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Abstract

The analysis of biomedical signals demonstrating complexity through recurrence plots

is challenging. Quantification of recurrences is often biased by sojourn points that hide

dynamic transitions. To overcome this problem, time series have previously been embedded

at high dimensions. However, no one has quantified the elimination of sojourn points and

rate of detection, nor the enhancement of transition detection has been investigated . This

paper reports our on-going efforts to improve the detection of dynamic transitions from

logistic maps and fetal hearts by reducing sojourn points. Three signal-based recurrence

plots were developed, i.e. embedded with specific settings, derivative-based and m-time

pattern. Determinism, cross-determinism and percentage of reduced sojourn points were

computed to detect transitions. For logistic maps, an increase of 50% and 34.3% in sensitivity

of detection over alternatives was achieved by m-time pattern and embedded recurrence

plots with specific settings, respectively, and with a 100% specificity. For fetal heart rates,

embedded recurrence plots with specific settings provided the best performance, followed by

derivative-based recurrence plot, then unembedded recurrence plot using the determinism

parameter. The relative errors between healthy and distressed fetuses were 153%, 95%

and 91%, respectively. More than 50% of sojourn points were eliminated, allowing better
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detection of heart transitions triggered by gaseous exchange factors. This could be significant

in improving the diagnosis of fetal state.

Keywords: Recurrence Plots, Signal-Based Recurrence Plots, Sojourn Points, Dynamic
Transitions, Detection, Complexity Analysis, Fetal Heart Rate.

Highlights

• Developing clean Recurrence Plots;

• Reducing the bias of Recurrence Quantification Analysis;

• Improving the detection of dynamic transitions by reducing sojourn points;

• Improving the rate of discrimination of Logistic Map transitions and improving the
discrimination of Fetal Heart Rate signals.
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1. Introduction

Complexity analysis of biomedical time series by means of various descriptors including,

but not limited to, fractal dimension [1], multi-fractal spectra [2], and entropies [3, 4, 5] is

quantitative and currently standard practice.

Large studies involving the analysis of biomedical systems and signals have recently used

recurrence plots (RPs), that featured and located recurring states or patterns constituting

the system’s time series or variables in 2-dimensions [6, 7, 8, 9, 10, 11, 12]. Quantitative

indicators named Recurrence Quantification Analysis (RQA) have been computed in order

to extract certain scalar indicators from RPs [13, 14, 15].

One of the significant uses of RQA was in the detection of the various dynamic transitions

of logistic maps [13, 12, 16]. In addition, the Determinism (DET) parameter was employed

to quantify chaotic-periodic and periodic-chaotic transitions [13, 12]. Such transitions were

detected in two different ways. The first focused on the computation of RQA promptly from

a single unembedded time series [16]. This method was appealing due to its simple math-

ematical formulation. However, quantification was biased and a poor transition detection

rate was obtained due to the presence of sojourn points [13, 14, 15, 8].

The second method was based on embedding the time series [6, 7, 13, 17]. Although this

method required heavy computation, it reduced sojourn points empirically and promoted

transition detection [13, 12]. However, no one has yet quantified the improvement of the

detection rate, nor identified whether it would be possible to enhance the transition detection

rate. This leads to the question regarding the best value of the embedding dimension that

would allow the detection of all dynamic transitions.

This paper describes our on-going efforts to extract and cleanly quantify the dynamic in-

formation from nonlinear dynamic systems such as the logistic map and the fetal heart. The

aim was to improve the detection rate of transitions by eliminating sojourn points present in

recurrence plots. For the logistic map, the transitions to be detected were periodic-chaotic

and chaotic-periodic transitions, while for the fetal heart the states to be detected were

healthy-distressed and distressed-healthy fetal heart rates (FHRs). The solution adopted
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consisted of eliminating sojourn points present in recurrence plots. Several RPs were em-

ployed to find an efficient solution to the above problems. The first empirical method com-

prised two plots with different embedding dimension values. As proposed in [16] the first plot

required no embedding and was the unembedded RP. The second recurrence plot required

an embedding dimension greater than 2, as suggested by N. Marwan et al. [13, 12]. As the

choice of the embedding dimension in the second method is often arbitrary, we developed a

new method that comprised finding the optimal embedding dimension that minimized the

number of sojourn points. We also developed two additional signal-based methods using

the derivative concept and the m-time pattern concept, and compared them with the above

plots.

To quantify the levels of performance of the proposed approaches, each technique was

applied to the nonlinear logistic map and to the FHR, and both the sensitivity and specificity

were assessed in each case.

The remainder of this paper is organized as follows. In section 2, we introduce the

methods including the already existing RPs and the three signal-based recurrence plots

developed. In section 3, we set out the numerical results. Finally, in section 4 we discuss the

results, provide a general conclusion and suggest the future prospects of this work.

