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Abstract

In this paper, we introduce a new locally multivariate procedure to quantitatively ex-

tract voxel-wise patterns of abnormal perfusion in individual patients. This a contrario

approach uses a multivariate metric from the computer vision community that is suitable

to detect abnormalities even in the presence of closeby hypo- and hyper-perfusions. This

method takes into account local information without applying Gaussian smoothing to

the data. Furthermore, to improve on the standard a contrario approach, which assumes

white noise, we introduce an updated a contrario approach that takes into account the

spatial coherency of the noise in the probability estimation.

Validation is undertaken on a dataset of 25 patients diagnosed with brain tumors and

61 healthy volunteers. We show how the a contrario approach outperforms the massively

univariate General Linear Model usually employed for this type of analysis.
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1. Introduction

Arterial Spin Labelling (ASL), a Magnetic Resonance Imaging (MRI) technique in-

troduced in the early 1990’s (Detre et al., 1992), provides a measure of the level of

perfusion as a quantitative index: the cerebral blood flow (CBF). Contrary to standard

perfusion imaging, including Positron Emission Tomography (PET) and Single Photon

Emission Computed Tomography (SPECT) in nuclear medicine or Dynamic Suscepti-

bility weighted Contrast (DSC) in MRI, ASL is completely non-invasive and does not

require the injection of an exogenous contrast agent. The ASL sequence however suffers

from a low SNR, which is still a serious obstacle for its use in clinical practice.

Since the introduction of ASL, and despite its low SNR, a large number of studies

have demonstrated its usefulness in identifying patterns of abnormal perfusion at the

group level, for example (Pinkham et al., 2011). While group statistical analyses are

of tremendous importance in order to understand the general mechanisms underlying a

pathology, there is today an increasing interest towards patient-specific analyses (Viviani

et al., 2007; Klöppel et al., 2012; Scarpazza et al., 2013) that aim to draw conclusions at

the level of a single individual. Inference at the patient level is highly desirable in order to

perform a diagnosis or provide a personalised treatment. On top of this, some pathologies

are intrinsically not well-suited to perform group voxel-wise analyses. It is for instance

the case of brain tumours (Warmuth et al., 2003; Chawla et al., 2007; Weber et al.,

2006; Sugahara et al., 2000), stroke (Huck et al., 2012; Ferré et al., 2012; Wheeler et al.,

2013), or some types of epilepsy (Colliot et al., 2006; Pendse et al., 2010), that exhibit

a different pattern of spatial abnormalities for each patient. In all of these pathologies,

measuring the level of perfusion, as an indicator of the well-being of the tissues, has

been demonstrated to be a useful information for diagnosis in clinical practice (see for

example (Warmuth et al., 2003) for brain tumours, (Wheeler et al., 2013) in stroke and

(Pendse et al., 2010; Boscolo Galazzo et al., 2015) for epilepsy).

Very few ASL studies focused on voxelwise quantitative perfusion abnormality de-

tections at the individual level. The identification of individual patterns of hypo- and

hyper-perfusions in patients with ASL mainly relies on visual analysis (Zaharchuk et al.,

2012; Chen et al., 2012). In (Petr et al., 2013), a template-based analysis was presented

in order to detect individual activation patterns in functional ASL data. Interestingly,
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they also applied their method to a pathological case in order to detect a hypo-perfusion

co-located with a dysplasia in an epileptic patient. The most widespread approach to

compute statistical analyses in neuroimaging is the massively univariate General Linear

Model (GLM). This versatile model can be used in patient-specific analyses to compare

a group of healthy controls to a patient. In (Maumet et al., 2013), we showed that

using a heteroscedastic GLM should be favored (over the homoscedastic approach) in

ASL studies studying single patients. Recently this method was also applied in epileptic

patients (Boscolo Galazzo et al., 2015).

In neuroimaging, Gaussian smoothing is typically applied on pre-processed data be-

fore computing the GLM to compensate for small misregistrations, to reduce the ef-

fect of potential outliers and to insure that the residuals follows a Gaussian random

field (Poldrack et al., 2011). While smoothing has demonstrated its usefulness, its use

can be problematic in some brain pathologies (such as brain tumors) where the co-local-

isation of hypo and hyper-perfusions is common. As an example, ring-enhanced lesions

present a pattern of abnormal perfusion in which is a central (hypo-perfused) necrosis is

surrounded by an (hyper-perfused) enhanced ring. One can easily picture how Gaussian

smoothing in this context can be detrimental as it mixes hypo- and hyper-perfusions,

possibly cancelling out the observable effects.

As opposed to the massively univariate GLM, a major trend is the use of machine

learning methods (cf. (Klöppel et al., 2012; Poldrack et al., 2011) for a review or (Paloyelis

et al., 2014) for an example in ASL). These multivariate approaches are able to combine

the voxel-wise information and can therefore achieve a greater sensitivity. While there

have been recent effort to extend the use of machine learning approaches to identify

departure from a group (Mourão Miranda et al., 2011), the large majority of machine

learning approaches found in the literature have been developed to tackle a two- (or more)

class separation problems. In our context, where each individual presents a different pat-

tern of abnormalities those approaches are ill-suited. Machine learning approaches are

also more computationally intensive. Another alternative, lying in between the massively

univariate and the fully multivariate methods, is the searchlight approach (Kriegeskorte

et al., 2006). This locally multivariate procedure focuses on multivariate patterns found

in a spherical neighbourhood around each voxel. At its inception, two multivariate
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metrics were considered: a Euclidean distance and a Mahalanobis distance (taking into

account the spatial autocorrelation of the noise) (Kriegeskorte et al., 2006; Kriegeskorte

and Bandettini, 2007b). These locally multivariate metrics achieved a greater sensitivity

than the massively univariate GLM in functional MRI studies (Kriegeskorte et al., 2006).

