who underwent a scan-rescan procedure either at the same centre 

or/and at different centres. Filtering was firstly based on review of the title and abstract for relevance. 

Studies were not mandatorily related to SVD (e.g., multiple sclerosis or AD) to include the largest 

number of studies about variability and reliability for the MRI markers of interest. 

Term and metrics definitions 

As the development and implementation of quantitative imaging biomarkers has been 

hampered in part by inconsistent use of terminology, an interdisciplinary group of radiologists, 



 6 

statisticians, physicists, and other researchers worked to develop a comprehensive terminology to serve 

as a foundation for quantitative imaging biomarker claims6. Definitions agreed are reproduced in 

supplementary material.  

In order to simplify the manuscript reading, we will only use the terms “within-centre 

reproducibility” (strictly speaking, the repeatability) to report results from scan-rescan procedures in a 

single centre; and “between-centre reproducibility” to report results from multicentre studies.  

Several metrics are used to measure variability orreproducibility across different studies. A brief 

description of each is included in supplementary material. 

3. Results 

3.1 Variation in the number of studies and in the evaluation of the 

reproducibility  

Number of studies 

There was large variation in the number of studies conducted for assessing the reproducibility 

and variability of each SVD MRI marker. Brain volume and brain atrophy measures have received the 

most attention (19 studies with within or/and between centre repeated scans of the same subjects)7-22. 

This is probably related to the significant imaging research efforts in AD community during the last 

decade in which cerebral atrophy was of primary concern. Particularly, the Alzheimer‟s Disease 

Neuroimaging Initiative (ADNI) permitted the most important studies on this aspect, including repeated 

examinations of the same subject on the same or on different scanners 14, 17. Only five studies were 

found that evaluated the within-centre or between-centre variability of WMH measures13, 23-26(Table 1). 

Few studies examined the potential sources of variability of WMH volumes, despite a large number of 

image processing techniques attempting to quantify them accurately. Finally, there were only four 

studies on CMB25, 27-29 and no studyon the variability of PVS and lacunes. This probably reflects the 

absence of consensus until recently about radiological terminology and definitions as well as difficulties 

to automatically quantify these markers30. Indeed, computational segmentation of lacunes and 

perivascular spaces has not yet been validated in a specific study. Overall, the reproducibility of 

measure of longitudinal change, i.e. the evolution of a given marker as a function of time, has only been 

evaluated for brain volume change (brain atrophy) in 4 studies9, 17, 19, 22and not for other markers.  
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Evaluation of reproducibility 

Several studies with a scan-rescan procedure selected in this review included different 

measures of variability in volumetric measurements that were not consistent across studies: intra-class 

coefficients, coefficients of variation, standard deviations, mean absolute values of differences. Hence, 

most of these studies were not directly comparable (Table 1). This prevented a quantified comparison 

between the multiple factors that may influence the measurements. It would be valuable for the 

community to harmonize measures of reproducibilityand make sure that all important aspects of 

reproducibility are included. 

3.2 Reproducibility and variability of MRI markers 

 

3.2.1 White-matter hyperintensities (WMH) 

Definition and interest in SVD 

From a radiological perspective, WMH of presumed vascular origin have a higher signal 

intensity compared to the normal-appearing white matter on proton-density (PD)-weighted, T2-weighted 

and FLAIR (Fluid-attenuated inversion recovery) sequences and may appear iso- or hypointense on T1-

weighted images5. It is widely accepted that WMH are important for clinical outcome, in terms of 

cognitive and functional impairment5, 31. Many qualitative and quantitative techniques have been used to 

measure WMH. Qualitative approaches are based on visual rating scales completed by well-trained 

readers32-34. Quantitative techniques involve image-processing algorithms to obtain volumetric 

measures or spatial distribution of WMH lesions35-39. In this review, we only focused on quantitative 

techniques, as they offer a continuous measure that is a more reliable and sensitive alternative to visual 

rating scales40.  

Within-centre reproducibility 

Several studies found good to excellent reproducibility of WMH segmentation and volumetry for 

different computational image analysis methods using a scan-rescan procedure in a single site13, 23, 26 

(Table 1). For example, in the study recruiting the largest number of subjects, De Boer et al.13 assessed 

the within-centre reproducibility of WMH segmentation by comparing computational segmentation in 30 

subjects scanned twice within a short interval at 1.5T. They found with their best segmentation pipeline 

a mean (sd) WMH volume difference expressed in % of intracranial volume of 0.01% (± 0.05%) and a 

coefficient of variation less than 6%. 

Between-centre reproducibility (effect of various vendors, coils) 
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No reportwas found about between-centre reproducibility of WMH measures in large cohorts 

evaluated in several centres and using the same magnetic field. 

Magnetic field effect 

It is not clear how the magnetic field strength impacts the measurement of WMH volume 

beyond the expected improved resolution at higher field. Indeed there are relatively few direct 

comparisons of different scanner field strengths in any situation41. In 10 patients with SVD, Theysohn et 

al. showed that FLAIR images acquired at 7T highlighted WMH known from 1.5T with comparable 

extent25. However, WMH were not adequately quantified in this study as neither number nor volume 

was assessed. On the contrary, in patients with multiple sclerosis, it has been reported that 3T scans 

showed a mean 10% higher WMH volume compared to 1.5T scans in total lesion volume based on PD-

weighted images24. 

Sequence effect 

WMH detection and automated quantification usually relies on the FLAIR sequence, which 

produces T2-weighted images with cerebrospinal fluid suppression. It has been recently shown that 3D 

FLAIR sequence parameters could be optimized to increase lesion detectionand identification in 

multiple sclerosis compared with default 3D FLAIR or 2D FLAIR (Fig. 2)42. This approach might also be 

used in SVD. Indirectly, this study showed that MR parameters (echo time, inversion time) influences 

the tissue contrast between the normal white matter and white matter lesions on which the algorithms to 

segment WMH heavily depend. 

Some pipelines have used an interleaved PD/T2 acquisition for WMH segmentation, especially 

as this dual spin echo sequence is more sensitive to WMH in the deep basal ganglia and thalamus than 

FLAIR and also allows better detection of perivascular spaces60,43.Multisequence image analysis 

approaches to quantify WMH, eg which combine FLAIR with T2* or T1 or T2 or several sequences 

together, are increasingly used and emphasise the need to obtain several key standard sequences 

when studying SVD. 

Partial volume effects 

 Partial volume effect is the combination of signals from different tissue types in a single voxel 

whose image intensity is thus dependent on proportions of each tissue. Partial volume effects with 

clinically feasible resolutions complicate delineation of the lesion borders44. Particularly, smaller voxel 

sizes allow more accurate estimation and yield larger total lesion volumes, especially for patients with 

small lesions45. For example, in 10 patients with multiple sclerosis, lesion volumes were reported to be 

on average 9% greater with 3 mm compared to 5 mm slice thickness45. 

Other factors with some effects 
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The approach to post-processing for bias field (or B1 inhomogeneities) correction can have an 

important effect on WMH volume quantification according to the computational method used46. 

Reproducibility in longitudinal studies 

No study was found to assess the reproducibility of any longitudinal measurement of WMH. 

3.2.2 Lacunes and perivascular spaces 

Definition and interest in SVD 

 From a radiological perspective, lacunes of presumed vascular origin are round or ovoid, 

subcortical, fluid-filled cavities of between 3 mm and 15 mm in diameter, consistent with a previous 

acute small subcortical infarct or haemorrhage in the territory of one perforating arteriole5. Number, size, 

shape and location are measures of interest for lacunes. To date, very few automatic image processing 

methods exist to segment lacunes, and most studies rely on semi-automatic computational approaches 

or manual segmentations by trained observers37, 47-50. 

PVS are fluid-filled spaces that follow the typical course of a small vessel as it goes through 

grey or white matter and have a signal intensity similar to CSF on all sequences5,51. Number, size, 

shape and location are measures of interest for PVS. Rating methods have been developed to describe 

these markers52, 53. To date, very few computational image processing methods exist to segment 

PVSthough some are in development37, 54-56. The first image processing methods for both lacunes and 

PVS detection were not fully robust and efficient, requiring time-consuming user manual intervention but 

new methods are more automated and much faster. 

Within- or between-centre reproducibility 

 The literature is very sparse concerning the reproducibility of measurements describing lacunes 

or PVS51.In 20 subjects scanned twice on a 1.5T scanner, one study assessed a good reproducibility for 

lacunar volume with the used dedicated software but the extent or numbers of lacunes per subject were 

not specified 26.  

High-resolution images should be more sensitive for detecting lacunes and PVS because they 

are small. Therefore, their volume assessment may heavily depend on spatial resolution and 

geometrical inaccuracies induced by gradient nonlinearities.  

Reproducibility in longitudinal studies 

No study was found to assess the reproducibility of any longitudinal measurement for both 

lacunes and PVS. 

 

3.2.3 Cerebral microbleeds 

Definition and interest in SVD 
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 From a radiological perspective, cerebral microbleeds (CMB) associated with SVD are small 

hypointense lesions on paramagnetic sensitive MR sequences such as T2*-weighted gradient-echo 

(GE) sequence, and are most frequently located in the cortico-subcortical junction, deep grey or white 

matter in the cerebral hemispheres, brainstem and cerebellum5, 57. CMB are associated with SVD and 

lobar CMB are often seen in patients in memory clinics who have CAA 5, 58-60. Most studies suggest that 

they are associated with impaired cognitive function61, 62, although their direct clinical impact remains 

uncertain. Several rating scales have been designed to minimize observer variation63, 64 along with 

several post-processing algorithms for semi-automatic or automatic quantification65-69. We consider in 

this review all methods to study CMB as a few computational methods have been published and tested 

in reproducibility studies. Many MRI acquisition factors are expected to influence CMB detection as their 

size is a consequence of susceptibility effects that are highly dependent onMRI sequence parameters. 