2. Methods

2.1. Complexity Analysis Prerequisites

2.1.1. Recurrence Plots

An RP is a two-dimensional squared matrix, with black and white dots and two time-

axes. Each black dot at the coordinates (i,j) represents a recurrence of the system state Xi

with another Xj, it is expressed as follows for tolerance r:

RP = Θ(r − ‖Xi −Xj‖), Xi ∈ Rd, (1)
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where Xi ∈ Rd stands for the points in the phase space at which the system is situated at

time i, Θ (·) is the Heaviside function, ‖ · ‖ the L∞ norm, i, j = {1, . . . , N − d+ 1 }, N the

total number of points and d the embedding dimension [7, 13, 12, 18].

2.1.2. Determinism (DET)

After the computation of the qualitative RP, scalar quantitative parameters could be

calculated. Of all the existing RQA, DET seemed to be the most sensitive scalar parameter

to detect transitions [13, 12]. The determinism (DET ) [8] is calculated as follows:

DET =

∑N
l=lmin

lP (l)
N∑

i,j=1

RP

, (2)

where P (l) is the number of diagonal lines of length l and lmin the minimum length of a

diagonal line [19, 20, 21, 13, 22, 9], i.e. the number of points forming a diagonal line of at

least length lmin.

2.1.3. Sojourn Points

The removal of sojourn points is illustrated with sojourn points starting from a single

time series. Fig. 1 is a diagram of how sojourn points appear in two dimensions and the

mode of computing the RPs developed. Fig. 1 sets out (a) a sine wave x(t) made up of 200

sample points, its time delayed version, y(t) = x(t+ τ) and their elliptical phase space (i.e.

x(t) versus y(t)), (b) a sine wave, x(t), its derivative, ẋ(t) and their circular phase space (i.e.

x(t) versus ẋ(t)) and (c) a sine wave constituted of pairs of points. Note that the size of a

single chosen slice is called tolerance r.

[Figure 1 about here.]

Fig. 1 (a) shows the points denoted 1 (red circles) and 3 (black cross) existing within the

same slice of size r. In reality, only the points denoted 1 truly recur with each other and

not with points denoted 3. According to the standard recurrence test (of an unembedded
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time series), all 1’s and 3’s were recurrences. This was very clear while comparing all the

points existing on the same amplitude level of x(t) to those of the delayed signal and confined

within the same tolerance r. By introducing a second signal y(t) (a delayed or a derivative

version of x(t)), it was then possible to remove sojourn points by comparing points 2 and 4

of y(t) to the corresponding points 1 and 3 of x(t). Point 4 of y(t) which corresponded to

3 in x(t) did not exist at the same amplitude level, whereas all the red circles were within

r. Consequently, point 3 was a sojourn point since it was not periodic 1 with 1’s. However,

in the two signal-based RPs Fig. 1 (a) and (b) this was overcome. Tolerance r was fixed in

Fig. 1 to ensure a fair comparison. This tolerance value r is usually 10% of the standard

deviation of x(t).

2.2. Existing Methods

2.2.1. Unembedded Recurrence Plots

An unembedded recurrence plot is that produced from a single time series, there is thus

no need for sub-time series. Eq. 1 becomes:

RP1 = Θ(r − ‖xi − xj‖), (3)

where xi stands for the time series points at time i. As reported by Iwanski et al. [16], when

d = 1, Eq. 1 is called an unembedded RP. This plot is denoted throughout this work as RP1

(see Table 1).

2.2.2. Embedded Recurrence Plots

Originally developed by Eckmann [7], embedded plots have been used to track recur-

rences of system states out of a reconstructed phase space of d-embedding dimension. This

was fulfilled using the embedding theorem [17, 6, 13, 23, 24]. The reconstructed RP was

obtained by calculating a time delay τ and embedding dimension d using the mutual in-

formation (M.I.) [25] and the false nearest neighbour (F.N.N.) [18] methods, and subse-

1In 1-Dimension, sojourn points are non-periodic points existing within tolerance r.
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quently computing Eq. 1, given that Xj =Xi+τ and d ≥2. Analogous to previous investi-

gations [17, 13, 12, 26], d was fixed at 3, i.e. three sub-time series produced from x(t) were

used to reconstruct the RP. The corresponding RP was denoted RP2 (see Table 1). Note

that such a plot has been recommended to eliminate sojourn points by using an embedding

dimension d ≥2 [8, 26].

2.3. Developed Methods

2.3.1. Embedded Recurrence Plot With Specific Settings

We provide here our first signal-based RP that is responsible for enhancing the detection

of dynamic transitions. With this technique, instead of looking for the best embedding

dimension and time delay that guarantee the independence of the sub-time series, as already

demonstrated by Trulla et al. [17] and later by N. Marwan et al. [13, 12], we looked for the

best value of the embedding dimension and time delay that ensured the minimum presence

of sojourn points in an RP. Both d=doptimal and τ=τoptimal were obtained by minimizing the

cost function (J(dk, τk) = CDET ) characterizing sojourn points.

In contrast to DET , where P (l) was the number of diagonal lines, the Cross-Determinism

(CDET) was defined by Eq. 2 for P (l), being the number of cross-diagonal lines of length l.