However, those approaches do not provide a direct interpretation of the detections as

hypo- or hyper-perfusions. To determine whether a detection at a given voxel corresponds

to a hypo- or hyper-perfusion, those approaches usually rely on the sign observed in the

voxel-wise map (Kriegeskorte and Bandettini, 2007a). Recently, this approach was used

in combination with machine learning classifiers (for example, see (Uddin et al., 2011))

but training a classifier at each location can be very computationally intensive (Poldrack

et al., 2011).

The a contrario approach is a recent statistical framework (Desolneux et al., 2003)

which comes from the computer vision community. This approach proceeds by counting

the number of elements observed in a local excursion set defined around each voxel. We

therefore propose to extend the searchlight procedure to the a contrario multivariate

metric. In a contrario, the locally multivariate probability estimation is typically per-

formed by assuming a white noise (Desolneux et al., 2003; Aguerrebere et al., 2009).

However, spatial autocorrelation of the residuals is a well-known phenomenon in MRI,

see for example (Wang et al., 2003b) for ASL, and cannot be disregarded. To ensure

the validity of the a contrario approach for MRI, we therefore updated the probability

estimation to model noise spatial dependency.

In this paper, we propose a new locally multivariate approach, based on an a con-

trario metric, for the detection of patient-specific brain perfusion abnormalities with

ASL. For validation purposes, the proposed a contrario method is compared to the GLM

by means of Receiver-Operating-Characteristic (ROC) analyses. Quantitative validation

is performed on a dataset of 25 patients diagnosed with brain tumours and 61 healthy

volunteers.

We previously investigated the ability to detect hypo- and hyper-perfusions using

an a contrario approach in two conference papers (Maumet et al., 2012a,b). On the

methodological side, we present here a new variant of our model, which takes into account

the spatial autocorrelation of the noise. Furthermore, a larger database is studied, a novel
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quantitative validation is provided, and a comprehensive quantitative comparison with

the GLM is performed.

In section 2, we first introduce the theory and in particular the principles of a contrario

analyses. Then, we present the experiments and the datasets under study. The results

are presented in section 3. Section 4 gives a discussion and section 5 concludes.

2. Material and Methods

2.1. Theory

This section presents the methods developed in order to detect areas of abnormal

perfusion in a patient map by comparison to a group of control subjects. In 2.1.1, we

review the standard massively univariate General Linear Model (GLM). In 2.1.2, we

describe the proposed locally multivariate a contrario approach.

2.1.1. The massively univariate General Linear Model

The General Linear Model used to detect patterns of abnormal perfusion in a patient

by comparison to a group of subjects can be defined as a hierarchical model with two

levels: subject and group. As suggested in (Maumet et al., 2013), we use a heteroscedastic

model considering two distinct sources of variance: inter-subject and intra-subject. The

level of perfusion in the patient map at voxel v is therefore compared to the level of

perfusion in the control group with the following t-statistic:

t(v) =

β̂(n,v) −
1∑n−1

s=1 w(s,v)

n−1∑
s=1

w(s,v)β̂(s,v)√
σ̂2
G(v) + σ̂2

(n,v) +
1∑n−1

s=1 w(s,v)

(1)

with w−1(s,v) = σ̂2
G(v) + σ̂2

(s,v), where β̂(s,v) is the estimated perfusion for subject s at

voxel v, σ̂2
G(v) is the estimated inter-subject variance, σ̂2

(s,v) the estimated intra-subject

variance (over the ASL repetitions) for subject s and index n denotes the patient of

interest.

Under the null hypothesis H0 that the perfusion value in the patient map is equal

to the control group mean, the t-statistic t(v) follows a Student distribution Tn−1 with

n− 1 degrees of freedoms. The probability under the null hypothesis, πGLM

(v) , of being
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in presence of such a high level of perfusion at voxel v of the patient map is therefore

estimated by:

πGLM

(v) = Pr(Tn−1 ≥ t(v)). (2)

Hypo-perfusions can respectively be studied with Pr(Tn−1 ≤ t(v)). Valid detections are

then obtained by thresholding the probability map using a correction for multiple testing.

2.1.2. The a contrario approach: a locally multivariate procedure

The a contrario approach (Desolneux et al., 2003) is a locally multivariate procedure

which uses the size of a local excursion set as statistic. As illustrated in fig. 1, the a con-

trario probability estimation is usually based on a two-step procedure. First, massively

univariate voxel-wise probabilities are computed under a so-called “background model”.

Second, locally multivariate probabilities are estimated assuming a given type of local

noise (usually white).
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Figure 1: Overview of the a contrario approach: the a contrario statistic is computed in two steps:

1. Voxel-wise probabilities are estimated under a selected background model, 2. Region-based probabil-

ities are calculated, those typically correspond to the voxel count of a local excursion set in pre-defined

regions of interest. Finally, 3. Inference is performed using an appropriate correction for multiple com-

parisons. The GLM makes inference directly on the voxel-wise probabilities.

