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Abstract 

Fast clearance, metabolism and systemic toxicity are major limits for the clinical use of anti-cancer 
drugs. Histone deacetylase inhibitors (HDACi) present these defects despite displaying promising 
anti-tumor properties on tumor cells in vitro and in in vivo model of cancers. Specific delivery of 
anti-cancer drugs into the tumor should improve their clinical benefit by limiting systemic toxicity 
and by increasing the anti-tumor effect. In this work, we describe a simple and flexible polymeric 
nanoparticle platform highly targeting the tumor in vivo and triggering impressive tumor weight 
reduction when functionalized with HDACi. Our nanoparticles were produced by Ring Opening 
Metathesis Polymerization of azido-polyethylene oxide-norbornene macromonomers and 
functionalized using click chemistry. Using an orthotopic model of peritoneal invasive cancer, a 
highly selective accumulation of the particles in the tumor was obtained. A combination of 
epigenetic drugs involving a pH-responsive histone deacetylase inhibitor (HDACi) polymer 
conjugated to these particles gave 80% reduction of tumor weight without toxicity whereas the 
free HDACi has no effect. Our work demonstrates that the use of a nanovector with theranostic 
properties leads to an optimized delivery of potent HDACi in tumor and then, to an improvement 
of their anti-tumor properties in vivo. 

Key words: polymeric nanoparticle, epigenetic, HDAC, cancer, theranostics, peritoneal, mesothelioma. 

Introduction 
Post-translational modifications (PTM) of 

histone proteins and DNA methylation play major 
roles in the epigenetic regulation of gene 
expression.(1),(2) The enzymes regulating epigenetic 
modifications are classified as writers, erasers and 
readers, respectively adding, removing and 
“decoding” PTM. Overexpression or abnormal 

activities of these regulators have been linked to 
human disease like cancers (3) for many years. Drugs 
targeting dysfunctional epigenetic regulators 
represent a widespread innovative therapeutic 
strategy against cancers.(4) The overexpression of 
histone deacetylases (HDAC) in many cancer types 
induces histones hypoacetylation, and in turn 
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chromatin compaction resulting in tumor suppressor 
genes (TSG) repression. (5) (6) (7) HDAC inhibitors 
(HDACi), able to stimulate TSG expression, are 
evaluated in many clinical trials, with Vorinostat (8), 
Istodax (9) and Belinostat (10) being currently 
approved for clinical use for the treatment of 
cutaneous lymphomas. Recently Panobinostat has 
also been approved for multiple myelomas.(11) 
Except Istodax, Vorinostat, Belinostat and 
Panobinostat are all hydroxamic acid-based HDACi. 
However, anti-cancer applications of HDACi are still 
limited mainly because of dose limiting toxicity,(12) 
acquired resistance (13) fast metabolism and variable 
clinical results.(14) Clinical data have shown that 
sustained delivery and low drug dosing (15) of 
epigenetic target inhibitors can reduce off–target 
effects such as systemic toxicity. Besides HDAC, the 
deregulated activities of DNA methyl transferases 
(DNMT) also participates in tumorigenesis and the 
combination of epigenetic inhibitors has emerged as a 
highly valuable option in many cases.(16),(17),(18) 

With epigenetic targeting drugs, side effects or 
systemic toxicity can be reduced with highly active 
compounds used alone or in combination, at low 
dosage, in association with the tumor targeting 
mediated by drug delivery systems (DDS).(19) In 
contrast to the reported DDS applications in 
epigenetics,(20) focus should also be set on low drug 
loading and sustained release to comply with clinical 
results. The selection of the DDS is also an important 
issue. Micellar DDS have a heterogeneous 
composition and the undesired “burst release” 
effect,(21) whereas polymeric DDS can be stable 
during the administration schedule, and designed for 
chemically stimulated drug release circumventing 
resistance.(22) Passive tumor targeting due to the 
enhanced permeability and retention (EPR) effect (23) 
requires a long circulation time, which can be 
obtained by DDS pegylation to introduce ‘stealth’ 
properties. 

The Ring-Opening Metathesis Polymerization 
(ROMP) of functional norbornene (NB) produces 
well-defined nanoparticles (NP). Post-functionali-
zation (24),(25) is used to gain stealth properties, 
tumor cell targeting, and drug release avoiding the 
liposomal burst release effect. All these functionalities 
increase the chemical complexity of DDS. In this 
study, we implemented a more simple and flexible 
approach with the azido-polyethylene oxide 
(PEO)-NB macromonomer 6 (Fig. 1).(26) The stealth 
properties for passive targeting are natively present 
thanks to the PEO chain. The terminal azide group 
can be used to build a library of functional 
macromonomers by click chemistry with 
alkyne-bearing functions. The NB group is used for 

(co)polymerization in dispersed media to give a 
(multi)functional core-shell spherical NP. The 
plasticity and stealth property of this DDS made it 
convenient for high tumor targeting and 
internalization by cancer cells without additional 
modifications. Using a clickable pH-responsive 
prodrug,(27) NP can be prepared for drug loading 
with high stability during blood circulation and 
release of the drug after NP endocytosis by cells.(28) 
Selecting an aggressive cancer model for testing this 
novel DDS increases the challenge and positive results 
could open the way for the treatment of other cancers. 
For that purpose, we selected the asbestos 
exposure-related cancer, malignant pleural 
mesothelioma (MPM), with has a poor prognostic and 
a limited clinical response to therapy.(29) This cancer 
is located mainly in the pleura and in the peritoneum. 
Epigenetic errors (30) observed in mesothelioma 
contribute to ineffective chemotherapy treatment and 
characterize this cancer as a candidate for epigenetic 
therapeutic strategies. Despite promising effects in 
MPM models, epigenetic-driven therapies in the clinic 
have to date been unsuccessful.(31) 

pH-mediated delivery of HDAC inhibitor SAHA 
with dendrimers was demonstrated in vitro.(32) In 
this communication we showed for the first time that 
an epigenetic strategy combining pH–responsive 
ROMP-nanoparticles functionalized with a 
nanomolar active hydroxamic acid HDACi and free 
decitabine, a hypomethylating agent, can induce an 
80% mesothelioma tumor weight reduction without 
toxicity while the combination of the free HDACi with 
decitabine had no effect. These results could also be 
extended to the increasing number of approved 
HDAC inhibiting molecules belonging to the 
hydroxamic acid family. 

