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In Glioblastoma Multiforme (GBM) imagederived features ("radiomics") could help in individualizing patient management. Simple geometric features of tumors (necrosis, edema, active tumor) and first-order statistics in Magnetic Resonance Imaging (MRI) are used in clinical practice. However, these features provide limited characterization power because they do not incorporate spatial information and thus cannot differentiate patterns. The aim of this work is to develop and evaluate a methodological framework dedicated to building a prognostic model based on heterogeneity textural features of multimodal MRI sequences (T1, T1-contrast, T2 and FLAIR) in GBM. The proposed workflow consists in i) registering the available 3D multimodal MR images and segmenting the tumor volume, ii) extracting image features such as heterogeneity metrics and iii) building a prognostic model by selecting, ranking and combining optimal features through machine learning (Support Vector Machine). This framework was applied to 40 histologically proven GBM patients with the endpoint being overall survival (OS) classified as above or below the median survival (15 months). The models combining features from a maximum of two modalities were evaluated using leave-one-out cross-validation (LOOCV).

A classification accuracy of 90% (sensitivity 85%, specificity 95%) was obtained by combining features from T1 pre-contrast and T1 post-contrast sequences. Our results suggest that several textural features in each MR sequence have prognostic value in GBM.

I. INTRODUCTION

Glioblastoma multiforme (GBM) is the most malignant grade IV primary intracranial tumor of adults according to the World Health Organization' histological grading system [START_REF] Dolecek | Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the united states in 20052009[END_REF]. The prognosis is poor with a median survival of 15 months and occurrence rate is two or three cases per 100,000 per year [START_REF] David N Louis | The 2007 who classi-fication of tumours of the central nervous system[END_REF][START_REF] Krex | Long-term survival with glioblastoma multiforme[END_REF]. The current standard treatment of GBM is a surgical resection followed by radiotherapy and chemotherapy [START_REF] Preusser | Current concepts and management of glioblastoma[END_REF]. Within this context, multimodal Magnetic Resonance Imaging (MRI) sequences (T1, T1contrast, T2, FLAIR...) play a major role for diagnosis, treatment planning, as well as prognosis, on which depend a number of clinical decisions. Thus, image-derived features extracted from standard MRI sequences could potentially be combined into a powerful prognostic tool with impact on patient management through higher stratification.

Although novel contrast agents, tracers and imaging sequences are being developed to investigate various aspects of tumor underlying pathophysiological processes, it is recognized that standard medical images may contain useful yet still unexploited information that could be useful in a clinical setting. Image-derived features (also called "radiomics") extracted from medical images may not only allow to be associated with prognosis but also non-invasively probe molecular and histological profiles of tumors, as a further step towards personalized medicine. Hence, considerable efforts have been carried out in identifying radiomics as a prognostic factor in GBM. Gutman et al. conducted an assessment of GBM tumor size and composition by using 24 visual observations familiar to neuroradiologists from MR sequences dubbed as VASARI, and found that contrast-enhanced tumor volume and major axis length of tumor were strongly associated with poor survival [START_REF] David A Gutman | Mr imaging predictors of molecular profile and survival: multi-institutional study of the tcga glioblastoma data set[END_REF]. Recently, Gevaert et al. evaluated 153 2D MR image-derived features for the development of a radiogenomic map, establishing a link between image features and underlying molecular data. Three features were found to be correlated with survival, 77 with VASARI, and 7 with molecular subgroups [START_REF] Gevaert | Glioblastoma multiforme: Exploratory radio-genomic analysis by using quantitative image features[END_REF]. Mazurowski et al. investigated 8 MRI derived features and concluded that proportion enhancing tumor and major axis length were prognostic factors [START_REF] Maciej A Mazurowski | Computer-extracted mr imaging features are associated with survival in glioblastoma pa-tients[END_REF]. Clinical features such as Karnofsky Performance Status (KPS), age, extent of resection and degree of necrosis were found to be significant prognostic factors [START_REF] Lacroix | A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival[END_REF]. However, most studies were focused on the geometry of tumors, which do not incorporate the within-tumor heterogeneity characteristics imaged through multimodal MR sequences. Therefore, quantifying heterogeneity could be of interest for prognosis in GBM and it can be achieved through textural features analysis, which has been found to be of interest in various pattern recognition applications in medical imaging [START_REF] Alic | Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review[END_REF]. For example textural features have been used to quantify FDG tracer uptake heterogeneity in PET images of tumors [START_REF] Tixier | Visual versus quantitative assessment of intratumor 18f-fdg pet uptake heterogeneity: Prognostic value in nonsmall cell lung cancer[END_REF][START_REF] Tixier | Intratumor heterogeneity characterized by textural features on base-line 18f-fdg pet images predicts response to concomitant radiochemotherapy in esophageal cancer[END_REF]. Likewise, Zacharaki et al. used Gabor textural features and geometry from brain tumor as quantitative approach to characterize brain tumor type and grade from MRI [START_REF] Evangelia I Zacharaki | Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme[END_REF]. The aim of this work1 is to develop and evaluate the prognostic value of textural features quantifying the heterogeneity of GBM tumors in baseline multimodal MRI sequences. We developed a fully operational workflow for multimodal MR images pre-processing, registration, segmentation of tumors, characterization of tumors heterogeneity, and prognostic model training and validation using support vector machine (SVM) based on recursive feature elimination algorithm for feature selection and classification [START_REF] Guyon | Gene selection for cancer classifica-tion using support vector machines[END_REF] (Figure 1). We present preliminary results obtained on 40 patients with leave-one-out cross-validation (LOOCV).