In the first step, a model of the background is defined at the voxel level. This model

can represent the background noise or be learned from a control population. Let J(v)
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be the random variable representing the value observed at the voxel v of the image of

interest. Under the background model M, depending on the set of parameters γ, we

have:

J(v) ∼M(γ(v)). (3)

Given x(v), the value observed at voxel v, each voxel of the image can be associated with

a (univariate) probability under the background model:

Pr(J(v) ≥ x(v)), where J(v) ∼M(γ(v)) (4)

Rousseau et al. first noticed that the term “background model” commonly employed

in the a contrario literature could be well considered as a null hypothesis in standard

hypothesis testing (Rousseau et al., 2007). So that the standard massively univariate

GLM (based on unsmoothed data) can in fact be used to produce the input voxel-wise

probability map of the a contrario analysis leading to:

Pr(J(v) ≥ x(v)) = πGLM

(v) . (5)

In the second step, in order to estimate locally multivariate probabilities, we then

need:

1. A partition of the image into sub-regions;

2. A model to estimate the locally multivariate probability in a given region of interest

from the univariate voxel-based probabilities.

Partition of the image into sub-regions. Given an a priori shape of the structures to be

detected the regions can be selected accordingly. For instance, in the first a contrario

application, which aimed at detecting alignments, segments of variable sizes were chosen

as regions of analysis (Desolneux et al., 2003). In our case, the shape of the expected

detections is unknown and, as it has been proposed in a contrario (Rousseau et al.,

2007; Aguerrebere et al., 2009) and with the searchlight procedure (Kriegeskorte et al.,

2006), the sub-regions are defined as spheres centred at each voxel.

From univariate voxel-based probabilities to a locally multivariate statistic. The computa-

tion of a locally multivariate statistic involves the notion of “rare events”. By definition,

a rare event occurs at voxel v if the univariate probability (under the null hypothesis) to
7



observe such value, or a more extreme, is smaller than a pre-defined threshold pPRE . The

initial voxel-wise probability map is thus thresholded to produce a binary map :

K(v) =

1, if πGLM

(v) ≤ pPRE ,

0, otherwise.

with K(v) ∼ Bern(pPRE) (6)

where Bern(pPRE) is a Bernoulli distribution with probability pPRE .

Then, the random variable describing the number of rare events in a region r, L(r),

is determined by:

L(r) =
∑
v∈r

K(v) (7)

which is equal to the cardinal of the excursion set (parametrised by pPRE) observed in

each region.

The T-statistic used in the massively univariate GLM, is therefore replaced by a

locally multivariate statistic in the a contrario approach: the number of rare events L(r).

In order to be able to make inference using the a contrario approach, we must determine

the distribution of the statistic L(r) under the null hypothesis.

The original a contrario approach assumes spatial independence of the residuals (Desolneux

et al., 2003; Aguerrebere et al., 2009), i.e. the probability under the background model

(or equivalently under the null hypothesis) to observe a rare event at a given voxel is

independent of the probability to observe a rare event at any other voxel in the image,

and in particular in its neighbourhood. However, the presence of spatial autocorrelation

of the noise has been well described in the MRI literature, see for example (Chumbley

and Friston, 2009) for fMRI or (Wang et al., 2003b) for ASL, and cannot be disregarded.

We draw the attention of the reader that, under the a contrario approach, as for any

hypothesis testing procedure, assumptions are made on the distribution of the error but

not on the signal itself. Hence, the a contrario approaches makes no assumption on the

spatial coherency of the (normal or abnormal) perfusion signal. In line with recent de-

velopments in the a contrario approach (Myaskouvskey et al., 2012), we propose to rely

on a multivariate Gaussian distribution in order to estimate the probability of observing

a given number of rare events per sphere, as developed hereafter.

Let’s first notice, that the probability of observing l(r) or more rare events can be
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calculated as a sum of probabilities:

Pr(L(r) ≥ l(r)) =

e∑
i=l(r)

Pr(L(r) = i) (8)

Then, given C
(i)
(r) the set of combinations of i elements among r, we have:

Pr(L(r) = i) =
∑

S∈C(i)

(r)

Pr
(
K(v) = 1,∀v ∈ S and K(v) = 0,∀v 6∈ S

)
(9)

The problem now lies in the calculation of the joint probability to observe a given com-

bination of “rare”/“not rare” voxels in the region of interest. Also, by definition of the

term “rare event” we have:

Pr
(

K(v) = 1,∀v ∈ S and K(v) = 0,∀v 6∈ S
)

= Pr
(

π(v) ≤ pPRE ,∀v ∈ S and π(v) > pPRE ,∀v 6∈ S
)

= Pr
(
Tn−1(v) ≥ Φ−1Tn−1

(pPRE),∀v ∈ S and Tn−1(v) < Φ−1Tn−1
(pPRE),∀v 6∈ S

)
,

(10)

where Φ−1Tν
in the inverse cumulative function of a Student distribution with ν degrees of

freedom, outlining that the joint probability can be estimated from a Student’s t random

field. As previously proposed in the neuroimaging literature regarding the use of random

field theory for multiple testing correction (Kiebel et al., 1999; Zhang et al., 2009), we

focus on the Gaussianised t random field:

z(v) = Φ−1(ΦTn−1
(t(v)))

where Φ−1 is the inverse cumulative function of a standard Normal distribution, and on

the corresponding multivariate Gaussian random variable Z(v).