This quantified the number of points constituting the diagonal lines perpendicular to the line

of identity (LOI). Instead of developing a new algorithm to evaluate CDET , CDET was

obtained by Eq. 2 computed from the 90◦ rotation of the recurrence matrix. The optimization

equation was as follows:

ϕ∗k = arg min
ϕ

(J(ϕk)), (4)

where ϕk=(dk, τk) is a vector composed of the kth embedding dimension and the kth time

delay to be optimized. An example of such optimization is presented in Appendix A.

As the optimal value of doptimal converged to 2 (see Appendix A and the two signals

in Fig. 1 (a)), it was fixed for this plot and τoptimal depended on the signal. We denoted

the resulting recurrence plot RP3 (see Table 1). Fig. 1 (a) sets out a sine wave x(t) and
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y = x(t+ τoptimal) for the embedded RPs with specific settings.

Instead of assessing the best embedding dimension and time delay, another RP was

developed and is discussed in the subsection below.

2.3.2. Derivative-Based Recurrence Plot

We provide here our second signal-based RP method. Starting from a single time series,

and instead of considering the independence between two sub-time series, we considered

the orthogonal data by using the derivative principle (see the example in Fig. 1 (b)). This

approach required neither looking at the time delay nor at the embedding dimension. The

resulting plot is denoted RP4 (see Table 1). Fig. 1 (b) sets out how derivative-based RPs

are constructed from a sine wave x(t) and y=ẋ(t).

2.3.3. M-Time Pattern Recurrence Plot

Having introduced the derivative-based RPs, we provide our third nonlinear technique,

i.e. the m-time pattern Recurrence Plot. This is a multi-pattern algorithm. However, in

this study it was used as a 2-point to 2-point recurrence computation. Fig. 1 (c) sets out the

keystone time series x(t), which is divided into pairs of points, from which a 2-time pattern

RP was computed. For m = 2, the m-time pattern RP, i.e. (RP (m = 2)) is denoted RP5

throughout this paper.

Table 1 summarizes the vectors involved in Eq.1, with d the embedding dimension, m

the number of patterns and d′ the virtual embedding dimension used in all the recurrence

plots discussed in this paper.

[Table 1 about here.]

2.3.4. Example

We illustrate in Fig. 2 an evaluation of the drop off in sojourn points for a sine wave

displayed within a window of 200 points (a) as compared to the unembedded RP1 (b). It is

an example of a simulated sine wave and its corresponding standard and developed recurrence

plots. Fig. 2 (a) sets out a sine wave and its corresponding (b) unembedded recurrence plot
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RP1, (c) embedded recurrence plot RP3 with specific settings, (d) derivative-based recurrence

plot RP4 and (e) 2-time pattern recurrence plot RP5.

[Figure 2 about here.]

The plots in Fig. 2 are arranged as follows: RP1, RP3 for (τ = T/4) where T is the period

of the sine wave, RP4 and RP5. Fig. 2 (b) demonstrates a few diagonal and cross-diagonal

lines revealing periodicity and uniformity, the crossing data being due to the presence of

sojourn points. Fig. 2 (c) merely reveals diagonal lines in RP3 and the cross-diagonals which

showed up in RP1 have vanished completely. This was due to embedding the time series.

Moreover, RP4 manifested how the cross-diagonal lines totally vanished. However, junction

points connecting both diagonal and cross-diagonal lines vanished (see Fig. 2 (d)) at τ = 30

time units. This is due to the fact that the positions of crests and troughs in the sine wave

(a) did not correspond to the same positions in the derived signal. Thus points constituting

the crests and troughs did not exist within the same tolerance r, and hence black points

disappeared. This could be due to using the approximate derivative.

In Fig. 2 (e) RP5 shows how the cross-diagonal lines vanished differently. A few points

lying on the cross-diagonal lines persisted, as compared to RP3 and RP4. This might have

been due to the fact that the time delay was not set according to a formulation, but rather

it was by default equal to one. The time delay was less than T/4 (as for RP3). The two

signals adhered, consequently little cross-diagonal information showed up.

As a global visual evidence, sojourn points were eliminated using RP3, RP4 and RP5.

3. Numerical Results

Evaluation of the performance of the transition detector and sojourn point reduction was

taken into account for the biologically inspired logistic map and for the real healthy and

distressed FHR data. For the logistic map, each detector operating on the DET parameter

was evaluated for the five different RPs over different values of the control parameter b. Both

a qualitative RP representation and a quantitative (the rate of the reduced sojourn points,
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sensitivity and specificity) evaluation were obtained. For FHRs, three parameters (DET ,

CDET and the Percentage of Reduced Sojourn Points (PRSP )) were evaluated from the five

RPs of 30-minute FHRs split into 10 windows of 3 minutes each. A three statistical measures

(mean, Standard Deviation (SD) and the Relative Error (RE)) were used to evaluate the

detection of fetal transitions. Simulations were obtained using Matlab (Mathworks, Natick,

MA, USA).