Materials and methods 
Reagents 

All commercial chemicals and solvents were 
reagent grade and were used without further 
purification unless otherwise noted. Reactions were 
carried out with the use of standard techniques for the 
exclusion of moisture. Ethanol (96%, purissium grade 
pur, Xilab), dichloromethane (96%, purissium grade 
pur, Xilab) and dimethyl formamide (99.8%, Panreac) 
were degassed before use. Tetrahydrofuran (J.T. 
Baker) diethyl ether anhydrous (J.T. Baker), 
N,N,N',N'',N''-pentamethyldiethylenetriamine 
(PMDETA, 99%, Aldrich), Na2SO4 (99%, Alfa Aesar), 
norbornene (NB, 99% GC, Aldrich), Grubbs first 
generation catalyst Cl2(PCy3)2Ru=CHPh (Aldrich, 
stored in a glovebox under Argon atmosphere), 
dodecane (99%, Aldrich), triethylamine (99%, Acros 
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Organics), ethyl vinyl ether (99% stab. with ca. 0.1% 
N,N-diethylalanine, Alfa Aesar), Trizma®base (99.9%, 
Aldrich) were used without further purification. CuBr 
(98%, Aldrich) was purified in acetic acid and stored 
under inert atmosphere (glovebox), α-norbornenyl-ω- 
azide-poly(ethylene oxide) macromonomer 6 bare 
nanoparticles 10 (33) and Rhodamine B labeled 
nanoparticles 11 (26) were prepared as previously 
described. ACN: acetonitrile, DCM: dichloromethane, 
DMF: dimethyl formamide, EA: ethyl acetate, TEA: 
trimethylamine, THF: tetrahydrofuran, PE: petroleum 
ether. PMDETA= pentamethyldiethylenetetramine. 

Methods 
Reactions were monitored by thin layer 

chromatography when applicable with 0.25 mm silica 
gel plates (60F-254. E. Merck) and revealed with 
phosphomolybdic acid 5% weight in ethanol. 1H 
NMR spectra were recorded in 5 mm diameter tubes 
with a Bruker spectrometer (1H 400 MHz. 13C 100 
MHz), in CDCl3. acetone D6 or DMSO D6 (for 
compound 2) at 25 °C. The chemical shift scale 
expressed in ppm was calibrated on the basis of the 
deuterated solvent or tetramethylsilane as reference. 
For compounds 4 peak assignments was made with 
DEPT135, COSY and HSQC experiments. High 
resolution mass spectra were recorded at Centre 
Régional des Mesures Physiques de l’Ouest for 
compounds 4 on a Waters Micro-TOF-Q and Q-2. 
HPLC for compounds 2, 3 and 4 analyses were 
performed on Hitachi equipped with an 
auto-sampler, a diode array detection DAD L-2455 
and with a reversed phase ACE® C18 (5 µm. 4.6 x 250 
mm). Analyses were recorded at 230 nm. Size 
exclusion chromatography (SEC) equipment consists 
of a JASCO HPLC pump type 880-PU, TOSOHAAS 
TSK gel columns, a Varian refractive index detector, 
and a JASCO 875 UV-vis absorption detector, with 
THF as the mobile phase and the calibration curve 
was performed using polystyrene standards. The 
conversion of macromonomers was determined by 
SEC with dodecane as internal standard (SEC 
retention times: tSECmacromonomers = 18.75 min; tSECdodecane 
= 31.70 min). The conversion of norbornene 9 was 
determined by gas chromatography with dodecane as 
internal standard (GC retention times: tGCNb = 1.77 
min; tGCdodecane = 8.55 min). DLS measurements were 
performed using a MALVERN zetasizer Nano ZS 
equipped with He-Ne laser (4 mW and 633 nm). 
Before measurements, latexes were diluted about 800 
times to minimize multiple scatterings caused by high 
concentration. The scattering angle used was 173°. 
TEM pictures were performed with a Hitachi H7650 
microscope operating at an accelerating voltage of 120 
kV. For the particle size and morphology observation, 

samples diluted about 100 times were deposited on a 
200 mesh carbon film-coated copper grids surface (3 x 
5 µl).  

Synthesis of compound 2 and its prodrugs 4 
4-N.N-dimethylamino-2-hydroxy-benzoic acid 

methyl ester (13a) and 4-N-methylamino-2- 
hydroxy-benzoic acid methyl ester (13b). To a 
solution of amino-hydroxybenzoic acid 12 (30.62 g, 0.2 
mol) in DMF (200 mL) were added CH3I (62 mL, 1 
mol. 5eq.) and KHCO3 (60 g, 0.6 mol, 3eq.). After one 
week stirring at room temperature the solution was 
diluted with water (500 mL) and extracted with DCM 
(3x200 mL). The combined organic layers were dried 
(MgSO4) and solvent removed under vacuum. The 
crude product was purified by chromatography (silica 
gel, EA:PE gradient 0:100, 100 mL; 1.25:98.75, 500 mL; 
2.5:97:5, 500 mL and finished with 5:95) to afford 
compound 13a as a white solid (27.3 g, 70%) and 
compound 13b as a light ivory solid (3.3 g, 9%). For 
compound 13a (identical to reference 30): TLC EA/PE 
5/95 Rf = 0.5, 1H NMR (400 MHz; CDCl3) δ ppm: 
10.93 (1H, s), 7.63 (1H, d. J = 9.0 Hz), 6.20 (1H, dd. J = 
9.0. 2.4 Hz), 6.12 (1H, d. J = 2.4 Hz), 3.87 (3H, s), 3.0 
(6H, s). 

