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Animal models are necessary tools for solving the most serious challenges facing medical
research. In aging and neurodegenerative disease studies, rodents occupy a place of
choice. However, the most challenging questions about longevity, the complexity and
functioning of brain networks or social intelligence can almost only be investigated in
nonhuman primates. Beside the fact that their brain structure is much closer to that of
humans, they develop highly complex cognitive strategies and they are visually-oriented
like humans. For these reasons, they deserve consideration, although their management
and care are more complicated and the related costs much higher. Despite these caveats,
considerable scientific advances have been possible using nonhuman primates. This
review concisely summarizes their role in the study of aging and of the mechanisms
involved in neurodegenerative disorders associated mainly with cognitive dysfunctions
(Alzheimer’s and prion diseases) or motor deficits (Parkinson’s and related diseases).
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WHY DO WE NEED ANIMAL MODELS?
The simplest answer to this question is to increase our general
knowledge, to experimentally test theories. Animal model use-
fulness is manifold, from the study of physiological processes to
the identification of disease-causing mechanisms. Indeed, phys-
iopathological studies are of the utmost importance for develop-
ing diagnostic and therapeutic approaches based on the discovery
of new, more sensitive and specific biomarkers, the identifica-
tion of the mechanism of action of drugs, the establishment of
pharmacodynamics and pharmacokinetic parameters, the toxic-
ity analysis of new compounds or the assessment of clinical drug
regimens.

Many different animal models, ranging from unicellular
organisms (bacteria, yeast) to invertebrates (the roundworm
Caenorhabditis elegans or the fruit fly Drosophila melanogaster)
and vertebrates (fish and mammals), are currently used for
research on aging and neurodegenerative disorders. They are all
of interest and importance, but they also show limitations and
drawbacks. Most studies on neurodegenerative diseases have been
done in transgenic animals (Gama Sosa et al., 2012), particularly
in mice. Indeed, as the production and handling of transgenic
mice is currently quite easy, they have played and continue to
play a very important role in biomedical research. Nevertheless,
fundamental differences between rodents and humans exist.
Conversely, nonhuman primates (NHPs) share many structural
and functional features with humans. NHPs diverged from
humans and formed various lineages: Great Apes (our closest
relatives, Hominidae—e.g., chimpanzees), Old World monkeys

(Cercopithecidae—e.g., baboons, macaques), New World mon-
keys (Parvorder Platyrrhini—e.g., marmosets) and Prosimians
(our most distant relatives, the Suborder Strepsirrhini and
Infraorder Tarsiiformes—e.g., lemurs). Therefore, NHPs are
genetically the closest species to humans (Kumar and Hedges,
1998; Finch and Austad, 2012). The purpose of this review is
to explain why the use of NHPs in aging and neurodegener-
ative studies brings additional, sometimes unique information
compared to other animal models.