Then we approximate:

Pr
(
T(v) ≥ Φ−1Tn−1

(pPRE),∀v ∈ S and T(v) < Φ−1Tn−1
(pPRE),∀v 6∈ S

)
≈ Pr

(
Z(v) ≥ Φ−1(pPRE),∀v ∈ S and Z(v) < Φ−1(pPRE),∀v 6∈ S

)
.

(11)

As a Gaussian random field, Z(v) is also representable by a multivariate Gaussian

distribution, we have:


Z(1)

...

Z(e)

 ∼ Ne(


0
...

0

 ,


1 σ2
(1,2) . . . σ2

(1,e)

σ2
(1,2)

...
. . .

σ2
(1,e) . . . 1

). (12)
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whereNe is a multivariate Gaussian distribution of dimension e and σ2
(i,j) = cov(Z(i), Z(j)).

The problem now lies in the estimation of the covariance between each pair of voxel

σ2
(i,j), i 6= j. To this aim, we use the great amount of work developed in the context of

random field theory. In particular, assuming that Z(v) can be described as a Gaussian

random field with a stationary homogeneous Gaussian correlation function, (Worsley

et al., 1996) proposed an estimation of the spatial correlation. This estimate corresponds

to the full-width-at-half-maximum of a Gaussian kernel that, applied to white noise,

would lead to the same amount of autocorrelation. We computed this estimate using

SPM8 (Statistical Parametric Mapping 8) on a subset of our subjects and found a full-

width-at-half-maximum approximately equal to 1.5 voxels (in each direction). This value

is in line with previous estimates obtained in ASL data (Wang et al., 2003a). Given this

estimate of the autocorrelation, σ2
(i,j) is easily computed (cf. for example (Rasmussen

and Williams, 2006) p.84).

The locally multivariate region-based probability of the a contrario approach, π∗(r),

can therefore be calculated as the sum of joint probabilities in a multivariate Gaussian

distribution:

π∗(r) = Pr(L(r) ≥ l(r)) =

e∑
i=l(r)

Pr(L(r) = i)

where Pr(L(r) = i) =
∑

S∈C(i)

(r)

Pr
(
Z(v) ≥ Φ−1(pPRE),∀v ∈ S and Z(v) < Φ−1(pPRE),∀v 6∈ S

)
.

(13)

In practice, the probabilities (Pr(L(r) = i))0≤i≤e are computed once at the beginning

of the analysis. In the context of this paper, the probability associated to each region r

is assigned to its centre voxel v to produce a voxel-wise probability map:

π∗CONT

(v) = π∗(r). (14)

The standard a contrario approach assuming independence of the residuals can be

seen as a special case where σ(i,j) = 0 ∀(i, j) ∈ {1 . . . e}2, i 6= j.

2.2. Experiments

2.2.1. Simulated data analysis

Simulations were used to study the detections under different level of signal-to-noise
10



ratio (SNR) and for signal of different sizes. Two concentric spheres of opposite signal

were generated to mimic ring-enhancing lesions (typically observed in brain lesions). The

inner sphere represented a hypo-perfused necrosed area and the outer sphere the ring-

enhancement. A Gaussian noise was added to the signal image so that the SNR was set

to 0.5, 1 and 2 for both hypo- and hyper-perfusions. Each simulation was performed on

a 3D image of size 30 voxels in each direction. The radius of the inner necrosis was set to

2, 4 or 6 voxels with the outer ring having a thickness of 1 voxels. For each setting, 100

repetitions were computed. Fig. 2 provides simulated signal for each necrosis size and

examples of simulated images.

a. 

b. 

SNR = 0.5 SNR = 1 SNR = 2 

n = 2 n = 4 n = 6 

	  2	  
	  
	  1	  
	  
	  0	  
	  
-‐1	  
	  
-‐2	  

Figure 2: Simulated lesions. a) Ground truth hypo-perfusion (blue) and hyper-perfusion (red) for a

necrosis radius of n ∈ {2, 4, 6} voxels. b) Examples of simulated images for SNR ∈ {0.5, 1, 2} and n = 4

voxels.

2.2.2. Real data analysis

25 patients diagnosed with brain tumours and 61 healthy volunteers were involved

in this study. One control subject and four patients were excluded because of strong

borderzone sign (Zaharchuk et al., 2009). The final dataset therefore included 21 pa-

tients (13 males, 8 females, age: 55.2± 14.1 years) and 60 healthy volunteers (28 males,

32 females, age: 29.4± 7.6 years).
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We studied seven smoothing kernels for the GLM (with full-width-at-half-maximum

w ∈ {0, 2, 4, 6, 8, 10, 12} mm3) and nine parameter sets for the a contrario approach

(the pre-defined p-value pPRE ∈ {0.01, 0.005, 0.001} and the sphere radius rd ∈ {1, 2, 3}
voxel(s)). Area under the curve were estimated for false positive rates ranging from 0 to

10%, as this is the area of interest in detection analysis (Skudlarski et al., 1999).