5-(6-Dimethylamino-2-methyl-3-oxo-2.3-dihydro
-benzofuran-2-yl)-4-methyl-penta-2.4-dienoic acid 
hydroxamide (2). To a 0°C cooled solution of the acid 
14 (34) (6.14 g, 20.4 mmol) in anhydrous THF, ethyl 
chloroformiate (0.253 L, 30.6 mmol) and TEA (5.01 
mL, 30.6 mmol) were added, and the mixture was 
stirred for 30 min. The solid was filtered and the 
filtrate was added to a freshly prepared solution of 
hydroxylamine in methanol. To prepare the solution 
of hydroxylamine, at 0°C, a solution of 
hydroxylamine hydrochloride (3.95 g, 61.3 mmol) in 
methanol (60 mL) was added to a stirred solution of 
potassium hydroxide (3.44 g, 61.3 mmol) in methanol 
(60 mL). The mixture was stirred for 15 min, the 
precipitate was then removed by filtration to have the 
solution the hydroxylamine in methanol. The mixture 
was stirred at room temperature for 30 min and then 
was evaporated. The resulting crude was purified by 
combi-flash (DCM/MeOH: 95/5) and the residue was 
recrystallized from a mixture of DCM/PE (2/8). The 
solution was filtered to have a white pink solid of 2 
(2.31 g, 36%). The inhibitor 2 prepared with this new 
synthesis and its intermediates gave analytical data 
consistent with previously reported longer synthesis 
(Supplementary information, NMR data for 
compound 2 and HPLC). TLC MeOH/DCM 5/95 Rf 
= 0.05, 1H NMR (400 MHz. MeOH-d4) δ ppm: 1.45 (3H, 
s), 1.9 (3H, s), 3.1 (6H, s), 5.8 (1H, s), 5.80 (1H, d, J = 15.6 
Hz), 6.16 (1H, d, J = 2.1 Hz), 6.45 (1H, dd, J = 2.1, 8.9 
Hz), 7.05 (1H, d, J = 15.6 Hz), 7.30 (1H, d, J = 8.9 Hz). 
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13C NMR (100 MHz. MeOH-d4) δ ppm: 14.0, 25.0, 41.0, 
90.8, 93.5, 108.5, 110.3, 119.1, 126.9, 136.9, 138.6, 146.1, 
160.4, 166.6, 175.2, 200.7. 

5-(6-Dimethylamino-2-methyl-3-oxo-2.3-dihydro
-benzofuran-2-yl)- [[1-[2-[2-[2-(2-prop-2-ynoxyethoxy) 
ethoxy] ethoxy] ethyl] triazol-4-yl]-bis(phenyl) 
methoxy]-4-methyl-penta-2.4-diene-amide (4a). To a 
solution of 3a (67 mg, 0.144 mmol) in dry toluene (1 
mL) under nitrogen atmosphere was added AcCl (54 
μL, 720 μmol, 5 eq.). After 2h reflux, the solution was 
evaporated to give the crude intermediate chloride as 
brown oil. To a solution of 2 (52 mg, 172 μmol, 1.2 eq.) 
in a mixture of dry NEt3/ACN (2 mL, 1:1) was added 
the crude chloride dissolved in a minimum of dry 
ACN at ambient temperature. The resulting solution 
was stirred 45 min at room temperature, the solvent 
was then evaporated under vacuum and purified by 
combi-flash (MeOH/ DCM: 0 to 3% MeOH) to afford 
the compound 4a as a colorless oil (38.5 mg, 35%). 
TLC MeOH/DCM 5/95 Rf = 0.34; 1H NMR (400 MHz, 
Acetone-d6) δ ppm: 9.83 (1H, s, NH), 7.78 (1H, s, Ha), 
7.47 (4H, d, J = 8.1 Hz, Hb), 7.39 (2H, d, J = 8.3 Hz, Hc), 
7.31 (6H, m, Hd+p), 6.63 (1H, dd, J = 12.0, 3.9 Hz, Hg), 
6.22 (1H, s, He), 5.95 (1H, d, J = 16.0 Hz, Hh), 5.88 (1H, 
s, Hi), 4.54 (2H, t, J = 4.0 Hz, Hj), 4.15 (2H, s, Hk), 3.84 
(2H, t, J = 4.1 Hz, Hl), 3.47 (12H, m, Hm), 3.11 (6H, s, 
Hn), 2.94 (1H, s, Ho), 1.81 (3H, s, Hq), 1.52 (3H, s, Hr); 
13C NMR (400 MHz, Acetone-d6) δ ppm: 197.5, 173.7, 
158.8, 136.4, 136.5, 129.6-128.2 (10C), 128.1, 127.8, 
127.5, 126.6, 126.0, 108.9, 108.1, 93.1, 89.5, 80.9, 75.8, 
74.5, 71.1-69.7 (7C), 58.5, 50.7, 40.4 (2C), 24.4, 13.6; 
HRMS ESI: found 814.3776; calculated 814.3786 for 
[M+Na]+ C43H49N5O8Na. 

5-(6-Dimethylamino-2-methyl-3-oxo-2.3-dihydro
-benzofuran-2-yl)- [[1-[2-[2-[2-(2-prop-2-ynoxyethoxy) 
ethoxy] ethoxy] ethyl] triazol-4-yl]-bis(p-toluyl) 
methoxy]-4-methyl-penta-2.4-diene-amide (4b). To a 
solution of 3b (0.3 g, 0.63 mmol) in dry toluene under 
nitrogen atmosphere was added AcCl (0.24 mL, 3.14 
mmol). After 2h reflux, the solution was evaporated to 
give the intermediate crude chloride as brown oil. To 
a solution of 2 (0.188 g, 0.63 mmol) in a mixture of dry 
NEt3/ACN (1:1) (6 mL) was added the crude chloride 
dissolved in a minimum of dry ACN at ambient 
temperature. The resulting solution was stirred 45 
min at room temperature, the solvent was then 
evaporated under vacuum and purified by 
combi-flash (MeOH/ DCM: 0 to 3% MeOH) to afford 
the compound 4b as a colorless oil (80 mg, 18%). TLC 
MeOH/DCM 5/95 Rf = 0.34; 1H NMR (400 MHz. 
Acetone-d6) δ ppm: 9.80 (1H, s, NH), 7.74 (1H, s, Ha), 
7.36 (1H, d, J = 12.1 Hz, Hc), 7.30 (4H, d, J = 8.3 Hz, Hd), 
7.12 (4H, d, J = 8.1 Hz, He), 6.54 (1H, dd, J = 12.1, 4.2 
Hz, Hf), 6.23 (1H, s, Hg), 5.95 (1H, d, J = 16.0 Hz, Hh), 
5.88 (1H, s, Hi), 4.53 (2H, t, J = 4.0 Hz, Hj), 4.15 (2H, d, J 