THE PRIMATE BRAIN ADVANTAGE
In neuroscience, the global understanding of how brain works
in physiological and pathophysiological conditions represents a
major challenge. Brain evolution is characterized by a complex
pattern of species similarities and differences. The neocortex,
also called the “thinking” brain, represents the latest evolu-
tionary stage and brings the capacity, for instance, of planning
complex cognitive behaviors, personality expression, decision-
making and moderating social behavior. These observations
suggest a more complex circuitry that favors local connec-
tivity (Herculano-Houzel et al., 2010) with cognitive conse-
quences (Herculano-Houzel, 2012). Another important point is
the important role played by the primate prefrontal cortex in
“higher” brain functions, such as reasoning, judgment or social
intelligence. Although the total prefrontal cortex volume is larger
in humans than in other primates, suggesting that humans have
more connections among prefrontal cortex neurons and con-
sequently greater communication (Schoenemann et al., 2005),
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many of the genes expressed in human prefrontal cortex are also
detected in the prefrontal cortex of NHPs (Marvanová et al.,
2003). In rodents, the existence of the prefrontal cortex is still
debated. However, it is clear that they lack functional areas
involved in overall planning, such as the prefrontal granular
cortex (Passingham and Wise, 2012). Moreover, rodents rely pri-
marily on the use of their nose and whiskers for orientation,
because their hearing and vision are much weaker than in NHPs.
Conversely, NHPs are visually-oriented, like humans. They per-
ceive the world first with their eyes, showing that their visual
system is the main sense responsible for behavior. Spatial infor-
mation is received through visual sensations (Maryanski and
Turner, 1993). It is also possible to test NHP cognitive functions
by using sophisticated go/no go procedures, such as automated
cognitive test batteries, which are similar to those used in human
studies on aging and Alzheimer’s disease (Nagahara et al., 2010;
Zürcher et al., 2010; Joly et al., 2014). These similarities between
NHP and human brain in terms of anatomy, gene expression,
neural circuitry, functional and cognitive abilities make of NHPs
unique, valuable models for neuroscience research. They provide
a more direct approach that can be translated to human dis-
eases as they allow investigating higher intellectual functions with
comparative endpoints (Sutcliffe and Hutcheson, 2012).

NONHUMAN PRIMATE MODELS MATTER BECAUSE THEY
FILL THE GAP BETWEEN RODENTS AND HUMANS
Nonanimal experimental approaches play an important role in
the identification/selection of candidate drugs; however, animal-
based methods are required for toxicity testing. In addition,
the safety of pharmaceuticals must be assessed using nonrodent
models because these tests are carried out with the aim of pro-
tecting human patients in clinical trials. In Europe, all classes
of pharmaceuticals must be tested in NHPs because NHP phar-
macodynamic responses are close to those of humans. We will
illustrate this point with four examples:

(1) Developmental and reproductive toxicology effects are tested
in NHPs (Chellman et al., 2009), most frequently in
cynomolgus macaque (Macaca fascicularis) (Buse et al., 2003;
Weinbauer et al., 2008) but also in rhesus macaques and mar-
mosets, because of the similar pharmacological responses in
NHPs and humans;

(2) NHP retina has unique features (for instance, both NHPs
and humans have a macula lutea/fovea) not found in other
mammals (Stone and Johnston, 1981);

(3) NHP blood coagulation system is more similar to that of
humans than any other species (Abildgaard et al., 1971;
Lewis, 1996);

(4) NHPs are less susceptible to vomiting than other animal
models (Weber, 2005). Therefore, in NHPs, vomiting will not
decrease the exposure to the tested compound and will not
confound the assessment of the early effects of a compound.

Another important phenomenon associated with drug testing in
NHPs, although very difficult to deal with, is the inter-individual
variability. This variability can be observed for instance in behav-
ioral studies using the gray mouse lemur (Joly et al., 2006), in the

response to treatments for Parkinson’s disease in monkeys (Vezoli
et al., 2011), and also in immune functions (Lebrec, 2013). NHP
inter-individual variability poses real problems in terms of statis-
tical evaluation of outcomes. However, it mimics what happens in
humans and therefore helps us to better understand the variability
within human populations.

NHPs GROW OLD LIKE HUMANS
NHPs have also significantly contributed to understanding aging
and neurodegenerative diseases. Aging NHPs show striking simi-
larities with elderly humans. Like in humans, age-related changes
in the glutathione metabolic pathway have been observed in Old
World simians (Rathbun and Holleschau, 1992) and in the gray
mouse lemur, in which glutathione-synthase activity decreases
and glutathione-peroxidase activity increases in the lens with age
(reviewed in Languille et al., 2012). Aging gray mouse lemurs also
present changes of the sensorial system, especially high suscep-
tibility to cataract (the most frequent ocular lesions observed)
(Beltran et al., 2007), alterations of the biological rhythms and
of the endocrine system (Van Someren and Riemersma-Van Der
Lek, 2007) and a progressive decrease of their motor capacities
(Nemoz-Bertholet and Aujard, 2003). Interestingly, acceleration
of seasonal rhythms (i.e., an annual cycle takes place in 8 months
rather than 1 year by alternating long and short photoperiods)
affects survival and longevity (Perret, 1997). This result suggests
that longevity could be correlated with the succession of seasonal
cycles rather than with a fixed biological age. This hypothesis is
very interesting and it might apply also to human populations.
Indeed, it has been reported that the accumulation of harsh win-
ters may be responsible for a decrease in longevity (Robine et al.,
2012).

