
SUPPLEMENTARY FIGURE LEGEND 
 
Supplementary Fig.1. Quality control studies of the shRNA screens. (A) Representative 

image showing the Pearson and Spearman correlation among the triplicates for T=10 in the 

SUM149 cell line. (B) GO-term and KEGG-pathway analyses using genes commonly depleted 

in several cell lines (p<0.05 in >=3 cell lines, 2555 genes) show enrichment of genes related 

with essential functions. (C) Essential genes depleted in our shRNA screen cell lines overlapped 

significantly with compiled screens across 72 cell lines and subtypes of cancer (Fisher’s exact 

test).   

 
Supplementary Fig.2. Inhibition of HDAC6 activity by small molecules in vitro and in vivo. 
The western-blots show the accumulation of Ac-α-tubulin when SUM149 cells where treated 

with Ricolinostat and Tubastatin-A in vitro (A) and in vivo (B). 

 
Supplementary Fig.3. Changes in the HDAC6 regulon network upon Ricolinostat 
treatment and HDAC6 score in primary breast cancers. (A) Alternative view of expression 

change of HDAC6 regulon network over time upon Ricolinostat treatment at 0 and 12 hours as 

shown in Fig 4C. (B) The dot-plots show the HDAC6 scores in the IBC and non-IBC primary 

tumor series when these samples were stratified based on their HR status (left) and their PAM-

50 molecular subtype (right). 

 
Supplementary Fig.4. Response to paclitaxel treatment in breast cancer cell lines 
models. The bars indicates the normalized survival after different breast cancer cell lines (IBC 

and non-IBC) were treated for two doubling times with 10uM of paclitaxel.  

 

 
 
 
 
 
 
 
 
 



SUPPLEMENTARY TABLE2. Characteristics of the cell lines used in the manuscript. 
 

 Cell line 
Molecul

ar 

Subtype 

Clinical Subtype 
Disease Cell source 

ER PR ErbB2 

IBC SUM149 Basal B - - - Inflammatory ductal carcinoma Mammary Gland 
IBC SUM190 Luminal  - - + Inflammatory ductal carcinoma Mammary Gland 
IBC MDA-IBC-3 Luminal  - - + Inflammatory ductal carcinoma Pleural Effusion 
IBC Mary-X Basal B - - - Inflammatory ductal carcinoma Mammary Gland 

Non-IBC MDA-MB-

231 Basal B - - - Adenocarcinoma Pleural effusion 

Non-IBC MDA-MB-

361 Luminal + - + Adenocarcinoma Brain metastasis 

Non-IBC SKBR3 Luminal - - + Adenocarcinoma Pleural Effusion 
Non-IBC MCF7 Luminal + + - Adenocarcinoma Pleural Effusion  

Non-IBC MDA-MB-

436 Basal B - - - Adenocarcinoma Pleural Effusion 

Non-IBC T47D Luminal + + - Ductal Carcinoma  Pleural Effusion 
Non-IBC Hs578T Basal B - - - Carcinoma Mammary gland 
Non-IBC SUM159 Basal B - - - Anaplastic Carcinoma Mammary gland 
Non-IBC HCC1143 Basal A - - - Primary Ductal Carcinoma  Mammary Gland 
Non-IBC HCC1937 Basal A - - - Primary Ductal Carcinoma Mammary Gland 
Non-IBC MDA-MB-

468 Basal B - - - Adenocarcinoma Pleural Effusion 
Non-

transformed MCF-10A Basal B - - - Non-transformed Mammary Gland 
Non-

transformed MCF-12A Basal B - - - Non-transformed Mammary Gland 
 
 
 



SUPPLEMENTARY TABLE3: ANOVA analysis of models considering IBC status and 
PAM50 and/or ER_PR vs. using IBC status only. 