2.2.3. Experiment 1: Group ROC curves

In order to combine the data of all the patients included in this analysis, we computed

an average ROC curve (across subjects). Given Nhyper, the number of subjects presenting

at least one hyper-perfusion, the group true positive rate was then estimated by:

TPRG(punc) =
1

Nhyper

Nhyper∑
s=1

TPR(s,punc) (15)

On the other hand, the group false positive rate was estimated across all subjects by:

FPRG(punc) =
1

N

N∑
s=1

FPR(s,punc) (16)

2.2.4. Experiment 2: Individual ROC curves

Best parameters. For each subject, the parameter set (pair (pPRE , rd) in a contrario or

w in GLM) leading to the highest area under the ROC was identified and used to plot

the corresponding “best” ROC curve.

Best parameter set across all subjects. As statistical analyses are usually performed using

a single set of parameters across all subjects (and not adjusting for the best parameter

set independently for each subject as performed in the previous paragraph), we also

compared the a contrario and GLM methods across all subjects for each parameter set.

2.2.5. Ground truth

Based on clinical knowledge, as in (Maumet et al., 2013), we used a semi-automatic

procedure that took advantage of the complementary anatomical (T1w-Gd, T2w FLAIR)

and perfusion (DSC) information to get an estimation of the ground truth. The next

subsections will briefly describe this procedure.
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Due to its low SNR, ASL is not very well suited to measure low level of perfusion (Win-

termark et al., 2005). That is why we focused on hyper-perfusions for sensitivity esti-

mation. Hypo-perfusions were nevertheless retained for specificity calculation. Fig. 3

displays an example of ground truth for a representative subject.

Figure 3: Ground truth for a representative subject. From left to right: T1-Gd, DSC CBF, ground-

truth hyper-perfusions (i.e. ground truth positives) in red and ground-truth area of normal perfusion

(i.e. ground truth negatives) in green overlaid on the T1-Gd.

Hyper-perfusions. In order to get an estimation of the positives (hyper-perfusions), we

implemented a method inspired by the hotspot technique (Noguchi et al., 2008) com-

monly used in clinical practice. First, the affected tissue (tumour and oedema) was

segmented using a semi-automated method based on the T2w and T1w-Gd images and

visually inspected by an expert neuro-radiologist. Second, we compared the segmented

regions to their contralateral counterparts in the DSC CBF map. Voxels overtaking

the upper decile were identified as potential hyper-perfusions. Each potential perfusion

abnormality was then visually inspected by an expert neuro-radiologist and manually cor-

rected if needed. Special care was taken in order to avoid inclusion of hyper-perfusions

related to the presence of arteries. Out of the 17 patients who underwent a DSC sequence,

9 presented hyper-perfusions.

Areas of normal perfusion. According to clinical knowledge, in the absence of metasta-

sis, the perfusion abnormalities should be confined to the affected tissue (tumour and

oedema) identifiable on T1w-Gd and T2w. Therefore, the non-affected tissue (brain vox-

els not segmented as part of the tumour or oedema) was considered as an area of normal

perfusion (ground truth negatives). Here, all the 21 patients were included, including

patient for who the DSC images were not available.
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Computation of the ROC curves. For a given subject and a given method, a point of the

ROC curve is obtained as described hereafter. First, the probability map is thresholded

with an uncorrected p-value punc to outline the detections. Then, the true positive

rate, TPR(s,punc), and false positive rates, FPR(s,punc), are computed by comparing the

detections to the ground truth defined in section 2.2.5. This operation is iterated with

uncorrected p-values ranging from 0 to 1 in order to draw the complete ROC curve.

Here, it is worth noting that, since a cumulative probability distribution is, by definition,

a monotonically increasing function, the true positive rates and false positive rates can

equivalently be calculated by thresholding the statistic map instead of the probability

map. The a contrario ROC curve can therefore be computed by thresholding the map

of rare event counts and is thus independent of the method selected to compute the

region-based probabilities. For ease of calculation, the ROC curves were estimated using

the standard a contrario approach.

2.3. Data acquisition and pre-processing

2.3.1. Data acquisition

Data acquisition was performed on a 3T Siemens Verio MR scanner with a 32-channel

head-coil. Patients were scanned in the context of clinical practice. The imaging proto-

col included a 3D T1-weighted anatomical sequence (T1w) (TR: 1900 ms, TE: 2.27 ms,

FOV: 256 mm × 256 mm × 176 mm, flip angle: 9◦, resolution: 1 mm × 1 mm × 1 mm),

a PICORE Q2TIPS sequence (Wong et al., 1998) with crusher gradients (TR: 3000 ms,

TE: 18 ms, FOV: 192 mm × 192 mm, flip angle: 90◦, resolution: 3 mm × 3 mm, slice

thickness: 7 mm, inter-slice gap: 0.7 mm, TI: 1700 ms, TIwd: 700 ms, 60 repetitions

(35 subjects) or 30 repetitions (25 subjects), mSENSE parallel imaging with accelerating

factor of 2). In addition to these sequences, the patients also underwent a 3D T1w post

gadolinium (T1w-Gd) sequence (TR: 1900 ms, TE: 2.27 ms, flip angle: 9◦, FOV: 250 mm