Social interactions are fundamental in primates. For instance,
Picq (1992) suggested that older gray mouse lemur females are
less interested in social contacts than younger females. In rhe-
sus monkeys, a decrease in social interactions with age has been
observed (Heydecke et al., 1986). In chimpanzees, Goodall (1986)
and Huffman (1990) reported withdrawal from social interac-
tions in older individuals. Sex-based differences in social inter-
actions, social roles and social networks have also been observed
in aging rhesus macaques (Corr, 2003). Altogether, these exam-
ples show that social interactions are of the utmost importance
for aging studies in NHPs and should be used as clear readouts.

THE AGING NHP AND HUMAN BRAIN TRANSCRIPTOMES
ARE SIMILAR
Most of our understanding on the biological changes observed
during aging comes from studies in rodents because they present
clear advantages (short life span, fully characterized genetic
aspects, easy genetic manipulation. . . ). However, rodents and
humans diverged much earlier than humans and NHPs, and this
is likely to have led to fundamental differences in their aging
processes (Messaoudi and Ingram, 2012). In a pioneering work,
Loerch et al. (2008) compared the transcriptome of the cerebral
cortex in aging mice, rhesus macaques and humans, providing
a broad view of the evolution of aging mammalian brain. They
found that only a small subset of age-related gene expression
changes are conserved from mouse to human brain, whereas such
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changes are highly conserved in rhesus macaques and humans.
Similarly, Marvanová et al. (2003) showed that more than 80%
of genes detected in the human prefrontal cortex have simi-
lar expression profiles also in NHPs. Moreover, the study by
Loerch et al. revealed that the major distinguishing feature is
the dramatic, age-related increase in neuronal gene expression
down-regulation, particularly of genes involved in neurotrans-
mission, in humans compared to mice (Loerch et al., 2008).
These major evolutionary changes in the primate cortex are
potentially relevant when studying age-related changes in cogni-
tion and vulnerability to neurodegeneration. These observations
have been recently corroborated by a transcriptomic analysis,
using human DNA chips (Abdel Rassoul et al., 2010), of the
gene expression profiles in the temporal cortex of young adults,
healthy old animals and “Alzheimer’s disease-like” (“AD-like”)
gray mouse lemurs that naturally present the pathognomonic
lesions of Alzheimer’s disease. The temporal cortex was cho-
sen because this region is connected to the hippocampus and
to the frontal cortex, two structures that are critical for learn-
ing and memory and are altered in Alzheimer’s disease. This
study identified 47 genes that discriminated young from healthy
old and “AD-like” animals. Functional categorization showed
that most of the genes that were up-regulated in healthy old
animals and down-regulated in “AD-like” animals belonged to
metabolic pathways, particularly protein synthesis. These data
suggest the existence of compensatory mechanisms during phys-
iological brain aging that disappear in “AD-like” animals (Abdel
Rassoul et al., 2010).