= 0.8 Hz, Hk), 3.84 (2H, t, J = 8.0 Hz, Hl), 3.52 (12H, m, 
Hm), 3.13 (6H, s, Hn), 2.93 (1H, t, J = 0.8 Hz, Ho), 2.31 
(6H, s, Hp), 1.82 (3H, s, Hq), 1.52 (3H, s, Hr); 13C NMR 
(400 MHz, Acetone-d6) δ ppm: 197.8, 173.7, 158.9 (2C), 
128.9-126.03 (10C), 108.9, 108.2, 93.1, 89.6, 75.8, 
71.1-69.8 (7C), 58.6, 50.1, 40.5 (2C), 24.5, 20.9 (2C), 13.6; 
HRMS ESI: found 786.3495; calculated 786.3473 for 
[M+Na]+.C45H53N5O8Na. 

Hydrolysis rates of compounds 4  
A solution of 1 mg compound 4b (or 4a) 

dissolved in 0.2 mL acetonitrile was mixed with 
aqueous with 0.8 mL buffered solutions with pH 3.0, 
4.3, 5.0 and 7.3. The samples were injected at various 
times to monitor the formation of compounds 3b (or 
3a) and 2. The binary eluting system was composed of 
acetonitrile and water with 0.1% TFA 85:15 v:v and 
the flow rate was gradually modified over the time of 
analysis (Time:Flow compositions: (A) 0-5min: 0.25 to 
0.5 mL/min (B) 5-10 min:0.5 to 1 mL/min (C) 10-15 
min:1mL/min. Table 1 shows the half-life of 
compounds 4 at the selected pHs (for detailed kinetic 
see Table S1). 

 

Table 1. Half-lives of prodrugs 4 at selected pHs. 

compounds pH 3.0 pH 4.3 pH 5.0 pH 7.3 
4aError! Bookmark 

not defined. 
n.d. stable stable stable 

4b 3h 13h 21h 3.2 days 

 
 

Synthesis of the prodrug 4b functionalized 
macromonomer 7 

The prodrug-functionalized macromonomer 7 
was obtained by a Huisgen 1.3-cycloaddition between 
6 and 4b. 251 mg of 4b (Mn=3600 g.mol-1, n=7 10-5 mol, 
1 eq.), 98 mg of 7 (M=792 g.mol-1, 1.2 10-4 mol, 1.7 eq.) 
and 35µL of PMDETA (d=0.83, M=173 g.mol-1, n=1.8 
10-4 mol, 1.7 eq.) were dissolved in 4.3 mL of DMF. 
Then the mixture was degassed according to the 
freeze-pump-thaw procedure. 24 mg of CuBr (M=143 
g.mol-1, n=1.8 10-4 mol, 1.7 eq.) were then added under 
inert atmosphere (glovebox). The mixture was stirred 
during 4 days under argon at room temperature. 
Then, 45 mL of dichloromethane was added to the 
reaction mixture and the solution was washed ten 
times with 25 mL of water and dried with Na2SO4. 
The solution was filtrated, the solvent was evaporated 
and the macromonomer was dissolved in 30 mL of 
THF and precipitated in 200 mL of diethyl ether, 
filtrated, dried under vacuum and finally lyophilized 
in dioxane. The macromonomer 7 was stored under 
argon before use. rdt: 56%. functionalization: F=75%. 
1H NMR (400 MHz. CDCl3) δ ppm for peaks that were 
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clearly attributed : 7.65 (1H, s, Ha), 7.4 (1H, d, J = 12.0 
Hz, Hc), 7.05 (1H, d, J = 12.0 Hz, Hd), 7.0 (1H, m, He 
6.35 (1H, d, J = 4.0 Hz, Hf), 6.0 (4H, m, Hg.h.u), 5.80 (1H, 
s, Hi), 4.6-4.2 (m, 4H, Hjj’,kk’,ll’), 3.0 (s, 6H ,Hn), 2.25 (s, 
6H, Hp), 1.5 (3H, s, Hr), 0.4 (0.6H, m, Ht); Mn;RMN=4410 
g/mol. SEC: Mn;SEC= 3850 g/mol; PDI=1.12. 

Synthesis of prodrug 4b-functionalized 
nanoparticles 8 

NPs 8 were obtained by Ring-Opening 
Metathesis coPolymerization of norbornene 9 with 
macromonomers 5 and 7 in dispersion. Solvents were 
degassed according to the freeze-pump-thaw 
procedure. The reaction was carried out at room 
temperature under inert atmosphere (glovebox). In a 
typical experiment, 4 mg (M=823 g/mol, n=4.8 10-5 
mol) of Grubbs first generation complex were 
dissolved in 2.2 mL of dichloromethane/ethanol 
mixture (50/50% v/v). Both norbornene 9 (192 mg, 
M=94 g/mol, n=2.0 10-3 mol) and macromonomers 5 
and 7 (m5=63 mg, Mn;5=3150 g/mol, m7= 88 mg, 
Mn;7=4410 g/mol, n5=n7=2.0 10-5mol) were first 
dissolved in 3.5 mL of CH2Cl2/EtOH solution 
(35/65% v/v) and added to the catalyst solution. 0.1 
mL of NEt3 were added to maintain the pH solution 
higher than 7. The mixture was stirred during 24 h. At 
the end of polymerization Ruthenium end-capped 
chains were deactivated by addition of 0.2 mL of ethyl 
vinyl ether. 