× 250 mm ×176 mm, resolution: 1 mm × 1 mm × 1 mm) and a 2D T2w FLAIR

sequence (TR: 9000 ms, TE: 90 ms, FOV: 220 mm × 199.4 mm, flip angle: 150◦, resolu-

tion: 0.69 mm × 0.69 mm, slice thickness: 4 mm). Out of the 21 patients, 17 subjects also

underwent a DSC sequence (GRE EPI, TR: 1500 ms, TE: 30 ms, FOV: 230 mm× 230 mm,

flip angle: 90◦, in plane resolution: 1.8 mm × 1.8 mm, slice thickness: 4 mm, inter-slice

gap: 1.2 mm).
14



2.3.2. Pre-processing

Arterial Spin Labelling. Image pre-processing was performed using SPM8 (Statistical

Parametric Mapping 8, Wellcome Department of Imaging Neuroscience, University Col-

lege, London) in Matlab R2012a (Mathworks, Natick, MA). The anatomical image of

each subject was segmented using the unified segmentation (Ashburner and Friston,

2005). A subject-specific anatomical brain mask was created, excluding voxels with less

than 50% of brain tissue in subsequent statistical analyses. A six-parameter rigid-body

registration of the ASL volumes was carried out in order to reduce undesired effects due

to subject motion. Pair-wise subtraction of the control and labelled scans was then com-

puted. Rigid coregistration onto the whole brain anatomical map was then performed

based on normalised mutual information. A standard kinetic model (Buxton et al., 1998)

was then applied in order to get ASL CBF, according to the following:

f = 6000× λ∆M

2 M0 αTIwd exp−(TI+idxsl∗TI sl)/T1b
(17)

where f is the CBF map in mL.100g−1.min−1, M0 the acquired M0 map, λ the

blood/tissue water partition coefficient, α measures the labelling efficiency, ∆M is the

perfusion-weighted map, TI = 1.7 s the inversion time (Ferré et al., 2012), idx sl the slice

index (0 for the first slice), TI sl = 0.045 s the readout time for one slice, TI wd = 0.7 s

the temporal width of the bolus, T1 b the T1 of blood. According to (Wang et al., 2011),

we assumed: λ = 0.9 mL.g−1, T1 b = 1.5 s and α = 0.95. The 6000 factor allows the

conversion from mL.g−1.s−1 to mL.100g−1.min−1 which is the standard unit for CBF.

We bring the attention of the reader to the fact that, contrary to what is usually done in

ASL pre-processing, ∆M represents the set of perfusion-weighted maps (one volume per

repetition) instead of a single perfusion-weighted map obtained by averaging across the

repetitions. This is necessary in order to allow for the measurement of the within-subject

variance.

Spatial normalization parameters estimated during the segmentation step were then

applied to the T1 and ASL CBF map in order to normalize the subjects into the ICBM-

452 T1 template space (Mazziotta et al., 2001). This registration algorithm was selected

since it gives good results even in the presence of large anatomical lesions (Crinion et al.,

2007). Normalisation in intensity was then applied to each ASL CBF map in order to
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reduce the inter-subject variability (Aslan and Lu, 2010). The normalisation parameter

was calculated as the average CBF in grey matter similarly to (Petr et al., 2013).

Dynamic Susceptibility weighted Contrast imaging. The DSC images were processed us-

ing MR manufacturer software by manually choosing an arterial input function to calcu-

late: CBF, cerebral blood volume and mean transit time maps. The method is based on

a deconvolution algorithm as described in (Ostergaard et al., 1996). Similarly to ASL,

DSC CBF maps were co-registered on anatomical maps and spatially normalized.

3. Results

3.1. Simulations

Figure 4 plots the area under the ROC curve (AUC) obtained on the detections of

hyper-perfusions and hyper-perfusions for the GLM and the a contrario approach on

simulated lesions.

With the GLM, we observe an opposite effects of smoothing on the detection of

hypo-perfusions versus hyper-perfusions. While smoothing is beneficial to detect hyper-

perfusions when the necrosis radius is greater than 2 voxels, for hyper-perfusions, on the

other hand, smoothing only helps with a radius of 2. This illustrates the fact that with a

Gaussian smoothing the signal can be cancelled by neighboring voxels if they hold signal

of opposite sign.

With the a contrario approach, a good level of detection can be reached at the same

time for hypo- and hyper-perfusions. As the SNR increase, the a contrario detections get

closer to the ground truth with any set of parameters studied.

3.2. Real data

In 3.2.1, the ROC curves corresponding to each individual patient are computed and

compared. Then, in 3.2.2, the average ROC curve over the group is computed for each

method. Finally, a qualitative comparison is presented in 3.2.3.

3.2.1. Individual ROC curves

Best parameters. In fig. 5, it is clearly visible that the proposed a contrario approach out-

performs the GLM for all subjects. A paired two-sample t-test comparing the a contrario
16
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Figure 4: Area under the ROC curves (AUC) for the proposed a contrario approach (first row) and the

massively univariate GLM (second row) in the detection of hyper-perfusions (first column) and hypo-per-

fusions (second column) on simulated data (necrosis radius n ∈ {2, 4, 6} voxels and SNR ∈ {0.5, 1, 2}).

and the GLM with the best parameter set for each subject outlines a significant differ-

ence (p = 0.008). Furthermore the best parameter set found for each subject was less

variable for the a contrario approach (the best set was (rd = 3; pPRE = 0.001) for 6 sub-

jects, (rd = 2; pPRE = 0.001) for 2 subjects and (rd = 2; pPRE = 0.005) for the remaining

subject) than for the GLM (the best set was w = 4 mm3 for 2 subjects, w = 6 mm3 for

1 subject, w = 8 mm3 for 2 subjects and w = 12 mm3 for 4 subjects).