In fact, hypointensities are typically larger than the physical size of the corresponding histopathological 

lesion (blooming effect)70.  

Within- or between-centre reproducibility 

 No study was found to assess CMB detection reproducibility through a scan-rescan procedure 

at the same centre or between centres with the same imaging protocol. However, several studies 

examined various factors involvedin CMB detection such as magnetic field strength or sequence 

parameters. 

Magnetic field effect 

 Intravoxeldephasing due to susceptibility effects and associated signal loss in gradient-echo 

images increase with higher magnetic fields71. Several studies hence demonstrated an increased 

number of CMB at higher field strength25, 27, 29 with an increase in contrast to noise ratio27, 28 and CMB 

size25, 28 as illustrated in Fig. 3.For example, mean increases from 1.5T to 3T were 48% for contrast to 

noise ratio and 12% for CMB size on 119 CMB detected in 4 subjects70. In addition, more CMB are 

found at higher field strength; Theysohn et al. found 101 CMB at 7T (mean size: 3.2 mm) against 33 at 

1.5T (mean size: 1.4 mm) in 10 subjects25. 

Sequence effect 

 3D T2*-weighted gradient-echo images reveal significantly more CMB in more subjects 

compared to 2D T2*-weighted gradient-echo images, primarily because of higher spatial resolution72. In 

200 older aged participants, Vernooij et al. reported 71 subjects with at least one microbleed (median 

number 2.5) using the 3D sequence compared to 42 subjects (median number 1.0) with the 2D 

sequence. Likewise, the susceptibility weighted imaging (SWI) technique, which uses phase images to 

enhance susceptibility-related contrasts in the resulting image, is particularly sensitive to paramagnetic 

and ferromagnetic substances73. CMB are better delineated on SWI images compared to classic T2* 
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images25, 28, 74, 75 (Fig. 3). Another study also confirmed that SWI detected more CMB than conventional 

T2* images (prevalence of 40% vs. 23%, total number was 284 vs. 219 in 141 patients)76. To note, the 

differentiation between CMB and vessels might be more difficult with SWI compared to T2* images 

although this is a matter of debate 75, 77. A last point is that susceptibility-weighted sequences are 

different according to vendors (e.g., „SWI‟ for Siemens, „SWAN‟ for General Electric, „VenoBOLD‟ for 

Philips) and only the Siemens „SWI‟ technique uses phase data. Therefore, the effect of vendor‟s 

susceptibility-weighted technique on CMB detection needs further assessment. 

Sequence parameters effect 

 The echo time (TE) reflects the timescale on which dephasing occurs, with long echo times 

enabling more time for dephasing thereby enlarging the susceptibility effect. Thus, choice of TE directly 

impacts on the number and volume of microbleeds detected as well as the number of structures that 

may be mistaken for microbleeds (calcium or iron deposits, flow voids, etc.). Increasing TE improves the 

sensitivity to detect CMB but more artefacts are generated near air-tissues interfacescausing 

uncertainty about rating some lesions78, 79.Otherwise, thin MR imaging sections compared with thicker 

sections were associated with a small decrease in CMB diameter and a large increase of contrast (CMB 

signal relative to tissue signal) and thus an improved CMB detection (Fig. 3)28, due to a reduction of 

partial volume effects. 

Reproducibility in longitudinal studies 

No study was found to assess the reproducibility of any longitudinal measurement for CMB. 

3.2.4 Brain volume 

Definition and interest in SVD 

 Brain volumetry refers here to measures obtained through computational segmentation of high-

resolution anatomical images. Global brain volume, intracranial volume (classically used for 

normalization purpose) and brain parenchymal fraction (BPF, brain volume divided by intracranial 

volume) were considered in this review as these are important markers in SVD 80, 81, 82 , 83-85. For 

example, BPF has been associated with dementia rating scales and the modified Rankin score in 

CADASIL81, 86, a monogenic SVD2. In sporadic forms, brain volume was notably associated with the 

presence and progression of lacunes87. Gray matter, white matter or hippocampus volumes are 

sometimes specifically assessed and can be markers of interest in SVD studies, but were not included 

in this review as these structures depend more on post-processing stages. However, no study amongst 

any of the following has assessed the influence of SVD markers, particularly WMH, on the performance 

of any brain volume measurement methods. 
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Within-centre reproducibility 

 Overall, several studies reported a satisfactory within-centre reproducibility of brain volumetric 

measurements at 1.5T7, 10, 13-15, 17, 18 or 3T10, 14, 15, 18 with the main brain image processing suites 

(FreeSurfer88, 89, SPM90, FSL91,BrainVisa92). Table 1 presents per study the numbers of centres, 

subjects, rescans per subject and main results for reproducibility. For example, in a large cohort of 671 

subjects who underwent two successive 3D T1 weighted scans, the median of the relative absolute 

difference in brain volume was found to be less than 1% 17. However, the 90th percentile of the absolute 

value of the difference was reported at 5.11%, which is more than twice the value that would be 

expected for a Gaussian distribution. This highlights the importance of studying several statistical 

outcomes to infer the reproducibility beyond the median or mean value of the difference.Thus, little 

variability is added when measuring brain volume in a single centre without changing the conditions of 

acquisition, at least regarding commonly reported disease-related changes. It is worth noting that most 

studies with a scan-rescan design included small samples (all n< 50 except Cover et al.17) and recruited 

mainly healthy subjects (two studies with mild cognitive impairment (MCI) and AD patients14, 17and one 

study in multiple sclerosis16).   

Between-centre reproducibility (effect of various vendors, magnetic field strengths, coils) 

 Effects of combining several MRI vendors, static magnetic field strengths or coil designs on 

brain volumetry can be assessed in studies where subjects are scanned several times in different 

centres (Table 1). As expected, compared to the within-centre variability, the between-centre volume 

variability was much higher at 1.5T7, 8, 10, 11, 14, 15, 18, 65 and 3T10, 12, 14, 15, 18. In one of the largest 

multicentre studies with a scan-rescan procedure (a subset of ADNI database in which 172 subjects 

were rescanned once in 59 different MRI sites on 17 different scanner types), the effects of scanner 

hardware and imaging protocol on volume quantification were analyzed14. The most striking result was 

that the variance in volumetric measures was 10 times higher when subjects were imaged on different 

scanners compared to acquisitions on the same scanners. For example, for brain volume, the median 

(standard deviation) of the absolute within-subject variability was 0.3% (0.5%) vs. 4.8% (4.6%) for 

repeated scans on the same scanner vs. on different scanners. This was essentially explained by the 

scanner-dependent geometrical inaccuracies and by the differences in the gray to white matter tissue 

contrast from variation in the imaging sequences used and RF coils (while this contrast is obviously 

impacting gray matter and white matter volumes, it also influences the total brain volume 

computation14). Such geometric distortions originate from gradient field nonlinearity (in theory, a 

gradient system is supposed to produce an incremental magnetic field varying linearly with distance 

from isocenter) and the static field inhomogeneity, whilst the contrast between brain tissues is 

determined by a variety of sequence parameters. Both factors are dependent on the scanner hardware 
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(a combination of vendor, magnetic field and coil systems), which explained 30 to 50% of the variance 

of any volumetric measure in that study. In another study, 15 subjects underwent 4 scan sessions at 3 

sites with two different vendors10. Interestingly, combining data of different vendors and/or field strength 

did not significantly change the standard deviation of the volume differences across conditions relative 

to the test–retest reproducibility within a fixed MRI system. However, the mean volume difference did 

change within one standard deviation from zero for intracranial volume. 

Upgrades and repair 

 Only a few studies have examined the effects of MR systems upgrades and repairs on 

volumetric measurements. It appears that mixing volumes derived from data acquired across a major 

scanner upgrade (such as replacement of the magnet, gradient system and software) do not show 

significant changes, although volumes of some specific structures may show a slight scanner specific 

volume bias10. Similarly, consistent measures for brain structure volumes have been found before and 

after gradient coil replacement in a 3T system93. However, inadvertent differences in sequence 

parameters for example may be introduced during the upgrade (human error)94which can cause major 

variance between pre- and post-upgrade scans if not detected quickly. Scanner upgrade or replacement 

are almost impossible to avoid, and therefore centres should consider having longitudinal phantom and 

volunteer assessments for quality assurance and to calculate differences in brain volumetry across time 

that would allow conversion factors to be generated. 

Sequence effect 

 Use of 3D inversion prepared T1-weighted fast gradient-echo sequences for brain tissue 

segmentation and volumetry is universal nowadays. It is widely used for its contrast properties and is a 

standard for most MRI vendors. It is therefore easy to implement in multicentre studies. Other 

sequences such as multi-echo fast low angle shot sequences have similar contrast properties and 

showed comparable volume reproducibility from Bland-Altman plot analysis than the MPRAGE 

sequence for example10. However, comparison between volumes derived from both sequence types 

demonstrated significant biases in the mean volume difference, probably due to a differing T2* 

sensitivity10. 

Isotropic voxels are superior to non-isotropic voxels for accurateestimation of brain volume. In 

sequences with non-isotropic resolution, the choice of image orientation (sagittal, coronal or axial) 

naturally yields volumetric differences when comparing datasets acquired with different image 

orientations95. These differences may be due to partial volume averaging and susceptibility-induced 

geometric distortions. It is anticipated that these findings can be generalized to all MRI-derived metrics 

of brain volume. 