II. MATERIALS AND METHODS

II.1. Patients population and imaging data

In order to simplify the analysis, patients were divided into two groups for the classification task: short and long overall survival (SOS and LOS) with a threshold of 14.8 months corresponding to the median survival (n=20 in each group) with the standard treatment [START_REF] Preusser | Current concepts and management of glioblastoma[END_REF]. The MR images of GBM for this study were acquired from the Cancer Imaging Archive2 , an imaging portal consisting of images from four centers (Henry Ford Hospital, University of California San Francisco, M.D. Anderson Cancer Center, and Emory University). The MR images are anonymized and publicly available. Forty patients with histopathologically diagnosed GBM and treated with radiotherapy and chemotherapy were retrospectively analyzed. Mean age of patients was 59y (median 60y, range 31-80y). There were 25 males and 15 females with median survival of 14.8 months (mean 15.5, range 2.8-51.2). All baseline MRI sequences consist of: 1) T1-weighted pre contrast, 2) T1-weighted post contrast, 3) T2-weighted, and 4) FLAIR available for all 40 patients. II.2. Pre-processing of MRI sequences MRI sequences were acquired using various acquisition parameters and pulse sequences thereby with potential impact on the resulting quantification within the images. Standardization for comparison was performed using several sequentially implemented pre-processing steps.

II.2.1. Inhomogeneity correction

The undesirable signal that corrupts the MR images due to magnetic settings, patients' position and other factors is known as inhomogeneity or field bias. These inhomogeneities in a same tissue type degrade the performance of segmentation and classification, based on the assumption of spatial invariance. Therefore all the images included in this study were corrected for inhomogeneity using the N3ITK filter [START_REF] Ibanez | The ITK Software Guide[END_REF].

II.2.2. Mono-modal co-registration

All the MRI sequences (T1 pre-contrast, T2 and FLAIR) were registered to the T1 post-contrast image using mutual information similarity metric [START_REF] Josien Pw Pluim | Mutual-information-based registration of medical images: a survey[END_REF].

II.2.3. Tumor delineation

Prior to segmentation, a fully-automatic and customized skull-stripping algorithm was used to isolate the brain region from the MRI sequences [START_REF] Porz | Multimodal glioblastoma segmentation: Man versus machine[END_REF]. Segmentation of the tumor regions was carried-out using all four MRI sequences and a single mask with labels representing edema, necrosis and active tumor was automatically produced. The segmentation algorithm is based on Support Vector Machine exploiting multimodal voxels' intensities with subsequent hierarchical regularization by Conditional Random Fields [START_REF] Bauer | Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regulariza-tion[END_REF]. An expert clinician in neuro-oncology (P-J Le Reste) validated and manually edited the resulting masks when needed.