3.1. Simulated Logistic Map

In order to mimic dynamic biomedical systems, the five techniques in Table 1 were applied

to the simulated nonlinear biologically-inspired system, known as the logistic map [17]. It

was defined as:

xn+1 = b ∗ xn ∗ (1− xn), (5)

where b stands for the control parameter of the logistic map and n the iteration number.

Fig. 3 sets out the bifurcation diagram of the logistic map and its corresponding standard

and developed recurrence plots, originating from a simulated time series for b = 4. Fig. 3

(top left) represents the famous bifurcation diagram of the logistic map for b ∈ [3.5, 4]. The

different dynamic regimes are displayed in green. For each b value, a time series of length

M=1000 was computed with a step of ∆b = 0.0005. DET values were recorded in relation to

b and the detection of system state transitions is evaluated qualitatively and quantitatively

in the next subsection. The time series corresponding to b = 4, i.e. the chaotic region, was

then simulated as suggested by [13, 12] and incorporated in the illustration of sojourn point

reduction below. The preferred b = 4 maintained the maximum rate of system growth (i.e.

chaoticity) [27].

3.1.1. Qualitative Evaluation Of Sojourn Point Reduction

As there is a major interest in reducing the number of sojourn points, N. Marwan et

al. [13, 12] suggested that calculating a time series for a fixed value of b is better for this

purpose. Furthermore, to illustrate the advantages of our signal-based recurrence plots over

existing plots, we simulated RP1 and RP2 for (b = 4) [13, 12]. Fig. 3 sets out (a) the
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unembedded recurrence plot RP1, (b) the embedded recurrence plot RP2 and the three

signal-based RPs arranged as follows: (c) RP3 for τ = 4, (d) RP4 and (e) RP5. A zoomed

portion of the RP was imposed on each plot to highlight different cross-diagonal lines (in

red) that seemed to represent the sojourn points, and these were involved in the further

quantitative evaluation. RP1 of the simulated time series x(t) showed various small diagonal

and cross-diagonal lines (i.e diagonals perpendicular to the main diagonal). These features

reflected the chaotic nature of the simulated system. RP2 resembled that simulated by N.

Marwan et al. [13, 12] for b = 4. RP3 showed the least number of recurrences. It revealed

that the major cross-diagonal lines had vanished, as well as significant vertical lines. This

may have been due to the choice of dopt = 2 based on the minimum number of sojourn points

that could be obtained. RP4 demonstrated how the cross-diagonal lines, which existed in

the classical RP1 and in RP2 images, had vanished, whereas extra small structures and

cross-diagonals showed up instead.

[Figure 3 about here.]

RP5 revealed that there was a remarkable loss of vertical information compared to RP4,

especially in the small cross-diagonals. Thus sojourn points were reduced as a consequence

of the detection techniques, as is obvious in Fig. 3 (c), (d) and (e).

3.1.2. Quantitative Evaluation Of Sojourn Point Reduction

As previously claimed by N. Marwan et al. [13, 12], DET parameters seemed to be a

good indicator for detecting dynamic changes from RPs.

CDET and DET , provided by Eq. 2 for l characterizing cross-diagonals and diagonals,

respectively, were evaluated as percentages from the RPs of the simulated Logistic time

series. Quantitative results are depicted in Table 2. Tolerance r was initially chosen to

be 10% of the standard deviation of the time series (as suggested in [13, 12]) to ensure a

noise-free situation. Table 2 shows that the DET changed from 78% according to RP2 to

73% according to RP3, i.e. the number of the points detected along the diagonal had slightly

decreased. This may have been due to some long diagonal lines that were transformed
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into separate discrete points to reinforce the chaotic nature of the logistic map for (b = 4).

Moreover, the number of points detected along the cross-diagonal lines increased.

The straightforward comparison of the cross-diagonal values with the detected points

forming the cross-diagonal lines obtained through the reference method, RP2, showed that

(i) 27% out of 22% cross-diagonal points were detected in RP3, (ii) 13.3% out of 22% cross-

diagonal points were detected in RP4, and (iii) 13% out of 22% cross-diagonal points were

detected in RP5.

As a result, the remaining percentages of sojourn points were (i) 6%, (ii) 3% and (iii)

2.9% in RP3, RP4 and RP5, respectively. Consequently, the percentages of reduced sojourn

points were (i) 94%, (ii) 97% and (iii) 97.1% in RP3, RP4 and RP5, respectively. Table 2

shows that the performance of the elimination of sojourn points can be arranged as follows:

RP5 > RP4 > RP3 > RP1.

[Table 2 about here.]

3.1.3. Detection of Dynamic Transitions

Simulations were performed to evaluate the performance of the three signal-based recur-

rence plot methods in detecting dynamic changes compared to already existing techniques

(Fig. 4). Fig. 4 depicts the variation in the normalized determinism (shown in blue) as a

function of the control parameter of the logistic map. The quantification parameter was

computed from (a) RP1 (b) RP2, (c) RP3, (d) RP4 and (e) RP5. The three methods de-

veloped exhibited the major peaks present in the bifurcation diagram (diagonal information

had been preserved).