Composition of the nanoparticles 
The composition of the latex was determined 

according to consumed starting monomer and 
macromonomers. NB 9 exhibits a total conversion 
while global macromonomer conversion (π) was 90%. 
It is assumed than both macromonomers 5 and 7 are 
consumed with the same rate (we approximate than 
the ω-functionalization does not act on their 
reactivity). By this way, we can determine the amount 
of compound 2 n2 per gram of polymer with the 
following equation:  

n2/gpolym = (F7 x n7 x π)/(π x (m5+m7)+m9) = 40 µmol/g 

with F7 the ω-functionalization yield of 
macromonomer 7 (F7=0.75), n7 the amount of 
macromonomer 7 introduced for the NPs synthesis 
(µmol), π the global conversion ratio of the 
macromonomers 5 and 7 (π=0.9), mi the weight of the 
compound i introduced for the synthesis of the NPs 
(g). 

The polymer concentration can be estimated 
with the equation: 

[polymer] = (π x (m5+m7)+m9) / V = 0.05 g.mL-1. 

with V the volume of the latex solution (5.7 mL). 

Taking into account the amount of 2 per gram of 
polymer and the polymer concentration the 
concentration of 2 can be evaluated with the equation: 

[Cpd 2] = [polymer] x n2/gpolym = 2 µmol/mL 

The amount of linked prodrug of compound 2 
molecule per NP (n2/NP) can then be calculated by 
multiplying the amount of 2 per gram of polymer 
with the weight of one NP using the following 
equation: 

n2/NP = n2/gpolym x VNP x ρNP x NA =350 000 molecules 
per NP 

with VNP the volume of one NP (VNP=πDNP3/6). ρNP 
the density of the NPs approximated to equal to 1 
g/mL. NA the Avogadro constant. 

The NPs were transferred in an aqueous solution 
of Trizma®base (10 mM) by successive evaporation 
and an ultrafiltration steps to give a final latex 
concentration of 20 mg/mL and a final NODH 
concentration of 0.8 µmol/mL (0.8mM). 

BRET measurements 
All BRET measurements were performed at 

room temperature using the Mithras LB 940 
microplate analyzer (Berthold Technologies). Cells 
were pre-incubated for 15 min in PBS in the presence 
of 2.5 µM coelenterazine (Interchim), following which 
light-emission acquisition at 485 and 530 nm was 
carried out. Plates were measured five times. The 
BRET signal was expressed in milliBRET units (mBu). 
The BRET unit has been defined previously as the 
ratio 530/485 nm obtained when the two partners are 
present, corrected by the ratio 530/485 nm obtained 
under the same experimental conditions, when only 
the partner fused to Renilla luciferase is present in the 
assay. 

Cell culture  
The pleural mesothelial cell line, MeT-5A, was 

obtained from American Type Culture Collection 
(ATCC). The mesothelioma cell lines Meso13, Meso34 
and Meso56 were established from the pleural fluids 
of mesothelioma patients (Gueugnon et al., 2011). All 
cell lines were maintained in RPMI medium 
(Invitrogen) supplemented with 2 mM L-glutamine. 
100 IU/ml penicillin, 0.1 mg/mL Streptomycine and 
10% heat inactivated fetal calf serum (FCS) (Eurobio). 

Transfections studies 
MeT-5A cells were seeded at a density of 1.5x105 

cells per 35 mm dish. Transient transfections were 
performed 1 day later using Attractene (Qiagen), 
according to the manufacturer’s protocol. For BRET 
experiments, MeT-5A cells were transfected with 0.6 
µg Rluc-Brd cDNA and 1 µg YFP-fused histone H3 
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cDNA (Blanquart et al., 2011). One day after 
transfection, cells were transferred into 96-well 
microplates (microplate 96 well, white, Berthold 
Technologies) at a density of 3x104 cells per well. The 
following day, BRET measurements were performed 
as described below. 

Determination of cell viability 
Cell growth was monitored using Uptiblue 

reagent (Interchim). Reduction of this compound by 
the cell results in the formation of a fluorescent 
compound quantified by measuring fluorescence at 
595 nm after excitation at 532 nm using a Typhoon 
apparatus (GE Healthcare). Cells were seeded in 
96-well plates at a density of 5x103 cells/well in 
culture medium. Twenty-four hours later, compounds 
solutions or nanoparticles were added for 72 h. 
Uptiblue (5%. v/v) was then added to the culture 
medium for 2 h at 37 °C. Fluorescence was quantified 
by measuring emission at 595 nm after excitation at 
532 nm using a Typhoon apparatus (GE Healthcare). 

Animal experiments 
These experiments were carried out in 

compliance with the guidelines of the European 
Union for the care and use of animals in research 
protocols. The experiments were approved by ethical 
committee for animal experiment (CEEA.PdL 2013.6). 

Bio-distribution experiments - 3x106 AK7 murine 
mesothelioma cells (AK7) per mouse were 
administered intra-peritoneally to five C57Bl/6 mice 
(Charles River) (day 0). Mice were given one i.v. 
injection of NPs 11 (60 µg/g) for 1h, 6h, 24h, 72h or 
96h. Then, animals were necropsied and tumor, 
blood, liver, ovary, brain, spleen and kidneys were 
collected and analyzed for fluorescence emission. 
Fluorescence was observed at 630 nm using Photon 
Imager (Biospace Lab) after excitation at 580 nm and 
pictures were analyzed using PhotoVision+ software 
(Biospace Lab). 

Anti-tumor activity of NPs 8 - 3x106 AK7 murine 
mesothelioma cells (AK7) per mouse were 
administered intra-peritoneally to four groups of five 
C57Bl/6 mice (Charles River) (day 0). Group 1 did not 
receive any further treatment. Groups 2, 3 and 4 
received two injections of decitabine 4 mg/kg at days 
7 and 9. Then, groups 2, 3 and 4 were respectively 
given four successive i.v. injections of bare-NPs 10 (80 
µg/g), compound 2 (0.25 µg/g) or NPs 8 (16 µg/g. 
0.25 µg/g cpd 2 equivalent) at days 12, 14, 16 and 19. 
All animals were necropsied on day 21. Liver, kidneys 
and spleen were weighted. Blood analyses, using a 
MS9-5 analyzer (Melet Schloesing laboratories), were 
performed and tumors were collected to perform 
histochemical analyses. 