II.2.4. Intensity standardization within delineated lesions

As a consequence of using different MRI sequences with the varying intensity ranges, the quantization step which yields finite range of intensities among modalities and across patients was employed using equation 1.

V (x) = B I (x) -min i i∈Ω max i i∈Ω -min i i∈Ω + 1 ( 1 
)
where B is the quantization bins value, usually considered within the range 4-256. We considered 4 different values in the present work for B: 16, 32, 64, and 128. I is the intensity of a voxel in the original image and Ω is the set of voxels in the delineated volume. This quantization step reduces the spatial variability of intensities (noise) and is also necessary to compute relevant values for textural features and facilitate their comparison. All the above preprocessing steps except the quantization were carried out using Brain Tumor Image Analysis software (BraTumIA) 3 , a fully dedicated open source software for GBM segmentation using MRI sequences [START_REF] Ibanez | The ITK Software Guide[END_REF][START_REF] Josien Pw Pluim | Mutual-information-based registration of medical images: a survey[END_REF][START_REF] Porz | Multimodal glioblastoma segmentation: Man versus machine[END_REF][START_REF] Bauer | Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regulariza-tion[END_REF].

II.3. Textural features extraction

Thirty-four textural features (Table 1) were extracted based on the first-order, second-order and higher-order statistics accounting for intensity distribution in global, local and regional scale respectively, of each delineated tumor volume in each of the four MRI sequences. Global scale textural features were computed from intensity histogram, local scale textural features were computed from Greylevel co-occurrence matrix (GLCM) [START_REF] Robert M Haralick | Textural features for image classification[END_REF], whereas regional scale textural features were computed from grey-level runlength (GLRLM) [START_REF] Loh | The analysis of natural textures using run length features, Industrial Electronics[END_REF] and grey-level size-zone matrices (GLSZM) [START_REF] Thibault | Texture indexes and grey level size zone matrix application to cell nuclei classification, Pattern Recognition and Information Processing[END_REF]. These texture matrices were calculated in 3D taking into account all 13 directions [START_REF] Gutierrez | Metrics and textural features of mri diffusion to improve classification of pediatric posterior fossa tumors[END_REF][START_REF] Xian | An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM[END_REF]. All these features have been somewhat useful in various pattern recognition applications including medical imaging and were therefore considered in the present work.

II.4. Features selection and ranking

Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithm initially proposed by Guyon et al.

for gene selection in a cancer classification problem was employed for the ranking of features [START_REF] Guyon | Gene selection for cancer classifica-tion using support vector machines[END_REF]. This method selects the features in a linear separation case, based on the vector of weighted magnitude ||w ψ || 2 defined as

w = ∑ i∈ζ y i α i x i ( 2 
)
where ζ is the number of training sets, ψ the total number of features, y is the class label, x is a feature and α is the corresponding solution of the SVM classifier. The features corresponding to smallest weight magnitudes are recursively eliminated. The whole procedure follows the nested k-fold cross-validation in training set in order to correct for the selection bias. The features most frequently occurring on a given particular rank are assigned said ranking.

II.5. Classification for prognosis

We used multivariate pattern analysis methods "Support Vector Machine (SVM) 4 " to solve the classification problem, as this approach has been intensively studied and benchmarked against a variety of other techniques [START_REF] Guyon | Gene selection for cancer classifica-tion using support vector machines[END_REF]. As a preliminary step in our research, we chose to simplify the problem by considering a binary classification problem, in which the two classes are 'long overall survival' (above the median OS of 14.8 months) and 'short overall 