[Figure 4 about here.]

Fig. 4 shows that the results of DET versus b of the techniques developed imitated those

of RP2 but were not the same. For instance, the amplitudes of peaks were not strictly equal

to 1 as in RP2. This led us to choose another detection criterion to distinguish between

transitions. Although tracking unity to distinguish between transitions was effective in RP2,
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the number of peaks detected was not sufficient compared to our signal-based recurrence

plots and the bifurcation diagram.

Despite this, a quantitative evaluation of the detection of dynamic transitions was nec-

essary to provide a reliable interpretation.

Statistical measurements were used to evaluate the performance of detection. For each

DET versus b displayed in Fig. 4 a constant threshold λ was applied and used as a detector.

The value of λ was chosen from an empirical inference, i.e. after trying several values then

choosing the one permitting the detection of the maximum number of peaks. Four cases

were encountered in the detection process: i) True Positive (TP ), represented the number

of peaks/transitions detected in the right place (where there was a real transition), ii) False

positive (FP ), represented the number of peaks detected in the wrong place (where there

was no transition), iii) False negative (FN), reflected the number of undetected peaks in the

right position and iv) True Negative (TN), represented the number of undetected peaks in

the wrong position. Finally, both the Sensitivity = TP
TP+FN

and Specificity = TN
TN+FP

were

calculated.

Based on the results in Fig. 4 we carried out a quantitative evaluation of whether the

detection provided the exact position of each transition (see Fig. 3 top left). Table 3 sets out

the performance of detection (P.D.), i.e. the percentages of both sensitivity and specificity

in detecting dynamic transitions.

[Table 3 about here.]

The values depicted in Table 3 were calculated for b ∈ [3.64, 4]. The total number of

detected and non-detected transitions was 11. As shown in Table 3, the m-time pattern

and embedded recurrence plots with specific settings both possessed the ultimate sensitivity

and specificity, i.e. 90% and 100%, respectively. In particular, the relative percentages of

differences between the sensitivities of detection were computed. For instance, an increase

in sensitivity of detection of 34.33% ((90 − 67)/67 = 34.33%) was obtained by the m-time

pattern and embedded recurrence plot with specific settings over the embedded recurrence
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plot (RP2). Moreover, an increase in sensitivity of detection of 50% ((90 − 60)/60 = 50%)

was obtained by the m-time pattern and embedded recurrence plot with specific settings

over the unembedded recurrence plot (RP1).

It is clear from Table 3 that the levels of performance, in terms of sensitivity and speci-

ficity, were as follows: RP5 = RP3 > RP4 > RP2 > RP1. This showed that we could

eliminate sojourn points without embedding at high dimensions.

3.2. Real Fetal Heart Rate Signals

Healthy and distressed FHRs were acquired at CHRU-Bretonneau Hospital Tours, France

by the Fetal Multichannel Monitor (by Althais Technology, Tours). The consent of each pa-

tient was obtained and the study was approved by the Ethics Committee of the Clinical

Investigation Center for Innovative Technology of Tours (CIC-IT 806 CHRU of Tours). Pa-

tients were over eighteen years of age and each patient was carrying a single fetus. The

gestational ages of fetuses ranged from 25 to 39 weeks; each fetus was monitored for 30

minutes. Distressed fetuses were identified by Intrauterine Growth Restriction (IUGR) often

associated with gaseous exchange issues.

[Figure 5 about here.]

Healthy and distressed FHRs were evaluated every 250 ms as proposed by [3, 28], yielding

7200 samples every 30 minutes. Each signal was split into 10 sub-signals each of 3 minutes

(i.e. 10 windows). Fig. 5 shows three minute recordings of FHRs from two different fetuses

at Bretonneau Hospital in Tours, France. (a) A healthy FHR recording and (b) a distressed

FHR recording.

3.2.1. Evaluation Of Sojourn Point Reduction

From the 10 sub-signals, 10 CDETs were evaluated by Eq. 2. The average value of

CDET expressed as a percentage was obtained for healthy and distressed fetuses. Fig. 6

sets out the qualitative detection of healthy-distressed and distressed-healthy dynamic FHR
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transitions. Figs. 6 (a) and (b) depict the variation in CDET (%) and PRSP (%), respec-

tively, as a function of the RP techniques. Tolerance r remained 10% of the standard

deviation of the time series, as suggested in [13, 12].

[Figure 6 about here.]

The rate of PRSP can be deduced from CDET by computing (100%−CDET ). The bar

graphs in Fig. 6 (b) show the mean value of PRSP for each technique. The percentage of RE

is shown at top of each bar graph. RE (in %) is the normalized difference between CDET

obtained from healthy and distressed fetuses. For instance, RE of CDET obtained from RP1

was calculated as follows: (67− 46)/67 = 31%. The SD of each bar is shown in blue for the

healthy fetus and in red for the distressed fetus. The rate of elimination for the distressed

fetus is arranged in the following increasing order: RP1 < RP2 < RP3 < RP5 < RP4.