Contrast effect 
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 Variability of the tissue contrast, defined as the ratio between gray and white matter tissues 

image intensities on T1-weighted images, relates to the choice of MR sequence parameters such as 

echo time (TE), repetition time (TR), inversion time (TI) and flip angle (FA) along with the selection of 

field strength and coil. The contrast has been shown to have non-negligible influence on brain tissues 

segmentation and thus volumetry7, 14. For example, a 6% change in the average contrast led to a 2% 

change in the computed brain volume14, which is of a similar size as the annual change in brain volume 

seen in the early stages of AD so could easily be interpreted as a disease effect.Notably, datasets with 

a higher contrast have a lower variability, but here the effect of different burdens of WMH have not been 

tested. 

Subject-related factors 

 Physiological variability within the subject being imaged is a source of variability beyond the 

disease-related variability. It has even been suggested in a study of BPF variability in multiple sclerosis 

that the variability due to physiological and pathological causes is important and likely larger in 

magnitude than scan–rescan repositioning effects16. The authors found that the variance assigned to 

physiological fluctuations was nearly two times greater than the variance due to patient repositioning 

during scan-rescan. This implies that scan–rescan experiments might only provide a lower bound on the 

true error in repeated volumetric measurements from MRI exams. It is well known that the hydration 

status of an individual can affect the measurement of brain volume. Specifically, lack of fluid intake for 

16 hours has been found to result in a 0.55% decrease in cerebral volume and re-hydration an increase 

of 0.72% in brain volume96. Inthe ADNI dataset and a large cohort of multiple sclerosis patients there 

was a significant effect of time-of-day on the BPF, with a greater brain volume in the morning97. 

Similarly, brain volume varies with plasma sodium98. These results suggest potential acquisition time 

and hydration biasesshould be randomized or statistically controlled to account for the day-to-day 

brainvolume fluctuations. 

Factors with no or little effect 

 Correction for so-called B1 inhomogeneities (variations of image intensity due to the 

radiofrequency field) was not found to substantially change the reproducibility of whole-brain volumetric 

measurements10, unlike its effect on WMH and focal infarcts99. Similarly, some studies found that 

greater acceleration factor in parallel imaging (this technique combines the signals of several coil 

elements in a phased array to reconstruct the image and finally improve the signal-to-noise ratio or 

reduce the scan time) had very little influence on test–retest accuracy12, 100. However, these studies 

tested the influence of acceleration factor in healthy controls. Results might be different if older aged 

subjects or patients move during the acquisition of the reference lines part of the parallel imaging 
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strategy. Finally, reproducibility of brain volumetric measures was also relatively unaffected by small 

differences in voxel geometry compared to the effects observed on measures of cortical thickness12. 

3.2.5 Brain atrophy 

Definition and interest in SVD 

 Brain atrophy is the difference of total brain volume between two time points computed by a 

dedicated image processing software from high-resolution anatomical images.Quantitative measures 

derived from high-resolution anatomical images are considered over atrophy scales (not covered in the 

present review) as the quantitative measures have better sensitivity to change over time101. Surprisingly, 

very few studies reported brain atrophy measurement in SVD cohorts102, 103.Several methods are 

available, such as SIENA, which estimates the percentage brain volume change of the same subject 

between two time points, by registering the two brain images together and resampling into the space 

halfway between the two104, 105 andthe Boundary Shift Integral (BSI),that is an automated method that 

determines the total volume through which the boundaries of a given cerebral structure have 

moved106.One alternative method to assess brain atrophy is by performing tissue segmentation at both 

time points, but this approach suffers from a higher variability given the added variability of each 

measurement22. 

Within-centre reproducibility 

 Within-centre reproducibility of quantitative image-processing methods for atrophy assessment 

have been shown to be relatively high in several studies (Table 1)17,9, 19. For example, a study using the 

ADNI dataset reported a 0.35% mean difference in 385 subjects acquired in more than 50 sites (105 

healthy controls, 195 subjects with MCI and 85 with AD) undergoing two SIENA measurements 12 

months apart17. Further, the 90th percentile of the difference was much larger than expected (1.33%) for 

a Gaussian distribution. These results should be compared to the annualized mean percentage brain 

volume change obtained in that study: -0.65%  ± 0.82% for healthy controls, -1.15% ± 1.21% for MCI, -

1.84% ± 1.33% for AD. 

Between-centre reproducibility (effect of various vendors, magnetic field strengths, coils) 

 Some studies have examined the between-centre reproducibility of atrophy measurements 

using SIENA17, 22, 107 or other image-processing techniques22.It has been shown that even with scanner 

of the exact same model, scanner drift (a shift in the magnet‟s field) and inter-scanner variability may 

cancel out longitudinal brain volume change44.It is worth noting that compared to voxel-based 

morphometry approaches, SIENA, which corrects for differences in imaging geometry using the outer 

skull surface for both time points, reduced the effects of scanner drift and inter-scanner variability on 

longitudinal morphometric results107. Similarly, other registration-based algorithms such as BSI 
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showbetter reproducibility compared to segmentation-based techniques such as Freesurfer or 

SIENAX22. However, segmentation-based methods using atlases can be improved by using fine 

registration methods andage-relevant templates108.  

Evaluation of coil effects on volumetric measurements showed that a change from a 12- to a 

32-channel coil was responsible for a shift of 0.5% in the whole brain BSI100, which appears 

unacceptable as it corresponds to the annual atrophy rate observed in healthy subjects109. 

Finally, analysing the back-to-back scans of the ADNI dataset in 200 pairs of images (118 

subjects with 0-12 months pairs and 82 subjects with 6-24 months pairs), it has been reported than 3T 

was no more reproducible than 1.5T for the whole brain atrophy measure using SIENA110. 

Contrast effect 

 Atrophy measurement is strongly dependent on image contrast. Indeed, the error using BSI 

may exceed 100% if image contrast properties dramatically differ between the two scans in a 

measurement pair 111. For example, in 10 volunteers, a mean brain volume change of -0.43% has been 

measured versus a +1.85% change when the second scan was acquired with a flip angle equal to 12° 

instead of 25° (the flip angle directly impacts the image contrast).  

Noise effect 

Noise is an unwanted random signal from various origins including: the subject‟s body, coils, 

electronics, nearby machinery, etc.The signal-to-noise ratio is often computed as the ratio of the 

average signal intensity over the standard deviation of the noise. Signal-to-noise ratio directly impacts 

BSI values as, for example, the position of the brain surface is seen to retract as noise in the second 

time point scan increases111. Thus, the average percent volume change progressively diverges from 

zero with increasing noise mimicking increased brain atrophy. 

Subject-related factors 

Motion willhave an impact on atrophy measurement. For example, it has been reported that, as 

the amplitude of the motion in the second scan increases, the mean absolute brain and ventricular BSI 

brain volume changes as well as the associated standard deviation increase progressively111. However, 

the different levels of motion have been simulated in this latter study and the severity may have been 

overestimated. 

Subject‟s head positioning in the magnet also influences brain atrophy measures. Indeed, 

nonlinear gradient distortions associated with shifts in the long magnet‟s axis can significantly decrease 

the accuracy and precision of MRI-derived measures of brain atrophy assessed by SIENA112. These 

negative effects increase in magnitude with: (i) increases in the Z-distance (long magnet‟s axis) 

between the brains to be compared at two time points; and, (ii) increases in the Z-distance from magnet 

isocenter to the center of the pair of brains to be compared112. Typical gradient distortion field for a T1-
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weighted acquisition is presented in Fig. 4. It shows the dramatic shifting experienced by voxels 

especially at the border of the brain and the need for accurate correction and repositioning of patients in 

longitudinal studies. 

3.3 Techniques to manage variability 

We have highlighted a large number of reasons why quantitative MRI markers of SVD may be 

variable beyond subject-related or disease-related factors. These sources of variability introduce 

significant barriers, and potential biases, to multicentre imaging studies of SVD. Fortunately, while 

adding variability to the measurements of markers is inherent to imaging studies, some techniques have 

been designed to reduce it.  

First, an optimised MRI protocol with high contrast-to-noise ratio, minimal artefacts and good 

reproducibility must be determined. Hereto, a methodological approach has been proposed to target a 

protocol with the highest possible reproducibility based on the assessment of quality measures21. The 

principle is to acquire several datasets including: within-subject within-centre datasets, between-

subjects between-centre datasets and between-subject within-centre datasets. By analysing the 

summary data quality and quantitative measures extracted with dedicated and validated software the 

desired optimal MRI protocol can be determined. 

 Second, to account for the problem of upgrades in longitudinal studies, Jovicich et al. advise 

planning a „system upgrade calibration study‟ as part of the design, with subjects scanned shortly prior 

to and immediately after the upgrade so as to derive a correct estimation for potential systematic 

biases10. 

Third, several corrective techniques based on the MR system characteristics 113, 114 or using a 

dedicated phantom 112, 115, 116 have been developed to reduce the effects of gradient distortion on 

imaging reproducibility.The advantage of using a phantom travelling from one site to another is to apply 

a unified correction independently of the vendor‟s own corrections.Correction for gradient nonlinearity 

and intensity non-uniformity reduces the variance of longitudinal changes in brain volumes and 

improves the accuracy for detecting subtle volumetric changes117. For example, in 208 subjects, the raw 

mean percentage of brain volume change was -0.59% against -0.46% when images were corrected for 

gradient nonlinearity and intensity non-uniformity117. However, if the expected group difference far 

exceeds brain volume change related to geometric distortions, the extra time and expense associated to 

the phantom-based correction needs to be carefully evaluated. 