NONHUMAN PRIMATES NATURALLY DISPLAY ALZHEIMER’S
DISEASE LESIONS SUCH AS AMYLOID PLAQUES AND
AGGREGATED HYPERPHOSPHORYLATED TAU PROTEIN
All NHPs naturally display, to various extents depending on
the species, the main pathognomonic lesions of Alzheimer’s dis-
ease (AD): amyloid-beta (Aβ deposits, tau aggregation (reviewed
in Heuer et al., 2012) and also cortical atrophy. For instance,
Aβ plaques and/or tau aggregation have been found in rhe-
sus monkeys (Uno and Walker, 1993; Walker, 1997; Bihaqi and
Zawia, 2013), cynomolgus monkeys (Nakamura et al., 1998),
great apes (Rosen et al., 2008), vervet monkeys (Kalinin et al.,
2013), tamarins (Lemere et al., 2008) and gray mouse lemurs
(Bons et al., 1995; Mestre-Frances et al., 2000). A N-terminal
variant called pyroglutamate-3 Aβ, which is thought to play an
early role in AD pathogenesis, has been detected in the brain of
13–32 year/old Caribbean vervets (Frost et al., 2013). In addi-
tion, based on neuron counting of the subcortical cholinergic
basal forebrain regions (Smith et al., 1999) or imaging studies
(Winkelmann et al., 2012), NHPs show cerebral atrophy and this
feature has been linked to cognitive decline. For instance, in gray
mouse lemurs, age-related decrease in spatial memory perfor-
mance is related to atrophy of the hippocampus and entorhinal
cortex (Picq et al., 2012), the two regions primarily affected in AD.
Very recently, Darusman et al. (2014) found in aged cynomolgus
monkeys a correlation between poor performances in memory
tasks and hippocampus atrophy.

NHPs could also be useful to test new AD therapeutic
approaches, for instance anti-amyloid beta (Aβ) immunotherapy.

The idea is to combat AD by injecting the Aβ peptide, which is
considered to play a central role in AD neuropathology, to trig-
ger an immune response that eventually leads to the production
of antibodies against Aβ. The first attempts in an AD transgenic
mouse model showed that immunization with Aβ42 markedly
reduced the AD-like pathology (Aβ plaque formation, neuritic
dystrophy and astrogliosis) (Schenk et al., 1999). In a follow-up
study in five aged Caribbean vervets, Lemere et al. (2004) val-
idated this paradigm, showing a reduction of cerebral Aβ and
gliosis. This major result generated a great deal of enthusiasm.
However, administration of full-length Aβ self-antigen in humans
(Elan/Wyeth AN-1792 trial) resulted in brain and spinal cord
inflammation and possible micro-hemorrhages (Orgogozo et al.,
2003; Gilman et al., 2005). As a consequence, less toxic Aβ deriva-
tives have been developed in Tg2576 transgenic mice (Sigurdsson
et al., 2001). We found that these Aβ derivatives elicit a substan-
tial antibody response in gray mouse lemurs and, importantly,
that this effect is reversible, thus enhancing the safety profile of
this approach (Trouche et al., 2009). We have also shown iron
accumulation in the choroid plexus with aging by MRI. This
accumulation could be worsened by Aβ-immunization, and this
observation should be a side effect that may be monitored in
therapeutic trials (Joseph-Mathurin et al., 2013).

BREAKTHROUGHS IN PRION RESEARCH THANKS TO THE
USE OF NHPs
Prion diseases are fatal neurodegenerative diseases that affect
humans and animals. Prion diseases are thought to be caused by
transmissible pathogenic agents (“prions”) that can convert a nor-
mal cellular protein (called PrPc) into the pathogenic, transmissi-
ble form called PrPSc (reviewed in Fraser, 2014). Among the dif-
ferent forms of prion diseases, variant Creutzfeldt-Jakob Disease
(vCJD) received considerable attention in the late 20th cen-
tury because humans can be infected through oral consumption
of animals infected by the bovine spongiform encephalopathy
(BSE) prion strain. NHP-based studies have much contributed to
advancing our knowledge on this disease (reviewed in Krasemann
et al., 2012). For instance, the risk and the mechanisms associated
with oral transmission have been studied using squirrel monkeys
(Gibbs et al., 1980), cynomolgus macaques (Herzog et al., 2004;
Lasmezas et al., 2005) and gray mouse lemurs (Mestre-Frances
et al., 2012). These studies led to three major conclusions:

(1) The asymptomatic incubation period may be extremely long
(several years), much longer than in the case of intravenous
or intracerebral infection;

(2) The spectrum of tissues harboring BSE infectivity includes
not only brain, but also the lymphoreticular system (spleen,
lymph nodes, appendix, tonsils)

(3) It is possible to estimate the food exposure risk.