For the healthy fetus the rate of elimination is arranged in the following increasing order:

RP1 < RP2 < RP5 < RP3 < RP4.

3.2.2. Detection of Dynamic Transitions

To evaluate the performance of the three signal-based RPs in detecting dynamic changes

of the fetal heart compared to existing techniques, RE and SD are highlighted in the bar

graph simulations of Fig. 6. The dynamic changes involved in detection were healthy-

distressed and distressed-healthy transitions.

The three proposed signal-based RP algorithms reduced the number of sojourn points

(see Fig. 6 (b)).

For the distressed fetus, the RE of PRSP was the lowest (at 33%) for RP1 and the

highest (at 83%) for RP4. PRSP could be used as a discriminator for certain RPi where

i = [1, 2, 3, 4, 5] (see stars highlighted in Fig. 6 (b)). This was due to the high relative

error obtained between healthy and distressed FHRs for PRSP , and simultaneously the

low standard deviation. The performance of detection was arranged as follows: RP3 (with

RE = 50%), followed by RP2 (with RE = 39%) and RP4 (with RE = 16%) when SDs were
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small and well separated. Note that for RP1, although RE was the highest, the standard

deviation obtained was one of the lowest SD values.

For the above reasons, CDET in Fig. 6 (a) could be also considered to be a discrim-

inator for healthy-distressed and distressed-healthy transitions (of RP2, RP3, RP4). The

performance of detection based on RE was arranged in the following ascending order:

RP5 < RP1 < RP2 < RP4 < RP3.

Finally, Fig. 6 (c) shows a bar graph of the DET parameter originating from RP1, RP2,

RP3, RP4 and 2-time recurrence plot RP5. From the 10 signals which were issued for 3

minutes, 10 DETs were evaluated using Eq. 2. The average value of DET , expressed as a

percentage, was obtained for both the healthy and distressed fetuses. This was the ultimate

parameter appropriate for detecting transitions since the following four RPs, i.e. RP3, RP1,

RP4, RP2 were capable of providing detection. Among the previous RPs, RP3 was the best

discriminator (with an RE of 153%), followed by RP1 (with an RE of 95%) and RP4 (with

an RE of 91%). The performance of detection was arranged in the following ascending order:

RP5 < RP2 < RP4 < RP1 < RP3.

Fig. 6 (c) shows that for the healthy fetus RP1 gave the highest value of DET (with

DET= 73%) followed by RP3 (DET= 58%).

4. Discussion and Conclusion

Of all the RPs and their corresponding detection efficacy tested with different configura-

tions, only two RPs were always within the first three best detectors: those based on RP3

and RP4.

For the logistic map, Table 3 shows an increase of (90 − 60)/60 = 50% in sensitivity

(60% for RP1 and 90% for RP5, see Table 3 for more details) by the m-pattern approach

over the unembedded approach, whereas the specificity of all detectors was constant (100%).

Although the sensitivity of detection by RP5 was similar to RP3, an additional 3.1% of

sojourn points were eliminated by RP5 over RP3. An overall investigation of the simulated

logistic system showed that RP5 was much more effective than RP3 in eliminating sojourn
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points, and slightly more effective than RP4.

For the FHRs, DET obtained from RP3 was greater than that obtained from RP2 al-

though the dimension d = 2 was the same. This indicates that the choice of the time delay

is crucial for discrimination purposes in embedded RPs. From this study, it seemed that

the time series obtained from the healthy fetus was more deterministic than that obtained

from the distressed fetus. This was in accordance with the work of [3]. Moreover, DET

obtained from RP1 also appeared to be a good alternative since it did not require the em-

bedding process to discriminate between a single distressed fetus and single healthy fetus.

RP3 appeared to be the best since it was designed to be the most effective. RP4, which is

derivative-based, was also a good alternative since it does not require setting of both the time

delay and the embedding dimension. Obviously complications with fetal gas exchange can

reflect a healthy-distressed transition of the heart. This fact demonstrates the importance

of novel signal-based RPs and unembedded RP in detecting such crucial dynamic changes.

However, the use of a single healthy and a single distressed FHR limited the results of the

application of the signal-based RPs to FHRs.

Comparing the detection results of the FHRs to those of the logistic map indicated that

RP3 might have advantages over RP4 and RP5 for FHRs, whereas RP3 and RP5 had equal

advantages over RP4 for the logistic map. This result could be due to the sensitivity of RP5

to the system, particularly to the degree of chaoticity. RP3 seemed to be the most stable

among the signal-based RPs when applied to various chaotic systems.

The major findings of this study were the improvement in transition detection and the

elimination of sojourn points. Although the sensitivity of the detector was affected by the

existence of sojourn points, the specificity was not.

The comparison and evaluation of the performances of RP simulations were significant

and varied from one RP to another. Our hypothesis that signal-based RPs enhance the de-

tection of dynamic behaviours of complex systems, particularly the logistic map and the fetal

heart, was valid. We showed that different transitions can be detected cleanly, i.e. with the

least number of sojourn points, the lowest dimensionality cost and the fewest complications.
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It was worthwhile investigating the effects of embedding and finding an alternative tool

independent of the embedding concept in order to achieve reliable chaotic-periodic and

periodic-chaotic detection, and healthy-distressed and distressed-healthy transition detec-

tion and quantification with reduced bias.