Best parameter set across all subjects. Table 1 presents the area under the ROC curves

(average over the 9 patients) for the a contrario approach and the GLM. The best area

under the curve is obtained for the a contrario approach with pPRE = 0.001 and rd = 3

and for the GLM with w = 6 mm3. A paired two-sample t-test between the best con-

figurations outlines the superiority of the a contrario approach (p = 0.004). This is in

line with the higher variability of the best parameter set for the GLM outlined in the

previous section.
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Figure 5: Best ROC curves for false positive rates ranging between 0% and 10%, for the massively

univariate GLM (red) and the proposed a contrario approach (blue) in nine patients. Overall, the

a contrario approach outperforms the GLM.

3.2.2. Group ROC curves

Fig. 6 plots the resulting average ROC curve for each parameter set for the a contrario

approach and the GLM. The corresponding area under the curves are summarized in

table 2. The results are very close to the one obtained on the set of 9 subjects in the

previous section, outlining the fact the false positive rate at a given uncorrected p-value

is not varying much across subjects. As before, the a contrario approach outperforms

the GLM.
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Table 1: Area under the ROC curve, averaged over the 9 subjects presenting hyper-perfusions, for

false positive rates ranging between 0% and 10%, with the a contrario approach (with a sphere radius

rd ∈ {1, 2, 3} voxel(s) and a pre-defined p-value p ∈ {0.01, 0.005, 0.001}) and the GLM (smoothed with a

Gaussian kernel of full-width-at-half-maximum w ∈ {0, 2, 4, 6, 8, 10, 12} mm3). The proposed a contrario

approach outperforms all tested configurations of the GLM.

a
co

n
tr

a
ri

o rd = 1 rd = 2 rd = 3

p = 0.01 p = 0.005 p = 0.001 p = 0.01 p = 0.005 p = 0.001 p = 0.01 p = 0.005 p = 0.001

0.68 0.73 0.78 0.76 0.81 0.87 0.74 0.83 0.91

G
L

M w = 0 w = 2 w = 4 w = 6 w = 8 w = 10 w = 12

0.63 0.68 0.71 0.72 0.72 0.69 0.64
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Figure 6: Average ROC curve (based on 21 subjects), for false positive rates ranging between 0%

and 10%, with the GLM (smoothed with a Gaussian kernel of full-width-at-half-maximum w ∈

{0, 2, 4, 6, 8, 10, 12} mm3) and the a contrario approach (with a sphere radius rd ∈ {1, 2, 3} voxel(s)

and a pre-defined p-value pPRE ∈ {0.01, 0.005, 0.001})

3.2.3. Qualitative comparison

In order to illustrate the advantage of the a contrario approach over the GLM, we

chose 2 representative subjects and compared the methods at fixed false positive rate

and true positive rate. To this aim, we selected the uncorrected p-values that would lead

to a pre-specified false positive rate (or true positive rate) from the ROC analysis. We
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Table 2: Area under the average ROC curve (based on 21 subjects), for false positive rates ranging

between 0% and 10%, with the a contrario approach (with a sphere radius rd ∈ {1, 2, 3} voxel(s) and

a pre-defined p-value p ∈ {0.01, 0.005, 0.001}) and the GLM (smoothed with a Gaussian kernel of full-

width-at-half-maximum w ∈ {0, 2, 4, 6, 8, 10, 12} mm3). The proposed a contrario approach outperforms

the GLM.

a
co

n
tr

a
ri

o rd = 1 rd = 2 rd = 3

p = 0.01 p = 0.005 p = 0.001 p = 0.01 p = 0.005 p = 0.001 p = 0.01 p = 0.005 p = 0.001

0.68 0.73 0.79 0.75 0.80 0.87 0.72 0.81 0.91

G
L

M w = 0 w = 2 w = 4 w = 6 w = 8 w = 10 w = 12

0.63 0.67 0.70 0.72 0.73 0.70 0.65

worked with the best set of parameters identified for each subject (from section 3.2.1).

Fig. 7 presents the detections obtained with both methods on the 2 selected patients.

The first subject, which presents a small hyper-perfusion, is studied at a true positive

rate of 50% and the second at a false positive rate of 5%.

Patient 15 suffers from a gliosarcoma in the left hemisphere near the parahippocam-

pal region. The lesion displays a small hyper-perfusion in its dorsal part, small hypo-

perfusions are seen in the surrounding oedema. At a true positive rate of 50%, the GLM

displays a larger number of false positives than the a contrario approach.

Patient 7 presents a meningioma of both occipital lobes characterized by a large

hyper-perfusion. At a false positive rate of 5%, most of the hyper-perfusion was properly

detected by both methods. The a contrario approach is however more sensitive as it

detects a larger proportion of the hyper-perfusion.

These 2 cases illustrate the reduced sensitivity of the GLM by comparison to the

a contrario approach at the same specificity level.