Finally, the use of dedicated statistical methods is important in analysing multicentre MRI data. 

A simple a posteriori method to account for scanner hardware variability (combination of different 
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devices, coil types and field strengths) is to include the scanner hardware as a covariate in regression 

models 14. Moreover, it has been shown that T1-weighted regional anatomical brain volume data can be 

reliably combined across 1.5T and 3T centres with the application of an appropriate correction 

procedure (regression-based correction function when data varied in a linear and systematic fashion)118. 

More sophisticated statistical methods such as linear mixed-effect models including protocol as well as 

individual MRI acquisition parameters have also emerged to more accurately model longitudinal 

changes (BPF and volume of WMH)119. Another statistical approach is based on the statement that 

classical inference testing is inappropriate because it is designed to detect differences and not to prove 

similarity. Equivalence testing has then been applied to determine if MRI-based measurements obtained 

under variable conditions can be pooled120. This could be generalized to all MRI-derived measurements. 

Otherwise, Moorhead et al. used scanner specific priors (probability mappings of tissue occupancy) in 

the segmentation pipeline to reduce tissue classification differences between scanners to improve 

statistical power. Interestingly, they found that the between scanner differences were not reduced to the 

level of within scanner variability, the ideal for scanner harmonisation121.  

Ultimately, central application of automatic quality assessment94, 122and image processing on 

raw data, using consistent techniques, can reduce the variability introduced by a posteriori image 

processing across centres.   

3.4 Suggestions for future research 

A between-centre variability study in a large group of subjects,representing a range of types 

and burdens of SVD lesions, to assess the effects of vendor and field strength (protocols as close as 

possible) on reproducibility of SVD lesions and brain volumes is missing. So are experiments examining 

the effects of changing coil, correcting for gradient distortion or field heterogeneities, upgrading the 

system, or varying classical parameters such as TE, TI or TR, on the final WMH volume. Finally, WMH 

appears to be a reliable marker in single centre studieswhere all acquisition and processing parameters 

are kept constant, but additional studies are missing to infer the true reproducibility of WMH measures 

in a multicentre context. 

As for WMH, a multicentre study assessing the effect of scanner hardware (same magnetic field 

but different vendors and models) on CMB detection with a given optimized protocol would greatly add 

to the knowledge on the reliability of CMB detection. New data on methods of automated detection of 

CMB throughout different brain regions are needed. Also, the analysis of the potential effects of coil, 

and voxel size would be particularly useful. Finally, CMB can be used as a reliable marker in single 
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centre studies but additional efforts are needed to determine the sources of variability in multicentre 

data. 

For lacunes and PVS, more automated and validated image processing algorithms are 

required, followed by assessment of reproducibility through both within and between centres 

acquisitions. In view of the likely interactions between acquisition protocols and performance of analysis 

methods, the assessment of all SVD features should be included in any study that assesses reliability of 

WMH and/or CMB and/or atrophy quantification.  

4. Ten key points for assessing quantitative SVD markers in multicentre 

studies 

 
Based on our review of the current literature regarding reproducibility and acquisition-related 

sources of variability of MRI markers in SVD and on personal experiences, we propose the following 

key points should be considered when designing or analysing a multicentre MRI study in SVD. 

Obviously, prior to acquisitions, the scientific question should guide which marker is the focus, although 

opportunities to assess all SVD markers should be obtained where possible. Optimising acquisition for 

contrast, signal-to-noise ratio and spatial resolution is particularly important when imaging elderly or 

cognitively impaired patient populations who will not tolerate prolonged acquisition times. Importantly, 

although it is essential to have accurate and reproducible measurements, the nature of the questions 

will be guiding the level of precision that is needed. Requirements might be different between 

interventional clinical trials with relatively short term duration and long-term population-based 

observational studies. For example, in some situations, the added noise due to multicentre variability 

will not alter a strong statistical association between one SVD-related MRI marker and one clinical 

outcome. Conversely, studying the quantitative evolution of one SVD-related marker during a short 

follow-up will require a very fine quantification that necessitates a variability caused by technological 

factors as small as possible. Hence we organized our recommendations as being a) advisable whatever 

the question guiding the study as they tackle effects being important and/or involve easy-to-follow 

techniques to manage variability, b) advisable in some conditions, i.e. when the expected effect of 

interest is small relatively to the unwanted noise caused by the multicentre setting.  

 

a) strongly advisable and easy-to-follow recommendations 

 

1. Automated quality checks for MRI sequence parameters are advisable (for each scan, 

comparison of the acquisition parameters with the intended protocol for each scanner). Also, 
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images should be monitored for motion and other artefacts such as magnetic susceptibility 

artefacts, aliasing artefacts or Gibbs artefacts. A minimum standard for quality control will have 

to be defined to exclude problematic data (for example, based on the severity of artefacts or 

from automatic measures of signal to noise ratio, background noise, etc.). Indeed, even if the 

computational method seems to run properly, artefacts can dramatically alter the data. 

2. MRI gradient nonlinearities have to be corrected at least with corrections proposed in options by 

the manufacturer as they can affect dramatically measures of brain atrophy. 

3. Subject‟s positioning in the scanner is another key aspect and strict instructions for MR 

technicians may be particularly useful to reproduce confidently the position of the head, from 

one subject to another, and from the first time point to the following time points, in longitudinal 

studies. 

4. Considering the hardware, the same coil has to be used during an MR protocol both in cross-

sectional and longitudinal studies. When upgrades or repairs are needed during the study 

period, a strategy should be in place to scan some participants twice, before and after the 

upgrade, to estimate the potential bias for a posteriori analyses. Otherwise, the imaging 

protocol and hardware should be kept as constant as possible over the whole time of the study. 

 

b) recommendations to evaluate given the targeted trade-off between sensitivity and 

variability 

 

5. Within-centre reproducibility is much higher than between-centre reproducibility. The need for a 

multicentre setup should then be carefully evaluated while taking into account specific aspects 

such as number of participants, subject transportation, data centralization, quality control and 

cost. For multicentre studies, the use of only one vendor or only some models can be an option. 

 

6. In multicentre studies, protocol harmonization is a mandatory step to obtain similar sequences 

with acquisition parameters as close as possible. There is no way to get a perfect 

harmonization of MRI protocols between different vendors and models. Therefore, it is a trade-

off between a high reproducibility of markers (few centres, same vendors) and a sufficient 

statistical power through the recruitment of a large number of subjects, generally in several 

centres with different scanner vendors and models. Specifying acceptable ranges for different 

acquisition parameters may help obtain satisfactory harmonization for large-scale clinical 

studies. 
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7. Spatial resolution is a key parameter in assessing correctly the variation of any MRI marker 

such as brain volumetry, longitudinal atrophy, volume of WMH or quantification of lacunes and 

PVS. Increasing spatial resolution decreases signal-to-noise ratio and increases acquisition 

duration. Sensitivity for quantifying small objects such as lacunes and PVS will be compromised 

if using voxels as big as the object itself or where there is a slice gap. Selection of optimal 

spatial resolution must therefore be targeted to the primary question. 

 

8. When analysing multicentre MRI data, the use of statistical models to take into account the 

induced variability is recommended (adjusting on centre or using random effects models for 

example). 

 

9. While some quantitative MRI markers of SVD are regularly assessed (brain atrophy,WMH 

volume), others are difficult to quantify given their small size in relation to conventional 

anatomical MRI (lacunes, PVS) or their strong dependence on MRI parameters (CMB). High-

field MRI and detailed studies of these particular markers may be performed in studies nested 

within larger studies assessing more common markers in a clinical setting. For CMB 

characterization, SWI or quantitative susceptibility mapping are promising techniques. Since the 

total magnetic susceptibility of a CMB is an intrinsic physical property independent of imaging 

characteristics, mapping CMB by using quantitative susceptibility mapping may be an 

alternative approach more consistent over a wide spectrum of imaging parameters79. 

 

10. It is important for studies to acknowledge that variation is inevitable and they should detail the 

steps that have been made to minimise this variation. 

Conclusion 

 

There is a need to reduce image variability induced by technological choices (coil, MR 

sequence, MR parameters and options) as much as possible in large multicentre research studies and 

clinical trials using MRI in SVD. Indeed, the added variance due to the multicentre setup can be 

deleterious in various applications and should be minimised using multiple approaches. Protocol 

harmonization and a posteriori corrections can help in minimizing biases; minimisation on centre or 

scanner type may also be advisable. Even if several sources of variability have been previously 

evaluated, most studies have focused on brain volume measurements whilefewhave focused on WMH 
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quantification. Further, less is known concerning the sources of variability when quantifying lacunes, 

CMB and PVS. Additional studies are warranted to investigate the variability of these makers, which is a 

key aspect for future longitudinal or multicentre studies. Other potential SVD-related MRI markers 

derived from new and multiple techniques (such as diffusion tensor imaging, arterial spin labelling, 

magnetization transfer mapping, blood-brain barrier permeability imaging, BOLD functional MRI, cortical 

morphology, cortical microinfarcts, cortical superficial siderosis) will also have to address these 

important questions regarding theirreproducibility to facilitate large-scale, multicentre research. 