These results highlighted the necessity of rapidly introducing
health policy measures to prevent BSE transmission to humans.
Furthermore, the use of NHPs not only improved our knowledge
on the transmissibility of prion strains, but also allowed study-
ing the fine molecular mechanisms involved. For instance, visual
impairment, associated with retinal damage, is one of the first
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clinical signs of prion disease in Microcebus murinus. We have,
therefore, developed an experimental model system based on the
analysis of the retina of gray mouse lemurs to rapidly test prion-
related neurotoxicity and to develop new therapeutic approaches
(Torrent et al., 2010).

THE MPTP NHP MODELS OF NEURODEGENERATION AND
THE RENAISSANCE OF PARKINSON’S DISEASE RESEARCH
Based on the observation of early-onset parkinsonism in users of a
synthetic opioid, 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine
(MPTP), a compound with similar neurotoxic properties, was
further developed. Studies in squirrel monkeys, rhesus macaques
and marmosets showed that MPTP injections leads to dopamine
depletion in the substantia nigra pars compacta followed by drastic
cell loss, resting tremor, rigidity and bradykinesia, like in humans
with Parkinson’s disease (reviewed in Fox and Brotchie, 2010).
Conversely, rodents are not sensitive to MPTP (Capitanio and
Emborg, 2008) and MPTP injections do not lead to the full spec-
trum of Parkinson’s symptoms in these animals. Importantly,
the MPTP NHP models allowed the identification of the neu-
ral circuits affected in Parkinson’s disease, specifically the role of
excessive activity in the subthalamic nuclei (Bergman et al., 1990),
leading to the development of ablative procedures (Baron et al.,
2002) and of deep-brain stimulation of these nuclei (DeLong
and Benabid, 2014). This latter experiments would not have been
developed without knowing the physiology of the basal ganglia
in nonhuman primates (Baron et al., 2002). The MPTP NHP
models are also used to discover neuroprotective compounds for
Parkinson’s and other diseases associated with motor deficits,
such as Huntington disease or Amyotrophic Lateral Sclerosis
(Philippens et al., 2010; Uchida et al., 2012).

CONCLUSION AND PERSPECTIVES
Due to their genetic proximity to humans and their highly devel-
oped social skills, NHPs are extremely valuable as experimental
animal models. However, as the number of available animals is
restricted for ethical reasons and also because of the high cost
and large space required for breeding colonies, NHPs should only
be used when no other suitable method is available to fill the
gap of our knowledge. Developing the use of small and relatively
short-lived NHPs, as proposed by Austad and Fischer (2011),
could lower the costs per animal and facilitate the colony man-
agement and growth. They could be used in preclinical studies
with clear reachable endpoints or in long-term follow-up stud-
ies (equivalent to phase IV in clinical trials) (Lemere et al., 2004;
Trouche et al., 2009). NHP unique contribution to aging and neu-
roscience research is well exemplified (Capitanio and Emborg,
2008; Austad and Fischer, 2011; Bihaqi and Zawia, 2013); how-
ever, they are also extremely valuable for studying other diseases,
such as spinal cord injury (Courtine et al., 2007), infectious
diseases (reviewed in Gardner and Luciw, 2008), respiratory
diseases (Curths et al., 2014), and also for pharmacological stud-
ies (Nader and Banks, 2014) because their pharmacodynamic
and pharmacokinetic parameters are closely related to those of
humans.

In any case, rodent (or other small animal models) and pri-
mate experimental models need to be used in parallel in order to

obtain robust and complementary information. Alongside other
models, nonhuman primates should have a unique place in the
overall aging and neurodegenerative research strategy.
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