Histology 
Tissues were fixed in 4% CH2O in PBS, 

embedded in paraffin, cut into 5-µm sections. 
Histology was performed on tissues slices 
(paraffin-embedded) by Cellular and Tissue Imaging 
Core Facility of Nantes University (MicroPICell) using 
hematoxylin, eosin and safran staining (HES). 
Pictures were obtained using a NanoZoomer 2.0HT 
(Hamamatsu). 

Results and discussion 
We previously reported that NP loaded with 1% 

mol Vorinostat triggered histone re-acetylation 
without tumor weight reduction with no associated 
toxicity.(35) To achieve tumor weight reduction 
without toxicity while maintaining a low percentage 
inhibitor loading, a more potent compound could be 
used. The highly active (R)-trichostatin A 1 (36) (TSA, 
Fig. 1) is not used for clinical purposes. The (S)-isomer 
is 70-fold less potent.(37) The racemic TSA analogue 
(34) 2 exhibited an activity equivalent to TSA, a result 
that could be explained by molecular docking in 
HDAC1 and HDAC6, showing that for the two 
separate enantiomers the aromatic group has no 
preferred orientation in the active site. Compound 2 
has limited toxicity, stimulates TSG expression in 
non-small lung cancer cells (34) and reduces 
resistance to cisplatin treatment in MPM.(38) Its 
shorten synthesis and potential TSA-like metabolism 
to inactive compounds made it a good candidate for 
delivery with results valuable for other anti-cancer 
compounds.  

Synthesis of compound 2 
Analogue 2 was synthesized in 6 steps by direct 

trimethylation (39) of the acid 12 (Fig. 1) to the ester 
13a easily separated from monomethylamino ester 
13b. The conversion of the ester 13a to the acid 14 as 
already reported allowed accessing compound 2 by 
direct hydroxamic acid preparation in up to 4 g 
synthesis. 

Synthesis and characterization of 
nanoparticles 8 

The clickable pH-responsive prodrugs 4 needed 
for our NP synthesis were prepared by reacting 
compound 2 with alcohols 3 (27) (Fig. 1). The two 
prodrugs 4a,b gave analytical data consistent with 
their structure and purity (Supplementary 
information, NMR spectra and HPLC for 4a,b). The 
half-lives of the two prodrugs 4a,b were determined 
at selected pHs with HPLC (Fig. 2A, Table 1, and in 
supplementary data Table S1 and Fig. S1). Prodrug 4a 
was stable at all pHs and prodrug 4b showed 
satisfying stability for blood stream (stable more than 



 Theranostics 2016, Vol. 6, Issue 6 

 
http://www.thno.org 

801 

3 days at pH >= 7) and for the release at lysosomal 
equivalent pH (13 and 21h, pH 4.3 and 5 respectively). 
The prodrug 4b was selected for further development 
and reacted with azide 6 under copper catalysis to 
afford the macromonomer 7 (Fig. 1). 1H NMR analysis 
revealed a synthetic yield of 56% for a functional yield 
of 75% (Fig. 2C). The missing 25% were the residual 
macromonomer 5. Functional core-shell NPs 8 were 
formed in dispersed media by mixing norbornene 9 
with macromonomers 5 and 7 in a 100:1:1 molar ratio 
(9 n=2.0 mmol, 5 and 7 n=20 µmol). The composition 
of the copolymer blocks 9:5:7 was 110:1.25:0.75, 
calculated from 75% functional yield of 
macromonomer 7 (+25% macromonomer 5) and 90% 
incorporation of both macromonomers 5 and 7 
compared to 100% incorporation of NB (see 
Composition of the particle in Materials and Methods 
section). The concentration of releasable compound 2 
from NPs 8 was finally 2.25 mM (13.5 µmol in 6 mL 
total reaction volume). The NPs 8 were transferred in 
an aqueous solution (Trizma®base 10 mM) by 
successive evaporation and an ultrafiltration (26) 
steps to give 20 mg/mL of NPs 8 corresponding to 0.8 
µmol/mL (0.8 mM) compound 2. In these conditions 

the diameter of the spherical nanoparticles was 305 
nm in the organic solvent and 380 nm in water (Fig. 
2B), as demonstrated by DLS measurements. This 
result was also confirmed by TEM imaging (Fig. S2) 
clearly showing homogeneous sizes within the 
samples, with an average diameter also around 380 
nm. The increase in size is a common result due to 
water molecules insertion in the nanoparticles PEO 
shell. The absence of surface charges limits potential 
opsonization. 

Key hydrogen signals found in starting 
compounds and products are highlighted with colors 
(Fig. 2C). The 1H NMR of norbornene methanol alone 
showed that the signal at 0.4 ppm represents 0.64 H 
when the ethylenic protons at 6.0 ppm are calibrated 
to integrate 2H. This signal at 0.4 ppm is common in 
all macromonomer spectra and the 0.64 calibration 
was used as a reference in the 1H NMR spectra 
calibration of functional macromonomer 7, leading to 
a confirmation of the 75% functionalization found by 
GC methods whereas the PEO signal integration was 
close to 318, corresponding approximatively to 79 
units (PEO76 + PEO3 in prodrug part), other 
methylene signals being more specific. 

 

 
Figure 1. Synthesis of compound 2, its prodrugs 4 and nanoparticle 8. Reaction conditions: i) KHCO3 3eq., CH3I 6 eq. rt, 1 week. ii) four steps, reference (30). iii) EDC, NH2OH (freshly 
prepared from NH2OH.HCl, KOH, MeOH). iv) a) AcCl 5eq., toluene, reflux 3h. b) 2, NEt3/CH3CN 1/1 v/v, 45 min. room temperature. v) PMDETA, DMF, CuBr 1.7eq., inert atmosphere, 4 
days, room temperature. vi) CH2Cl2/EtOH 35/65 v/v, Grubbs I catalyst 1% relative to NB, NEt3, 24h, room temperature. 

 



 Theranostics 2016, Vol. 6, Issue 6 

 
http://www.thno.org 

802 

 
Figure 2. Characterization of the prodrug 4b and synthetic nanoparticles 8. (A) Formation of compound 2 from hydrolysis of prodrug 4b at selected pHs. The sub-panel indicates the stability 
at longer time for pH 7.3. (B) Size distribution of NP 8 in the two solvent systems used. (C) NMR characterization of intermediate compounds and nanoparticles 8. 