III. RESULTS

Figure 2 presents the results for ten different models (one for each MRI sequence, as well as the combination of all the two MRI sequences) that were trained and validated using LOOCV. The best results were consistently obtained in all modalities using textural features calculated with quantization value of B=64, so only these results are provided. The best classification results considering only one MRI sequence at a time were obtained using a combination of five features (cluster shade, high greylevel zone emphasis, large zone high grey-level emphasis, grey-level non-uniform spectral homogeneity and size zone non-uniformity) extracted from the T1 post-contrast sequence, with an accuracy of 82.5%. Models based on T1 pre-contrast, T2 and FLAIR sequence exploited cluster prominence, large zone emphasis, cluster shade and greylevel non-uniformity features, with slightly lower associated accuracy of 62.5%, 72.5% and 75% respectively. Regarding the combination of two different MRI sequences, the highest accuracy was obtained by combining the T1 pre-contrast and T1 post-contrast sequences, with an as-sociated accuracy of 90% (sensitivity 85% and specificity 95%). Two features only (high grey-level zone emphasis and variance) from T1 pre-contrast and four features (cluster prominence, short run high grey-level emphasis, size zone non-uniformity and sum) from T1 post-contrast contributed in this model. Note that for this best model, features from first, second and third orders were retained. The feature subset selection method showed that four features from local and regional scales (cluster prominence, cluster shade, grey-level non-uniformity and size zone non-uniformity) were consistently considered as relevant.

Overall, the T1 post-contrast MRI sequence seemed to offer the most relevant information regarding prognosis. In another set of experiments, we built a model with the contextual clinical variables such as age, gender, karnofsky and treatment modality (radiotherapy, chemotherapy and surgery). The variables gender and treatment modality were categorized using 1-of-k coding scheme. The model built using contextual clinical variables only reached a limited accuracy of 58%. In the multivariate selection when included with image-derived features, none of these clinical variables were retained for building the model.

IV. DISCUSSION-CONCLUSION

Our results suggest that using multivariate methods such as SVM with the combination of global, local and regional textural features quantifying heterogeneity in all four MR modalities available in routine clinical acquisitions can provide a model with high prognostic value. However, one drawback of multivariate methods using high dimensional features is the lack of a framework for estimating the statical interpretation because unlike univariate methods, SVM model does not compute statistical tests (and corresponding p-values) associated with the significance level. Rather, evaluating the SVM models' maximum weight coefficients recursively helps in ranking the significant fea- tures. In addition, selecting an optimal number of significant features and building the SVM models based on forward selection of features gives the highest cross-validation accuracy. We emphasize that these results are only preliminary and the present work has a few limitations: i) the analysis included only 40 patients and validation was carried out using LOOCV, which is more optimistic than validation in an independent dataset; ii) prognosis analysis was simplified by considering a binary classification problem (SOS and LOS) instead of a continuous variable; iii) we did not investigate the combination of more than two MR sequences among the four available due to the limited number of patients. We emphasize however that the analysis is currently ongoing, and that additional patients will be included in the future, which will allow for a more rigorous evaluation of the accuracy, by testing the trained models on an additional group of patients not used in the model training. In addition, we expect that by projecting these image features in a higher dimension using a "kernel trick" (for eg. Radial Basis Kernel) for non-linear multivariate analysis and by combining features from all four MRI sequences, an even more robust and accurate model for feature selection and classification can be developed. However, for a reliable analysis, we will have to wait for more patients datasets to be processed through the entire described workflow (pre-processing and segmentation of the images constitutes the bottleneck for producing more results). Future work will consist in i) adding more patients for validation using training and testing groups, ii) improving the pre-processing steps of voxels spatial resampling, standardization and quantization, as recently suggested [START_REF] Vallieres | A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities[END_REF], as well as updating the bias correction using N4ITK instead of N3ITK, iii) considering additional fea-tures to improve the proposed model, iv) building a fully multimodal MRI model by combining features from more than two sequences, v) considering survival as a continuous variable using survival SVM method [START_REF] Evers | Sparse kernel methods for high-dimensional survival data[END_REF] and vi) building and comparing models with various other machine learning based classifier techniques such as random forest or artificial neural network.

Figure 1 :

 1 Figure 1: The proposed workflow for GBM prognostic model development and validation.
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 2 Figure 2: Model accuracy, specificity and sensitivity assessed by LOOCV. Left: using 1 modality only, right: all combinations of 2 modalities.
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 3 Figure 3: Kaplan-Meier survival curves for patients according to left: classification using the median survival and right: classification obtained by the model. Misclassified patients are indicated by black circles.
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