Author contribution 

FDG, EJ and HC designed the review. FDG collected and analysed the literature. FDG, EJ and HC 

wrote the initial draft of the review. JMW critically revised the manuscript. The manuscript was then sent 

to the imaging and small vessel disease experts involved in the COENgroup (network of Centres of 

Excellence in Neurodegeneration, http://www.coen.org). All authors of the present manuscript agreed to 

contribute and revised carefully the manuscript. Finally, all authors accepted the current version. 

Disclosure/conflict of interest 

The authors declare no conflict of interest. 

 

Supplementary material for this paper can be found at 

http://jcbfm.sagepub.com/content/by/supplemental-data 

References 

 

1. Román GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC. Subcortical ischaemic vascular 

dementia. Lancet Neurology 2002; 1(7): 426-436. 

2. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M-G. Cadasil. Lancet 

Neurology 2009; 8(7): 643-653. 

3. Selnes OA, Vinters HV. Vascular cognitive impairment. Nature Clinical Practice 

Neurology 2006; 2(10): 538-547. 

4. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics 

to therapeutic challenges. Lancet neurology 2010; 9(7): 689-701. 

http://www.coen.org/
http://jcbfm.sagepub.com/content/by/supplemental-data


 23 

5. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R et al. 

Neuroimaging standards for research into small vessel disease and its contribution to ageing and 

neurodegeneration. The Lancet Neurology 2013; 12(8): 822-838. 

6. Kessler LG, Barnhart HX, Buckler AJ, Choudhury KR, Kondratovich MV, Toledano A et 

al. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific 

studies and regulatory submissions. Statistical methods in medical research 2015; 24(1): 9-26. 

7. Schnack HG, van Haren NEM, Pol HEH, Picchioni M, Weisbrod M, Sauer H et al. 

Reliability of brain volumes from multicenter MRI acquisition: A calibration study. Human Brain Mapping 

2004; 22(4): 312-320. 

8. Ewers M, Teipel SJ, Dietrich O, Schönberg SO, Jessen F, Heun R et al. Multicenter 

assessment of reliability of cranial MRI. Neurobiology of Aging 2006; 27(8): 1051-1059. 

9. Smith SM, Rao A, De Stefano N, Jenkinson M, Schott JM, Matthews PM et al. 

Longitudinal and cross-sectional analysis of atrophy in Alzheimer's disease: Cross-validation of BSI, 

SIENA and SIENAX. NeuroImage 2007; 36(4): 1200-1206. 

10. Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B et al. MRI-derived 

measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of 

scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field 

strengths. Neuroimage 2009; 46(1): 177-192. 

11. Reig S, Sanchez-Gonzalez J, Arango C, Castro J, Gonzalez-Pinto A, Ortuno F et al. 

Assessment of the Increase in Variability When Combining Volumetric Data From Different Scanners. 

Human Brain Mapping 2009; 30(2): 355-368. 

12. Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P, Locascio JJ, Bakkour A, van der 

Kouwe A et al. Reliability of MRI-derived cortical and subcortical morphometric measures: effects of 

pulse sequence, voxel geometry, and parallel imaging. NeuroImage 2009; 44(4): 1324-33. 

13. de Boer R, Vrooman HA, Ikram MA, Vernooij MW, Breteler MMB, van der Lugt A et al. 

Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. Neuroimage 

2010; 51(3): 1047-1056. 

14. Kruggel F, Turner J, Muftuler LT, Alzheimers Dis Neuroimaging I. Impact of scanner 

hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. 

Neuroimage 2010; 49(3): 2123-2133. 

15. Huppertz H-J, Kröll-Seger J, Klöppel S, Ganz RE, Kassubek J. Intra- and interscanner 

variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral 

structures. NeuroImage 2010; 49(3): 2216-2224. 



 24 

16. Sampat MP, Healy BC, Meier DS, Dell'Oglio E, Liguori M, Guttmann CR. Disease 

modeling in multiple sclerosis: assessment and quantification of sources of variability in brain 

parenchymal fraction measurements. Neuroimage 2010; 52(4): 1367-73. 

17. Cover KS, van Schijndel RA, van Dijk BW, Redolfi A, Knol DL, Frisoni GB et al. 

Assessing the reproducibility of the SienaX and Siena brain atrophy measures using the ADNI back-to-

back MP-RAGE MRI scans. Psychiatry Research-Neuroimaging 2011; 193(3): 182-190. 

18. Shokouhi M, Barnes A, Suckling J, Moorhead TW, Brennan D, Job D et al. Assessment 

of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa. BMC Med 

Imaging 2011; 11: 23. 

19. de Bresser J, Portegies MP, Leemans A, Biessels GJ, Kappelle LJ, Viergever MA. A 

comparison of MR based segmentation methods for measuring brain atrophy progression. Neuroimage 

2011; 54(2): 760-768. 

20. Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IA, Farrell JA et al. Multi-parametric 

neuroimaging reproducibility: a 3-T resource study. NeuroImage 2011; 54(4): 2854-66. 

21. Chalavi S, Simmons A, Dijkstra H, Barker GJ, Reinders A. Quantitative and qualitative 

assessment of structural magnetic resonance imaging data in a two-center study. Bmc Medical Imaging 

2012; 12. 

22. Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S et al. 

Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple 

sclerosis: comparison of 7 quantification techniques. AJNR. American journal of neuroradiology 2012; 

33(10): 1918-24. 

 

23. Wei X, Warfield SK, Zou KH, Wu Y, Li X, Guimond A et al. Quantitative analysis of MRI 

signal abnormalities of brain white matter with high reproducibility and accuracy. Journal of magnetic 

resonance imaging : JMRI 2002; 15(2): 203-9. 

24. Sicotte NL, Voskuhl RR, Bouvier S, Klutch R, Cohen MS, Mazziotta JC. Comparison of 

multiple sclerosis lesions at 1.5 and 3.0 Tesla. Investigative Radiology 2003; 38(7): 423-427. 

25. Theysohn JM, Kraff O, Maderwald S, Barth M, Ladd SC, Forsting M et al. 7 Tesla MRI 

of Microbleeds and White Matter Lesions as Seen in Vascular Dementia. Journal of Magnetic 

Resonance Imaging 2011; 33(4): 782-791. 

26. Ramirez J, Scott CJ, Black SE. A short-term scan-rescan reliability test measuring brain 

tissue and subcortical hyperintensity volumetrics obtained using the lesion explorer structural MRI 

processing pipeline. Brain topography 2013; 26(1): 35-8. 



 25 

27. Stehling C, Wersching H, Kloska SP, Kirchhof P, Ring J, Nassenstein I et al. Detection 

of asymptomatic cerebral microbleeds: A comparative study at 1.5 and 3.0 T. Academic Radiology 

2008; 15(7): 895-900. 

28. Nandigam RNK, Viswanathan A, Delgado P, Skehan ME, Smith EE, Rosand J et al. 

MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section 

Thickness, and Field Strength. American Journal of Neuroradiology 2009; 30(2): 338-343. 

29. Conijn MMA, Geerlings MI, Biessels GJ, Takahara T, Witkamp TD, Zwanenburg JJM et 

al. Cerebral Microbleeds on MR Imaging: Comparison between 1.5 and 7T. American Journal of 

Neuroradiology 2011; 32(6): 1043-1049. 

30. Potter GM, Marlborough FJ, Wardlaw JM. Wide variation in definition, detection, and 

description of lacunar lesions on imaging. Stroke 2011; 42(2): 359-66. 

31. Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and 

dementia: an update. Nat Rev Neurol 2015; 11(3): 157-65. 

32. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 

1.5 T in Alzheimer's dementia and normal aging. AJR. American journal of roentgenology 1987; 149(2): 

351-6. 

33. Schmidt R, Fazekas F, Kleinert G, Offenbacher H, Gindl K, Payer F et al. Magnetic 

resonance imaging signal hyperintensities in the deep and subcortical white matter. A comparative 

study between stroke patients and normal volunteers. Archives of neurology 1992; 49(8): 825-7. 

34. Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJP, Vermersch P et al. A 

SEMIQUANTITATIVE RATING-SCALE FOR THE ASSESSMENT OF SIGNAL HYPERINTENSITIES 

ON MAGNETIC-RESONANCE-IMAGING. Journal of the neurological sciences 1993; 114(1): 7-12. 

35. Maillard P, Delcroix N, Crivello F, Dufouil C, Gicquel S, Joliot M et al. An automated 

procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an 

evaluation of its between-centre reproducibility based on two large community databases. 

Neuroradiology 2008; 50(1): 31-42. 

36. Samaille T, Fillon L, Cuingnet R, Jouvent E, Chabriat H, Dormont D et al. Contrast-

Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation. Plos One 

2012; 7(11). 

37. Ramirez J, Gibson E, Quddus A, Lobaugh NJ, Feinstein A, Levine B et al. Lesion 

Explorer: A comprehensive segmentation and parcellation package to obtain regional volumetrics for 

subcortical hyperintensities and intracranial tissue. Neuroimage 2011; 54(2): 963-973. 



 26 

38. Yoshita M, Fletcher E, DeCarli C. Current concepts of analysis of cerebral white matter 

hyperintensities on magnetic resonance imaging. Topics in magnetic resonance imaging : TMRI 2005; 

16(6): 399-407. 

39. Dyrby TB, Rostrup E, Baare WF, van Straaten EC, Barkhof F, Vrenken H et al. 

Segmentation of age-related white matter changes in a clinical multi-center study. Neuroimage 2008; 

41(2): 335-45. 