 

HDAC inhibition and cell viability 
The ability of compounds 2, 4b and NPs 8 to 

enter cancer cells and inhibit cellular HDAC was then 
determined with a bioluminescence resonance energy 
transfer (BRET) assay in living cells (40). HDAC 
inhibition is correlated to higher histone acetylation 
level resulting in higher BRET signals. BRET signals 
induced by compounds 2, 4b and 8 were measured 
16h post treatment in MeT-5A cells (Fig. 3A). A dose 
dependent increased BRET signals and thus HDAC 
inhibition was observed for all compounds, 

demonstrating they have entered cells. The IC50 
concentrations were 500 nM for compounds 2 or 4b 
and 0.125 µg/mL for NPs 8 (equivalent to 6.0 µM 
compound 2). The lowest activity of NPs 8, despite its 
highest equivalent concentration of inhibitor 2, 
showed that there is no free inhibitor in the particle 
solution used to treat the cells. Such situation should 
have led to significant BRET signal at higher NPs 
dilution. NPs internalization in acidic vesicles is thus 
the only way for the slow release of compound 2 as 
previously demonstrated,(27) also explaining the 
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lower activity. The kinetics of histone reacetylation 
after the treatment with compounds 2, 4b and 8 at 
their IC50 concentrations was then determined (Fig. 
3B). Compounds showed a maximum BRET signal at 
24h. NPs 8 gave 60-75% response compared to 
compounds 2 and 4b. Activity of compounds 4b and 8 
was maintained for more than 48h while molecule 2 
showed 50% activity decrease 48h after treatment. 
This result highlighted a protecting role of the 
delivery strategy, lowering metabolic activity and 
prolonging the reacetylation effect. Associated with a 
selective tumor delivery, this strategy should give 
sustained inhibitor release in vivo. Indeed, 
maintaining the reacetylation of histone as long as 
possible is an important issue in epigenetic treatment 
as renormalization is supposed to occur after hours. 
The toxicity of compounds 2, 4b, prodrug-bearing 
NPs 8 and hydroxyl NPs 10 (bare NP) (26) was 
evaluated on three mesothelioma cell lines established 
in our laboratory from patients pleural effusions (Fig. 
3C,D). The unfunctional NPs 10 (showed in Fig. 4) 
induced no toxicity for all tested polymer 
concentrations whereas NPs 8 led to a rapid cell 

viability decrease even at 0.05 mg/ml of polymer. The 
compound 2 and its prodrug induced toxic effects at 
low nanomolar concentrations as expected owing to 
the already reported activities of compound 2. The 
BRET and viability data demonstrated that compound 
2 grafted on the nanoparticle can be delivered in MPM 
cells in sufficient amount according to the histone 
acetylation and toxicity induction and that toxicity is 
not due to the nanoparticle itself but to HDACi 
release. The toxicity of NPs 8 compared to NPs 10 
provided a wide safe window for in vivo experiments. 
The lower activity of NPs 8 compared with compound 
2 and 4b is probably related to the delivery rate of the 
active compound into the cells. Indeed, compound 2 
and 4b can diffuse rapidly into the cells and then can 
reach high intracellular concentrations. NPs 8 is 
progressively internalized, thus intracellular 
concentration of active compounds is the result of the 
balance between delivery and metabolism reducing it. 
This hypothesis is supported by BRET results. Indeed, 
maximal BRET induced by NPs 8 is lower than 
maximal BRET induced by compound 2 and 4b. 

 

 
Figure 3. Pharmacological characterization of compound 2, prodrug 4b and nanoparticles 8. (A and B) MeT-5A cells were transfected with phRluc-C1 BrD and pEYFP-C1 histone H3. (A) 
Cells were treated for 16 h with increasing doses of the different molecules. For NPs 8 the concentration corresponds to the amount of releasable compound 2. (B) Cells were treated with 
500nM of compound 2 or 4b or 0.125 mg/mL NPs 8 (6 µM compound 2) during 16h, 24h, or 48h. Results were expressed as the induced-BRET signal. (C) Viability of MM cells was evaluated 
following 72h of treatments with increasing amounts of NPs 8 and bare-NPs 10 for 72h. (D) Cells were treated with 125nM of compound 2 or 4b, 0.125 mg/mL NPs 10 or 0.125 mg/mL NPs 
8 (6 µM compound 2) during 72h. Results are the means ± S.E.M of three independent experiments. 
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Figure 4. Summary of compounds used in this work. Free compounds were decitabine and HDAC inhibitor 2, prodrug of inhibitor 2 was compound 4b and nanoparticles were NP8 bearing 
HDAC inhibitor 2 prodrug 4b, NP10 with no functionalities and NP11 bearing a fluorescent dye as reporter for biodistribution studies. 

 

Biodistribution of nanoparticles  
We then determined the biodistribution of our 

DDS in an orthotopic mouse model of peritoneal 
mesothelioma (PM) which presents the advantage of 
being more relevant due to a better reconstitution of 
the tumor-host interactions compared to 
subcutaneous xenograft models of cancers (41). For 
these experiments a fluorescent version of our NPs, 
NP 11, was used. Five groups of five C57Bl/6 mice 
received intraperitoneal injections of AK7 murine 
mesothelioma cells (protocol Fig. S3). After 7 days, a 
solution of the rhodamine-bearing NP 11 (26) (60 μg 
NP 11/g of mice, Fig. 4) was injected in the tail vein of 
mice. Mice were euthanized 1h, 6h, 24h, 72h and 96h 
after injection and the organs collected for 
biodistribution studies. Fluorescence imaging of 
isolated organs (Fig. 5A-E) and quantification (Fig. 5F) 
showed a strong and specific accumulation of NP 11 
in tumors increasing over the first 24h after injection, 
reaching a plateau at 72h, and then remaining stable 
until 96h. The quantification of NP 11 accumulation in 
liver, spleen, kidneys, brain, ovaries and blood is 
provided in figure S4. A transient fluorescence was 
detected in liver 6h after NP 11 injection 
corresponding probably to the presence of NP 11 in 
blood. Then, NP 11 are cleared from the bloodstream, 
fluorescence in liver decreases and NP 11 continue to 

accumulate in tumor. These results demonstrated that 
the high tumor selectivity of these NP injected i.v. 
observed previously in xenografts is maintained in 
this more relevant diffuse tumor model, allowing 
tumor identification by fluorescence imaging. 