4. Discussion

Quantitative assessment of the detections and comparison between detection meth-

ods are challenging tasks. This is mainly because, like in many other medical imaging

problems, the ground truth is not clearly stated. We chose to evaluate this framework
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on patients diagnosed with tumour pathology because perfusion abnormalities have been

widely studied in this context (Chalela et al., 2000; Sugahara et al., 2000; Warmuth

et al., 2003; Weber et al., 2006; Chawla et al., 2007). Also, as perfusion is useful clinical

information, DSC is part of the clinical routine for these patients.

-The normalisation in intensity used in this paper is not optimal and can lead to the

detection of pseudo-decreases or pseudo-increases (for a related discussion cf. (Buchert

et al., 2005)). In theory, based on a Q2TIPS ASL sequence (Wong et al., 1998) one should

be able to derive quantitative CBF values and avoid intensity normalisation. However,

in the context of this analysis, we observed a large variability in global CBF signal

both in the control and patient groups that could not be explained by age or gender.

To compensate for those large variations across subjects, using an intensity normalisa-

tion scheme appeared to be a requirement. We hypothesize that the large variations we

observed could be explained by an imperfect timing of our sequence. Recent literature

(e.g. (Villien et al., 2012), (Alsop et al., 2014)) recommends using a shorter bolus width

than the one we typically used in this experiment. If our saturation pulses were indeed

too late, it would mean than only pseudo-quantitative values could be derived from the

acquisition hence calling for a normalisation in intensity. The a contrario approach can

be applied in presence or absence of a normalisation procedure. When working on truly

quantitative metrics, intensity normalisation can be avoided.

Subjects in our patient group were significantly older than the control subjects which

is clearly not ideal as age is known to impact both CBF (Biagi et al., 2007) and grey

matter/white matter structure leading to different observed level of perfusion. While the

use of a normalisation scheme lessened the effect of change in global of perfusion, this

is not enough to compensate for age-related variations. For more precise detections an

age-matched template would be needed. Nevertheless the results observed here are valid

and we expect that using an age-matched template would improve the detections.

Calculation of CBF using singular value decomposition on DSC can lead to under or

over-estimation of the CBF if the arrival times are not the same in the arterial input

function and in the tissue. This is a known drawback of SVD methods and might have

biased our estimation of the CBF based on DSC. But, as the ground truth detections

were not determined based on a thresholding on absolute values but rather using a rel-
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ative comparison of left and right hemisphere and then manually updated by a clinician

if needed, we do not expect this to be too much of a concern.

-The a contrario approach demonstrated a clear improvement over the GLM which

is the most widely adopted method to analyse functional MRI data. Compared to other

multivariate approaches, such as machine learning techniques, the a contrario approach

has the advantage of remaining very simple and providing results in the same manner

as a standard GLM analysis. Compared to a classic searchlight approach using Maha-

lanobis distance, the a contrario approaches has the possibility to intrinsically differ-

entiate hypo- from hyper-perfusions which is critical in the context of brain tumours.

While a comprehensive comparison with those techniques was beyond the scope of this

paper, an interesting extension of this experiment could perform a direct comparison of

the a contrario approach to machine learning (in particular one-class implementation as

in (Mourão Miranda et al., 2011)) and searchlight procedures.

In our experiments on real data, the best performance for the a contrario approach

were reached for a sphere radius of rd = 3 voxels and a threshold of pPRE = 0.001. This

parameter set was found to be best for 6 subjects out of 9 among all tested configurations.

It would be interesting to further investigate how this extends to other analysis and in

particular if even smaller pPRE leads to more accurate results.

In this paper, region-based probabilities were computed by computing the joint prob-

ability of a multivariate normal distribution. While these can be easily pre-computed

to reduce the computational time at execution, they can nevertheless be very compu-

tationally intensive to compute for a sphere radius greater than 2 or 3 voxels. Using a

non-parametric approach, such as permutation-based or sign-flipping technique (Winkler

et al., 2014) might be an interesting alternative.

5. Conclusion

We have presented a locally multivariate procedure using a a contrario metric for

the detection of patient-specific perfusion abnormalities in ASL. Using ROC curves, we

outlined that this locally multivariate procedure outperforms the massively univariate

GLM, commonly employed in neuroimaging.
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Furthermore, we introduced a non-independent version of this a contrario procedure

in order to deal with the spatial autocorrelation of the noise observed in MRI.

We assessed our approach in the context of brain tumours since perfusion patterns

have been widely studied in this clinical context. This allowed us to get an estimate of the

ground truth and perform a quantitative validation. Our approach is however suitable to

a broader range of applications and we plan in the future to study pathologies presenting

more subtle patterns of abnormal perfusion.
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Figure 7: Perfusion abnormalities detections in 2 patients with the GLM and the a contrario approach

using the best parameter set for each method. From left to right: ground truth hyper-perfusions (red)

and hypo-perfusions (blue) overlaid on the T1w-Gd map; GLM, hyper-perfusions (red to yellow) and

hypo-perfusions (dark to light blue); a contrario detections hyper-perfusions (red to yellow) and hypo-

perfusions (dark to light blue). For the a contrario and GLM detections, minus logarithm of the p-values

is displayed.
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Wintermark, M., Sesay, M., Barbier, E., Borbély, K., Dillon, W.P., Eastwood, J.D., Glenn, T.C.,

Grandin, C.B., Pedraza, S., Soustiel, J.F., Nariai, T., Zaharchuk, G., Caillé, J.M., Dousset, V.,
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