40. van den Heuvel DM, ten Dam VH, de Craen AJ, Admiraal-Behloul F, van Es AC, Palm 

WM et al. Measuring longitudinal white matter changes: comparison of a visual rating scale with a 

volumetric measurement. AJNR. American journal of neuroradiology 2006; 27(4): 875-8. 

41. Wardlaw JM, Brindle W, Casado AM, Shuler K, Henderson M, Thomas B et al. A 

systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical 

practice and research. European radiology 2012; 22(11): 2295-303. 

42. Polak P, Magnano C, Zivadinov R, Poloni G. 3D FLAIRED: 3D fluid attenuated 

inversion recovery for enhanced detection of lesions in multiple sclerosis. Magnetic Resonance in 

Medicine 2012; 68(3): 874-881. 

43. Ramirez J, Berezuk C, McNeely AA, Scott CJ, Gao F, Black SE. Visible Virchow-Robin 

spaces on magnetic resonance imaging of Alzheimer's disease patients and normal elderly from the 

Sunnybrook Dementia Study. Journal of Alzheimer's disease : JAD 2015; 43(2): 415-24. 

44. Garcia-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL. Review of automatic 

segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance 

imaging. Med Image Anal 2013; 17(1): 1-18. 

45. Filippi M, Horsfield MA, Campi A, Mammi S, Pereira C, Comi G. RESOLUTION-

DEPENDENT ESTIMATES OF LESION VOLUMES IN MAGNETIC-RESONANCE-IMAGING STUDIES 

OF THE BRAIN IN MULTIPLE-SCLEROSIS. Annals of Neurology 1995; 38(5): 749-754. 

46. Valdes Hernandez MC, Ghandour D, Gonzales-Castro V, Munoz-Maniega S, Armitage 

PAA, Wang X et al. On the computational assessment of white matter hyperintensity progression: 

difficulties in method selection and bias field correction performance on images with significant white 

matter pathology. Neuroradiology in press. 

47. Wang Y, Catindig JA, Hilal S, Soon HW, Ting E, Wong TY et al. Multi-stage 

segmentation of white matter hyperintensity, cortical and lacunar infarcts. NeuroImage 2012; 60(4): 

2379-2388. 

48. Hervé D, Godin O, Dufouil C, Viswanathan A, Jouvent E, Pachaï C et al. Three-

dimensional MRI analysis of individual volume of Lacunes in CADASIL. Stroke; a journal of cerebral 

circulation 2009; 40(1): 124-128. 



 27 

49. Viswanathan A, Guichard JP, Gschwendtner A, Buffon F, Cumurcuic R, Boutron C et al. 

Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre 

cohort study. Brain : a journal of neurology 2006; 129(Pt 9): 2375-83. 

50. Benjamin P, Lawrence AJ, Lambert C, Patel B, Chung AW, MacKinnon AD et al. 

Strategic lacunes and their relationship to cognitive impairment in cerebral small vessel disease. 

NeuroImage. Clinical 2014; 4: 828-37. 

51. Hernandez Mdel C, Piper RJ, Wang X, Deary IJ, Wardlaw JM. Towards the automatic 

computational assessment of enlarged perivascular spaces on brain magnetic resonance images: a 

systematic review. Journal of magnetic resonance imaging : JMRI 2013; 38(4): 774-85. 

52. Adams HHH, Cavalieri M, Verhaaren BFJ, Bos D, van der Lugt A, Enzinger C et al. 

Rating Method for Dilated Virchow-Robin Spaces on Magnetic Resonance Imaging. Stroke 2013; 44(6): 

1732-+. 

53. Potter GM, Chappell FM, Morris Z, Wardlaw JM. Cerebral perivascular spaces visible 

on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability. 

Cerebrovascular diseases (Basel, Switzerland) 2015; 39(3-4): 224-31. 

54. Wang X, Hernandez MD, Doubal F, Chappell FM, Piper RJ, Deary IJ et al. 

Development and initial evaluation of a semi-automatic approach to assess perivascular spaces on 

conventional magnetic resonance images. Journal of neuroscience methods 2015. 

55. Zong X, Park SH, Shen D, Lin W. Visualization of perivascular spaces in the human 

brain at 7T: Sequence optimization and morphology characterization. NeuroImage 2015. 

56. Berezuk C, Ramirez J, Gao F, Scott CJ, Huroy M, Swartz RH et al. Virchow-Robin 

Spaces: Correlations with Polysomnography-Derived Sleep Parameters. Sleep 2015; 38(6): 853-8. 

57. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, 

Warach S et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet neurology 2009; 

8(2): 165-174. 

58. de Laat KF, van den Berg HA, van Norden AG, Gons RA, Olde Rikkert MG, de Leeuw 

FE. Microbleeds are independently related to gait disturbances in elderly individuals with cerebral small 

vessel disease. Stroke 2011; 42(2): 494-7. 

59. van Norden AG, van Uden IW, de Laat KF, Gons RA, Kessels RP, van Dijk EJ et al. 

Cerebral microbleeds are related to subjective cognitive failures: the RUN DMC study. Neurobiol Aging 

2013; 34(9): 2225-30. 

60. Pettersen JA, Sathiyamoorthy G, Gao FQ, Szilagyi G, Nadkarni NK, St George-Hyslop 

P et al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the 

Sunnybrook dementia study. Archives of neurology 2008; 65(6): 790-5. 



 28 

61. Poels MM, Ikram MA, van der Lugt A, Hofman A, Niessen WJ, Krestin GP et al. 

Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. 

Neurology 2012; 78(5): 326-33. 

62. Gregoire SM, Scheffler G, Jager HR, Yousry TA, Brown MM, Kallis C et al. Strictly lobar 

microbleeds are associated with executive impairment in patients with ischemic stroke or transient 

ischemic attack. Stroke; a journal of cerebral circulation 2013; 44(5): 1267-72. 

63. Cordonnier C, Potter GM, Jackson CA, Doubal F, Keir S, Sudlow CLM et al. Improving 

Interrater Agreement About Brain Microbleeds Development of the Brain Observer MicroBleed Scale 

(BOMBS). Stroke 2009; 40(1): 94-99. 

64. Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jager HR et al. The 

Microbleed Anatomical Rating Scale (MARS) Reliability of a tool to map brain microbleeds. Neurology 

2009; 73(21): 1759-1766. 

65. Barnes SRS, Haacke EM, Ayaz M, Boikov AS, Kirsch W, Kido D. Semiautomated 

detection of cerebral microbleeds in magnetic resonance images. Magnetic Resonance Imaging 2011; 

29(6): 844-852. 

66. Seghier ML, Kolanko MA, Leff AP, Jager HR, Gregoire SM, Werring DJ. Microbleed 

Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR 

Images. Plos One 2011; 6(3). 

67. Kuijf HJ, de Bresser J, Geerlings MI, Conijn MMA, Viergever MA, Biessels GJ et al. 

Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform. 

Neuroimage 2012; 59(3): 2266-2273. 

68. Kuijf HJ, Brundel M, de Bresser J, van Veluw SJ, Heringa SM, Viergever MA et al. 

Semi-Automated Detection of Cerebral Microbleeds on 3.0 T MR Images. PLoS One 2013; 8(6): 

e66610. 

69. Fazlollahi A, Meriaudeau F, Giancardo L, Villemagne VL, Rowe CC, Yates P et al. 

Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging. Computerized 

medical imaging and graphics : the official journal of the Computerized Medical Imaging Society 2015. 

70. Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C et al. Correlation of 

hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral 

amyloid angiopathy: a postmortem MRI study. Acta Neuropathologica 2010; 119(3): 291-302. 

71. De Guio F, Benoit-Cattin H, Davenel A. Signal decay due to susceptibility-induced 

intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments. Magma (New 

York, N.Y.) 2008; 21(4): 261-71. 



 29 

72. Vernooij MW, Ikram MA, Wielopolski PA, Krestin GP, Breteler MMB, van der Lugt A. 

Cerebral microbleeds: Accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-

weighted GRE MR imaging for detection. Radiology 2008; 248(1): 272-277. 

73. Haacke EM, Xu YB, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging 

(SWI). Magnetic Resonance in Medicine 2004; 52(3): 612-618. 

74. Guo LF, Wang G, Zhu XY, Liu C, Cui L. Comparison of ESWAN, SWI-SPGR, and 2D 

T2*-weighted GRE sequence for depicting cerebral microbleeds. Clinical neuroradiology 2013; 23(2): 

121-7. 

75. Cheng AL, Batool S, McCreary CR, Lauzon ML, Frayne R, Goyal M et al. Susceptibility-

weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting 

microbleeds. Stroke; a journal of cerebral circulation 2013; 44(10): 2782-6. 

76. Goos JDC, van der Flier WM, Knol DL, Pouwels PJW, Scheltens P, Barkhof F et al. 

Clinical Relevance of Improved Microbleed Detection by Susceptibility-Weighted Magnetic Resonance 

Imaging. Stroke 2011; 42(7): 1894-1900. 

77. Charidimou A, Jager HR, Werring DJ. Cerebral microbleed detection and mapping: 

principles, methodological aspects and rationale in vascular dementia. Experimental gerontology 2012; 

47(11): 843-52. 

78. Gregoire SM, Werring DJ, Chaudhary UJ, Thornton JS, Brown MM, Yousry TA et al. 

Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. 

Clinical Radiology 2010; 65(5): 391-394. 

79. Liu T, Surapaneni K, Lou M, Cheng LQ, Spincemaille P, Wang Y. Cerebral 

Microbleeds: Burden Assessment by Using Quantitative Susceptibility Mapping. Radiology 2012; 

262(1): 269-278. 