Anti-cancer effect of nanoparticle 8 and 
toxicity 

In the laboratory, we previously demonstrated 
that decitabine in combination with valproic acid 
induced a stronger decrease of the tumor weight 
compared to drugs used alone in our orthotopic 
model of mesothelioma.(42) In addition, the observed 
synergy of decitabine and TSA in myeloid leukemia 
(43) and the clinical data obtained in a phase II trial 
using hypomethylating agent in combination with 
HDACi prompted us to use decitabine in combination 
with compound 2 and its pH-responsive NP version. 
Compounds 2, NP 8 and NP 10 were evaluated in 
combination with decitabine to treat PM tumors (Fig. 
6 and Fig. S3 for mice administration schedule). As for 
biodistribution studies, AK7 murine mesothelioma 
cells were administered by intra-peritoneal injection 
to four groups of five C57Bl/6 mice at day 0 (Fig. S3). 
Group 1 did not receive any treatment and groups 2 to 
4 received two intraperitoneal injection of 4µg/g of 
decitabine at day 7 and 9, followed by four successive 
intravenous injections of hydroxyl NP 10 for group 2 
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(80 µg/g), the free analogue 2 (0.25 µg/g) for group 3 
and NP 8 for group 4 (0.25 µg/g 2, 16 µg/g polymer). 
All mice survived and were euthanized at day 21 to 
collect tumors. Tumors weight were not modified 
following injections in mice treated with bare-NP 10 
(Fig. 6A) showing the absence of effect of this polymer 
in vivo. We confirmed that decitabine in these 

conditions has no anti-tumor effect by itself in our 
model. Interestingly, whereas iv injections of 
analogue 2 showed no anti-tumor effect, iv injections 
of NP 8 (0.25 µg/g equivalent of analogue 2) 
decreased strongly (80%) and significantly the tumors 
weights (Fig. 6A).  

 
Figure 5. Biodistribution of NPs 11. C57Bl/6 mice bearing orthotopic AK7 tumors were injected with 60 μg of NPs 11 per g of mice in the tail vein. (A-E) Pictures of time dependent 
fluorescence observed on dissected tumor (Tu), kidneys (Ki), liver (Li), ovary (Ov), brain (Br), spleen (Sp) and in blood (Bl). (F) Quantification of NPs 11 accumulation in tumors over time. 
Results are expressed as the fluorescence intensity corrected by the organ surface. Values are means ± S.E.M. of results obtained on 5 mice. * p<0.05; ** p<0.01. 

 
Figure 6. In vivo anti-tumor activity of nanoparticles 8. C57Bl6 mice bearing orthotopic AK7 tumors were treated (except control group 1) with intraperitoneal injection of decitabine (4µg/g) 
at days 7 and 9, followed by intravenous injection of bare-NPs 10 (hydroxyl NPs 10, group 2) (80 µg/g), compound 2 (0.25 µg/g, group 3), or NPs 8 (0.25 µg/g compound 2, 16 µg/g polymer, 
group 4). (A) Graphic represents the tumor weight measured at the end of the experiment. Results are means ± S.E.M. of results obtained on 5 mice. * p<0.05; ** p<0.01. (B to D) 
Representative HES stained histology slices of pancreas from the control group (B), group treated with analogue 2 (C) or group treated with NPs 8 (D). Arrows indicate areas of pancreatic 
invasion by tumor cells. 
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Figure 7. Toxic and haematological effects of compound 2 and NPs 8. The day of mice euthanasia, blood samples were collected and analyzed to determine (A) leucocytes (B) erythrocytes 
and (C) thrombocytes. (D) kidneys, (E) spleen, (F) liver were collected and weighted. Graphics represent the means ± S.E.M of results obtained on 5 mice. 

 
Moreover, in untreated mice and in free 

analogue 2 injected mice, we observed large and 
numerous pancreatic tumor invasion areas (Fig. 6B 
and C). In mice treated with NP 8 (Fig. 6D), the tumor 
weight reduction was associated with the absence of 
tumor cells in pancreas for a majority of mice (4/5). 
These anti-tumor effects of NP 8 were associated with 
an increase of histone H3 acetylation in residual 
tumors demonstrating the in vivo activity of the 
HDACi (Fig. S5). All the tested conditions did not 
induce apparent toxicity in animals, as determined by 
liver, kidneys and spleen weight and by blood 
formula (Fig. 7). This is also correlated with the 
absence of modification in acetylated histone H3 level 
(Fig.S6) in liver and kidneys. Thus, once loaded onto 
our pH-responsive DDS, in vivo study clearly showed 
an improved activity of compound 2, suggesting an 
effective and specific delivery in the tumor site by the 
EPR effect followed by acidic mediated release. This 
vectorization strategy gave an optimal antitumoral 
effect without apparent toxicity despite a very low 
drug loading (1%). 

These results support our proposal that tumors 
can be identified with this type of NP made 
fluorescent, although PET or MRI techniques can be 
envisioned with the corresponding functional entities. 
Our ROMP-based conjugate 8 circumvented the lack 
of efficacy of the highly potent nanomolar inhibitor 2 
in an orthotopic model of PM and represent a viable 
alternative to current strategies. This ROMP-DDS is 
an innovative, flexible, simplified, safe and potentially 
cost-effective technology that could be used in 
targeted non-epigenetic or epigenetic personalized 
medicine both for therapy or identification of tumors. 
With the increasing number of molecules targeting 

epigenetic regulators, this work paves the way for 
efficient delivery of epidrugs, as well as other 
chemotherapeutics. 

Supplementary Material  
Supplementary tables and figures.  
http://www.thno.org/v06p0795s1.pdf 
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