It was obvious that the elimination of sojourn points could affect the detection of dynamic

transitions. However, it was not possible to find an explicit relationship to describe this until

now. We were able to reduce the false recurring information from FHR RPs. We were able

also to improve the detection of different types of transitions which we believe are directly

related to the problem in question.

These findings demonstrate that true recurrences, along with complex information, can

be extracted from time series.

The significant level of performance of our unbiased RPs could interpret the change in

the operating regime of nonlinear system such as the fetal heart by certain medical factors.

These complications are highlighted by the difference between DET derived from clean RPs

and those extracted from RPs contaminated with sojourn points. Consequently, such clean

RPs should improve FHR diagnosis and play a major role on deciding on immediate delivery.

The results from the application of signal-based RPs to a single healthy fetus and a

distressed fetus were promising. Future application of our signal-based RPs and their corre-

sponding quantification should involve the use of a larger dataset for the diagnosis of multiple

health issues.
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Appendix A Example Of Optimization Of Embedding Dimension And Time

Delay

[Figure 7 about here.]

Fig. 7 is a diagram setting out the mode for selecting the optimal embedding dimension

and time delay corresponding to the minimum number of sojourn points. Fig. 7 (top left)

represents the sine signal, (center left) the cost-function versus the embedding dimension d

and (bottom left) the cost-function versus the time delay. Fig. 7 (top right) represents a part

of a healthy fetal heart rate recording, (center right) the cost-function versus the embedding

dimension and (bottom right) the cost-function versus the time delay τ .

Fig. 7 (top left) represents the cost function versus d, while maintaining τ = T/4, with

T the period of the signal as indicated theoretically. Note that τ could also be calculated

by the autocorrelation. Fig. 7 (center left) sets out the first zero-crossing of J or Jminimum

occurring at d = 2. Consequently, d was set at 2 in the optimization process. Fig. 7 (bottom

left) exhibits the cost function versus the time delay, while holding d fixed at 2. Parameter

τ was tested in the following range 0 6 τ 6 55. This led to an optimized range rather than

a single value, τ ∈ {6,14} ∪ {26,34} ∪ {46,54} time unit.

By analogy to the sine wave, d and τ were optimized for the RP of both the logistic map

and the FHRs. For the logistic map, d was set at 2 and τ at 4. For the healthy FHR, Fig. 7

(center right) demonstrates that Jminimum occurred at d = 2. The range of d tested was from

2 to 7 embedding dimensions. Fig. 7 (bottom right) shows that Jminimum occurred at τ = 1

time unit.
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Table Captions

Table 1: The five nonlinear recurrence methods used in the complexity analysis for tran-

sition detection.

Table 2: % DET and % CDET quantification of RP1, RP2, RP3 and RP4 for a logistic

time series for b = 4.

Table 3: Performance of Detection (P.D.) of the dynamic transitions for the logistic map

by means of the sensitivity and specificity measures.
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Table 1: The five nonlinear recurrence methods used in the complexity analysis for transition detection.

Method Notation Time Series d m d’

Unembedded RP RP1 Xj=xj 1 1 1

Embedded RP RP2 Xj=Xi+τ ≥2 1 ≥2

Embedded RP with specific
settings

RP3 Xj=Xi+τopt 2 1 2

Derivative-Based RP RP4 Xj=Ẋi - 1 2

M-Time Pattern RP RP5 Xi, Xj - 2 2

24



Table 2: % DET and % CDET quantification of RP1, RP2, RP3 and RP4 for a logistic time series for b = 4.

Dynamic System Logistic Time Series

Quantification Parameters % DET % CDET % CDET out
of %CDETRP2

%Eliminated
Sojourn
Points

Unembedded RP [RP1] 0.0% 100.0% 22.0% 0.0%

Embedded RP [RP2] 78.0% 22.0% - -

Embedded RP with specific
settings [RP3]

73.0% 27.0% 6.0% 94.0%

Derivative-Based RP [RP4] 86.7% 13.3% 3.0% 97.0%

M-Time Pattern RP [RP5] 87.0% 13.0% 2.9% 97.1%
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Table 3: Performance of Detection (P.D.) of the dynamic transitions for the logistic map by means of the
sensitivity and specificity measures.

XXXXXXXXXTechnique
P.D. Sensitivity Specificity

RP1 60% 100%

RP2 67% 100%

RP3 90% 100%

RP4 80% 100%

RP5 90% 100%
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Figure Captions

Figure 1: Diagram of how sojourn points seem to be in two dimensions and the mode

of computing signal-based recurrence plots. (a) Sets out a sine wave x(t) and

y = x(t + τoptimal) for embedded recurrence plots with specific settings, (b)

a sine wave x(t) and y=ẋ(t) for derivative-based recurrence plots and (c) an

m = 2-time pattern sine wave for the m-time recurrence plot.