80. Peters N, Holtmannspötter M, Opherk C, Gschwendtner A, Herzog J, Sämann P et al. 

Brain volume changes in CADASIL: a serial MRI study in pure subcortical ischemic vascular disease. 

Neurology 2006; 66(10): 1517-1522. 

81. Jouvent E, Viswanathan A, Mangin J-F, O' sullivan M, Guichard J-P, Gschwendtner A 

et al. Brain atrophy is related to lacunar lesions and tissue microstructural changes in CADASIL. Stroke; 

a journal of cerebral circulation 2007; 38(6): 1786-1790. 

82. Viswanathan A, Godin O, Jouvent E, O'Sullivan M, Gschwendtner A, Peters N et al. 

Impact of MRI markers in subcortical vascular dementia: a multi-modal analysis in CADASIL. 

Neurobiology of Aging 2010; 31(9): 1629-1636. 



 30 

83. Lawrence AJ, Patel B, Morris RG, MacKinnon AD, Rich PM, Barrick TR et al. 

Mechanisms of cognitive impairment in cerebral small vessel disease: multimodal MRI results from the 

St George's cognition and neuroimaging in stroke (SCANS) study. PloS one 2013; 8(4): e61014. 

84. Jokinen H, Lipsanen J, Schmidt R, Fazekas F, Gouw AA, van der Flier WM et al. Brain 

atrophy accelerates cognitive decline in cerebral small vessel disease: the LADIS study. Neurology 

2012; 78(22): 1785-92. 

85. Jouvent E, Viswanathan A, Chabriat H. Cerebral atrophy in cerebrovascular disorders. 

Journal of neuroimaging : official journal of the American Society of Neuroimaging 2010; 20(3): 213-218. 

86. O'sullivan M, Jouvent E, Saemann PG, Mangin J-F, Viswanathan A, Gschwendtner A et 

al. Measurement of brain atrophy in subcortical vascular disease: a comparison of different approaches 

and the impact of ischaemic lesions. NeuroImage 2008; 43(2): 312-320. 

87. Kloppenborg RP, Nederkoorn PJ, Grool AM, Vincken KL, Mali WP, Vermeulen M et al. 

Cerebral small-vessel disease and progression of brain atrophy: the SMART-MR study. Neurology 

2012; 79(20): 2029-36. 

88. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis - I. Segmentation and 

surface reconstruction. Neuroimage 1999; 9(2): 179-194. 

89. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis - II: Inflation, flattening, 

and a surface-based coordinate system. Neuroimage 1999; 9(2): 195-207. 

90. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26(3): 839-851. 

91. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H 

et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 

2004; 23: S208-S219. 

92. Mangin J-F, Rivière D, Cachia A, Duchesnay E, Cointepas Y, Papadopoulos-Orfanos D 

et al. A framework to study the cortical folding patterns. NeuroImage 2004; 23 Suppl 1: S129-38. 

93. Huang L, Wang X, Baliki MN, Wang L, Apkarian AV, Parrish TB. Reproducibility of 

structural, resting-state BOLD and DTI data between identical scanners. PLoS One 2012; 7(10): 

e47684. 

94. Gedamu EL, Collins DL, Arnold DL. Automated quality control of brain MR images. 

Journal of magnetic resonance imaging : JMRI 2008; 28(2): 308-19. 

95. Patwardhan AJ, Eliez S, Warsofsky IS, Glover GH, White CD, Giedd JN et al. Effects of 

image orientation on the comparability of pediatric brain volumes using three-dimensional MR data. J 

Comput Assist Tomogr 2001; 25(3): 452-7. 

96. Duning T, Kloska S, Steinstrater O, Kugel H, Heindel W, Knecht S. Dehydration 

confounds the assessment of brain atrophy. Neurology 2005; 64(3): 548-50. 



 31 

97. Nakamura K, Brown RA, Narayanan S, Collins DL, Arnold DL. Diurnal fluctuations in 

brain volume: Statistical analyses of MRI from large populations. Neuroimage 2015. 

98. Heye AK, Thrippleton MJ, Chappell FM, Valdes Hernandez MD, Armitage PA, Makin 

SD et al. Blood pressure and sodium: association with MRI markers in cerebral small vessel disease. 

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral 

Blood Flow and Metabolism 2015. 

99. Wardlaw JM, Valdes Hernandez MC, Munoz-Maniega S. What are white matter 

hyperintensities made of? Relevance to vascular cognitive impairment. Journal of the American Heart 

Association 2015; 4(6): 001140. 

100. Krueger G, Granziera C, Jack CR, Gunter JL, Littmann A, Mortamet B et al. Effects of 

MRI scan acceleration on brain volume measurement consistency. Journal of Magnetic Resonance 

Imaging 2012; 36(5): 1234-1240. 

101. Ross DE, Ochs AL, DeSmit ME, Seabaugh JM, Havranek MD. Man Versus Machine 

Part 2: Comparison of Radiologists' Interpretations and NeuroQuant Measures of Brain Asymmetry and 

Progressive Atrophy in Patients With Traumatic Brain Injury. The Journal of neuropsychiatry and clinical 

neurosciences 2015; 27(2): 147-52. 

102. Ritchie SJ, Dickie DA, Cox SR, Valdes Hernandez MdC, Corley J, Royle NA et al. Brain 

volumetric changes and cognitive ageing during the eighth decade of life. 

103. Peters N, Holtmannspotter M, Opherk C, Gschwendtner A, Herzog J, Samann P et al. 

Brain volume changes in CADASIL: a serial MRI study in pure subcortical ischemic vascular disease. 

Neurology 2006; 66(10): 1517-22. 

104. Smith SM, de Stefano N, Jenkinson M, Matthews PM. Normalized accurate 

measurement of longitudinal brain change. Journal of computer assisted tomography 2001; 25(3): 466-

475. 

105. Smith SM, Zhang YY, Jenkinson M, Chen J, Matthews PM, Federico A et al. Accurate, 

robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002; 17(1): 

479-489. 

106. Freeborough PA, Fox NC. The boundary shift integral: An accurate and robust measure 

of cerebral volume changes from registered repeat MRI. Ieee Transactions on Medical Imaging 1997; 

16(5): 623-629. 

107. Takao H, Hayashi N, Ohtomo K. Effect of Scanner in Longitudinal Studies of Brain 

Volume Changes. Journal of Magnetic Resonance Imaging 2011; 34(2): 438-444. 



 32 

108. Dickie DA, Job DE, Gonzalez DR, Shenkin SD, Wardlaw JM. Use of brain MRI atlases 

to determine boundaries of age-related pathology: the importance of statistical method. PloS one 2015; 

10(5): e0127939. 

109. O'Brien JT, Paling S, Barber R, Williams ED, Ballard C, McKeith IG et al. Progressive 

brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia. Neurology 2001; 

56(10): 1386-8. 

110. Cover KS, van Schijndel RA, Popescu V, van Dijk BW, Redolfi A, Knol DL et al. The 

SIENA/FSL whole brain atrophy algorithm is no more reproducible at 3T than 1.5 T for Alzheimer's 

disease. Psychiatry research 2014; 224(1): 14-21. 

111. Preboske GM, Gunter JL, Ward CP, Jack CR. Common MRI acquisition non-idealities 

significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial 

MRI. Neuroimage 2006; 30(4): 1196-1202. 

112. Caramanos Z, Fonov VS, Francis SJ, Narayanan S, Pike GB, Collins DL et al. Gradient 

distortions in MRI: Characterizing and correcting for their effects on SIENA-generated measures of brain 

volume change. Neuroimage 2010; 49(2): 1601-1611. 

113. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R et al. Reliability in 

multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human 

data. Neuroimage 2006; 30(2): 436-443. 

114. Tadic T, Jaffray DA, Stanescu T. Harmonic analysis for the characterization and 

correction of geometric distortion in MRI. Medical physics 2014; 41(11): 112303. 

115. Maikusa N, Yamashita F, Tanaka K, Abe O, Kawaguchi A, Kabasawa H et al. Improved 

volumetric measurement of brain structure with a distortion correction procedure using an ADNI 

phantom. Medical physics 2013; 40(6): 062303. 

116. Davids M, Zollner FG, Ruttorf M, Nees F, Flor H, Schumann G et al. Fully-automated 

quality assurance in multi-center studies using MRI phantom measurements. Magn Reson Imaging 

2014; 32(6): 771-80. 

117. Takao H, Abe O, Hayashi N, Kabasawa H, Ohtomo K. Effects of Gradient Non-Linearity 

Correction and Intensity Non-Uniformity Correction in Longitudinal Studies Using Structural Image 

Evaluation Using Normalization of Atrophy (SIENA). Journal of Magnetic Resonance Imaging 2010; 

32(2): 489-492. 

118. Pfefferbaum A, Rohlfing T, Rosenbloom MJ, Sullivan EV. Combining atlas-based 

parcellation of regional brain data acquired across scanners at 1.5 T and 3.0 T field strengths. 

Neuroimage 2012; 60(2): 940-951. 



 33 

119. Chua AS, Egorova S, Anderson MC, Polgar-Turcsanyi M, Chitnis T, Weiner HL et al. 

Handling changes in MRI acquisition parameters in modeling whole brain lesion volume and atrophy 

data in multiple sclerosis subjects: Comparison of linear mixed-effect models. NeuroImage. Clinical 

2015; 8: 606-10. 

120. Pardoe HR, Cutter GR, Alter R, Hiess RK, Semmelroch M, Parker D et al. Pooling 

Morphometric Estimates: A Statistical Equivalence Approach. Journal of neuroimaging : official journal 

of the American Society of Neuroimaging 2015. 

121. Moorhead TW, Gountouna VE, Job DE, McIntosh AM, Romaniuk L, Lymer GK et al. 

Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: 

procedure development using CaliBrain structural MRI data. BMC Med Imaging 2009; 9: 8. 

122. Mortamet B, Bernstein MA, Jack CR, Jr., Gunter JL, Ward C, Britson PJ et al. 

Automatic quality assessment in structural brain magnetic resonance imaging. Magnetic resonance in 

medicine 2009; 62(2): 365-72. 

 

 

 



 34 

Titles and legends to figures 

 

Figure 1 title: Schematic view of the different sources of variability in a multicentre MRI study 

(adapted from www.imaios.com) 

 

Figure 2 title:  Enhanced lesion detection in 3D FLAIR sequence (courtesy of Polak et al.42) 

Figure 2 legend: Sagittal slices from (a, d) 3D FLAIRED (a FLAIR sequence optimized in order to 

enhance detection of lesions); (b, e) GE 3D FLAIR; and (c, f) 2D FLAIR. Note increased lesion 

detection in the frontal lobe (1) deep white matter (2) and juxtacortical (3) regions with 3D FLAIRED. 

Improved deep white matter lesion (4) detection and resolution in 3D FLAIRED compared to other 

sequences. Cerebellar lesion (5) detected in 3D FLAIRED and GE 3D FLAIR, but uncertainly discerned 

in 2D FLAIR.  

 

Figure 3title:  Effect of slice thickness, sequence and magnetic field on CMB detection (courtesy 

of Nandigam et al.28) 

Figure 3 legend: The pairs of images illustrate comparisons of thick-section GRE (A) versus thin-

section SWI (B); thin-section GRE (C) versus thin-section SWI (D); thick-section GRE (E) versus thin-

section GRE (F) (all preceding images at 1.5T); and SWI at 1.5T (G) versus SWI at 3T (H). The black 

arrows in (A) and (B) illustrate a CMB prospectively counted on both sequences, whereas lesions 

denoted by white arrows were initially identified only on the SWI image. The black arrows in the 

remaining images highlight lesions on the paired images for comparison. 

 

Figure 4 title:  Typical gradient distortion field in a T1-weighted acquisition (courtesy of 

Caramanos et al. 112) 

Figure 4 legend: Sagittal, coronal, and axial views of a phantom-based gradient distortion field that was 

determined based on a T1-weighted acquisition. The color scale represents the distance (in millimeters) 

that a voxel moves because of gradient distortion between its “real” location and its “apparent” location 

on such an MRI scan that has not been corrected for the gradient distortion. 

  

http://www.imaios.com/
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Table 1. Summary of reproducibility studies (within-centre or/and between centre scan-rescan procedure) 

 

Study 

Marker of interest 

Between centre Within centre 

Magneticf

ield 
Analysistool 

Between-centre 

reproducibility 
Within-centre reproducibility 

First author 
Yearpubli

shed 

Nb 

subjectsres

canned 

Nb of 

MRI 

sites 

Nb 

subjectsres

canned 

Nb rescans 

per subject 

Brain volumetry          

Schnack 2004 
ICV, BV, GMV, 

WMV 
6 4 5 2 1.5T, 1T 

own 

segmentation 
BV: ICC = 0.98 BV: ICC = 1 

Ewers 2006 GMV, WMV, CSFV 1 10 NA NA 1.5T SPM2 CoV=5% for all volumes NA 

Jovicich 2009 ICV 15 3 15 2 1.5T, 3T Freesurfer NA Reproducibilityerror=2.56% 

Reig 2009 
ICV, GMV, WMV, 

CSFV 
5 5 NA NA 1.5T SPM-based ICV: CoV=1.9%, ICC=0.99 NA 

Wonderlick 2009 BV, GMV, WMV 11 2 NA NA 3T Freesurfer BV: ICC=0.99 NA 

De Boer 2010 
BV, GMV, WMV, 

CSFV 
NA NA 30 2 1.5T FSL, SPM5, kNN NA 

BV: CoV=0.39% with FSL, 

CoV=0.72% with SPM5 

Huppertz 2010 
BV, GMV, WMV, 

CSFV, ICV 
1 6 1 3 1.5T, 3T SPM5 

BV: CoV=3.78%; ICV: 
CoV=2.97% 

BV: CoV=0.5%; ICV: CoV=0.6% 

Kruggel 2010 
ICV, BV, GMV, 

WMV 
172 59 41 2 1.5T, 3T Fantasm 

BV: median RAVD=4.76%, 

90th percentile=12.34%; ICV: 

median RAVD=1.66%, 90th 

percentile=3.92% 

BV: median RAVD=0.30%, 90th 

percentile RAVD=1.09%; ICV: 

median RAVD=0.29%, 90th 

percentile RAVD=1.27% 

Sampat 2010 BPF NA NA 18 2 1.5T 
own 

segmentation 
NA BPF: CoV=0.46% 

Cover 2011 
Normalizedbrain 

volume 
NA NA 671 2 1.5T SIENAX NA 

BV: median RAVD=0.96%,  90th 

percentile RAVD=5.11% 

Shokouhi 

(1.5T) 
2011 

ICV, GMV, WMV, 

CSFV 
13 3 13 2 1.5T BrainVISA BV: reliabilitya=0.97 BV: reliability=0.99 

Shokouhi  

(3T) 
2011 

ICV, GMV, WMV, 

CSFV 
11 5 11 2 3T BrainVISA BV: reliability=0.88 BV: reliability=0.96 

Landman 2011 GMW, WMV NA NA 21 2 3T 
Java Imaging 

Science Toolkit 
NA GMV: CoV=2.6%; WMV: CoV=1.5% 

Chalavi 2012 GMW, WMV 3 2 3 2 3T Freesurfer, SPM NA NA 

Huang 2012 WMV, CSFV 6 2 NA NA 3T FSL 
WMV: ICC=0.62; CSFV: 

ICC=0.87 
NA 

Pfefferbaum 2012 
Supratentorial 

volume 
114 2 NA NA 1.5T, 3T Freesurfer BV: ICC=0.81 NA 
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Brainatrophy          

Smith 2007 PBVC NA NA 68 2 1.5T SIENA, BSI NA 
SIENA: median RAVD=0.16%; BSI: 

median RAVD=0.17% 

De Bresser 2011 PBVC NA NA 10 2 1.5T 
SIENA, SPM8, 

kNN 
NA 

coefficient of repeatabilityb=0.92%for 

SIENA, 2.64% for SPM8, 0.31% for 

kNN 

Cover 2011 PBVC NA NA 385 2 1.5T SIENA NA 
PBVC: median RAVD=0.35%,  90th 

percentile RAVD=1.37% 

Durand-

dubief 
2012 Atrophy 9 2 NA NA 1.5T 

7 segmentation 

algorithms 

SEM: 1.77 for Freesurfer, 

0.98 for BSI, 0.85 for SIENA 
NA 

White-matterhypenintensities         

Wei 2002 WMH volume NA NA 20 2 1.5T 
3 pipelines: 

PVEC, TDS, TDS+ 
NA 

CoV range: 2.6 - 7.5% according to 

pipeline 

Sicotte 2003 WMH volume 25 2 NA NA 1.5T, 3T 
threshold-based 

segmentation 
median RAVD: 12.5% NA 

De Boer 2010 WMH volume NA NA 30 2 1.5T auto trainedkNN NA CoV: 5.87% 

Theysohn 2011 WMH grading 20 2 NA NA 1.5T, 7T  

75% of subjects with equal 

grading at 7T compared to 

1.5T, 13% superior and 13% 

inferior 

NA 

Ramirez 2013 

WMH volume 

(total subcortical, 
deep white, 

periventricular) 

NA NA 20 2 1.5T Lesion Explorer NA 
ICC=1; mean AVD in 10 older 

subjects=213mm3 

Cerebral microbleeds          

Stehling 2008 CMBnumber 25 2 NA NA 1.5T, 3T  more CMB at 3T vs 1.5T NA 

Nandigam 2009 

CMB contrast 

index and 

diameter 

4 2 NA NA 1.5T, 3T  
smaller contrast index and 

diameter at 1.5T vs 3T 
NA 

Conijn 2011 CMBnumber 34 2 NA NA 1.5T, 7T  more CMB at 7T vs 1.5T NA 

Theysohn 2011 CMBnumber 20 2 NA NA 1.5T, 7T  more CMB at 7T vs 1.5T NA 

 

ICV: intracranial volume, BV: brain volume (GMV + WMV), GMV: gray matter volume, WMV: white matter volume, CSFV: cerebrospinal volume, BPF: Brain parenchymal fraction, WMH: white matter hyperintensities, CMB: cerebral 

microbleeds, ICC: Intraclass correlation coefficient, CoV: coefficient of variation, NA: not available, Reproducibility error: The group reproducibility error for each structure is derived averaging the reproducibility errors across subjects, where 

for each subject the error is estimated as the absolute test–retest volume percent change relative to the mean test–retest volume, kNN: k-Nearest-Neighbors segmentation method, RAVD: relative absolute value of the difference, PBVC: 

percent brain volume change, areliability in this study has been computed as the ratio of the variance excluding the contribution from the factor (within-centre or between-centre) to the total variance, bcoefficient of repeatability: 1.96 times the 

standard deviation of the differences between two measurements (Bland-Altman), SEM: standard error of measurement, AVD: absolute value of the difference. 