Figure 2: Example of a simulated sine wave and its corresponding standard and developed

recurrence plots. (a) Sine wave and its corresponding (b) unembedded recur-

rence plot (RP1), (c) embedded recurrence plot with specific settings (RP3), (d)

derivative-based recurrence plot (RP4) and (e) 2-time pattern recurrence plot

(RP5).

Figure 3: The bifurcation diagram of the logistic map and its corresponding standard and

developed recurrence plots, originating from a simulated time series for b = 4.

(top left) The ordinary bifurcation diagram; (a) the unembedded recurrence plot

(RP1), (b) embedded recurrence plot (RP2), (c) embedded recurrence plot with

specific settings (RP3), (d) derivative-based recurrence plot (RP4) and 2-time

recurrence plot (RP5).

Figure 4: Qualitative detection of dynamic transitions of the logistic map through thresh-

olding the determinism versus the dynamic parameter, originating from both the

standard and signal-based recurrence plots. (a) DET computed from the unem-

bedded recurrence plot (RP1), (b) the embedded recurrence plot (RP2), (c) the

embedded recurrence plot with specific settings (RP3), (d) the derivative-based

recurrence plot (RP4) and (e) the 2-time recurrence plot (RP5).

Figure 5: Three minute recordings of the Fetal Heart Rates (FHRs) from two different

fetuses at Bretonneau Hospital in Tours, France. (a) A healthy FHR recording

and (b) a distressed FHR recording.

Figure 6: Qualitative detection of healthy-distressed and distressed-healthy dynamic FHR

transitions.(a) CDET as percentage, (b) Percentage of Reduced Sojourn Points
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and (c) DET descriptors computed from the unembedded recurrence plot (RP1),

embedded recurrence plot (RP2), embedded recurrence plot with specific set-

tings (RP3), derivative-based recurrence plot (RP4) and 2-time recurrence plot

(RP5).

Figure 7: Mode of selecting the optimal embedding dimension and time delay correspond-

ing to the minimum number of sojourn points. (top left) Sine signal, (center left)

cost-function versus the embedding dimension and (bottom left) cost-function

versus the time delay, and (top right) a part of a healthy fetal heart rate record-

ing, (center right) the cost-function versus the embedding dimension and (bot-

tom right) cost-function versus the time delay.
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Figure 2: Example of a simulated sine wave and its corresponding standard and developed recurrence plots.
(a) Sine wave and its corresponding (b) unembedded recurrence plot (RP1), (c) embedded recurrence plot
with specific settings (RP3), (d) derivative-based recurrence plot (RP4) and (e) 2-time pattern recurrence
plot (RP5).
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Figure 3: The bifurcation diagram of the logistic map and its corresponding standard and developed recur-
rence plots, originating from a simulated time series for b = 4. (top left) The ordinary bifurcation diagram;
(a) the unembedded recurrence plot (RP1), (b) embedded recurrence plot (RP2), (c) embedded recurrence
plot with specific settings (RP3), (d) derivative-based recurrence plot (RP4) and 2-time recurrence plot
(RP5).
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Figure 4: Qualitative detection of dynamic transitions of the logistic map through thresholding the deter-
minism versus the dynamic parameter, originating from both the standard and signal-based recurrence plots.
(a) DET computed from the unembedded recurrence plot (RP1), (b) the embedded recurrence plot (RP2),
(c) the embedded recurrence plot with specific settings (RP3), (d) the derivative-based recurrence plot (RP4)
and (e) the 2-time recurrence plot (RP5).



0 0.5 1 1.5 2 2.5 3130

135

140

145

Time

B
ea

ts
 p

er
 m

in
ut

e 
(b

pm
)

Healthy Fetal Heart Rate Signal s1

0 0.5 1 1.5 2 2.5 3100

150

200

250

Time

B
ea

ts
 p

er
 m

in
ut

e 
(b

pm
)

Distressed Fetal Heart Rate Signal s1

Figure 5: Three minute recordings of the Fetal Heart Rates (FHRs) from two different fetuses at Bretonneau
Hospital in Tours, France. (a) A healthy FHR recording and (b) a distressed FHR recording.
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Figure 6: Qualitative detection of healthy-distressed and distressed-healthy dynamic FHR transitions.(a)
CDET as percentage, (b) Percentage of Reduced Sojourn Points and (c) DET descriptors computed from
the unembedded recurrence plot (RP1), embedded recurrence plot (RP2), embedded recurrence plot with
specific settings (RP3), derivative-based recurrence plot (RP4) and 2-time recurrence plot (RP5).
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Figure 7: Mode of selecting the optimal embedding dimension and time delay corresponding to the minimum
number of sojourn points. (top left) Sine signal, (center left) cost-function versus the embedding dimension
and (bottom left) cost-function versus the time delay, and (top right) a part of a healthy fetal heart rate
recording, (center right) the cost-function versus the embedding dimension and (bottom right) cost-function
versus the time delay.