  Res.Df RSS Df Sum of Sq F Pr(>F) 
HDAC6score ~ IBC + PAM50 169 17.54      
HDAC6score ~ IBC 173 17.97 -4 -0.43 1.03 0.39 

       
  Res.Df RSS Df Sum of Sq F Pr(>F) 

HDAC6score ~ IBC + ER_PR 172 17.96      
HDAC6score ~ IBC 173 17.97 -1 -0.01 0.11 0.74 

 
        Res.Df RSS Df Sum of Sq F Pr(>F) 

HDAC6score ~ IBC + PAM50 + 
ER_PR 168 17.48      

HDAC6score ~ IBC 173 17.97 -5 -0.49 0.93 0.46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SUPPLEMENTARY MATERIAL 
 
Pooled shRNA screen experimental approach (detailed) 

To explain the screen pipeline in greater detail, the library pool consists of 58,493 shRNAs 

integrated into the backbone of miR-30 and cloned into the pGIPZ lentiviral vector (Open 

Biosystems GIPZ Lentiviral Human shRNA Library). These shRNAs target 18,661 human 

genes, which account for about 75% of the human genome. Phoenix cells are transfected with 

1:1 ratios of the Lentiviral library to the viral helper plasmids pMD.G and pCMVR8.91, and the 

resulting virus is transduced into the cell line of interest.  

One of the most vital aspects of applying the screen to one’s cell line of interest is Multiplicity 

of Infection (MOI). It is crucial to have a multiplicity of infection (MOI) lower than 1 (usually 

between 0.1 and 0.3) to ensure that any observed effects are in response to the effects of a 

single unique shRNA incorporation into each cell, when the shRNA representation is later 

tracked. To ensure this, the number of cells and the ratio of media to virus must be adjusted to 

have an infection efficiency of 10–30% (12,13). This infection efficiency can be tracked utilizing 

both FACS analysis of green fluorescent protein (GFP) as well as a puromycin selection 

resistance marker per GPZ construct. After library transduction, the cell line of interest is 

allowed to recover from infection for 24 hours and treated with puromycin to select for cells that 

have incorporated the GIPZ construct. The surviving cells are allowed to recover for 24 hours 

and this timepoint is considered T=0. Once the cell line of interest is subconfluent, cells are 

pooled and split into three tubes containing at least the minimum number of cells to maintain 

shRNA representation of the library. Of the three tubes, Tube 1 is frozen in liquid N2 for 

subsequent genomic DNA (gDNA) recovery at timepoint=0. Tube 2 is frozen in serum and 

DMSO for possible live cell recovery of this timepoint, and Tube 3 is split into replicates, each of 

them containing the minimum number of cells to maintain library representation. This set of 

replicates is now timepoint=1, and via this process, cells are then passaged across ten doubling 

times, with the final timepoint designated T=10.   

For our particular screens in this project, gDNA was extracted from these pellets in order to 

measure relative shRNA population from T=0 to T=10. Throughout the entire methodology, a 

crucial screen parameter is maintaining an equal number of shRNA representations through all 

time points (t=0 to t=10) to be able to ensure that a minimum number of cells are infected with 

each shRNA to ensure the reliability of the screen. It is accepted that having a minimal 

representation of 50–100 times the number of shRNAs is enough for performing a positive 

screen, while a representation of 500–1,000 is necessary for a negative screening. Thus, for 



instance, for a positive screen, the minimum number of infected cells has to be 6 × 10^6 cells 

(while 6 × 10^7 in a negative screen). This number representation must be maintained through 

cell passages, freezing aliquots or preparing pellets through the timepoints up to T=10. The 

number of plated cells has to be calculated taking into account the minimal representation of the 

library and that not all of the cells will be infected. Typically, assuming a MOI of 0.3, it is 

necessary to plate 1.8 × 10^7 cells to obtain the 6 × 10^6 infected cells needed for a positive 

screen (1.8 × 10^8 in a negative screening).  

Next, we utilized next-generation sequencing (NGS) to quantitatively measure the 

abundance of shRNAs (14,57-59). As a first step, it is necessary to PCR out the shRNA library 

integrated in the gDNA of each cell population. For this, PCR-oligos that hybridize in a common 

region outside the shRNA are used. After this PCR, we obtain a PCR product that contains the 

shRNA library with the same representation found in the cell population analyzed.  

The PCR product (Figure 1) presents a structure where the first 6 nucleotides (in blue) 

represent sample barcodes to map back multiple samples representing different experimental 

conditions, and the 22 nucleotides (in red) in the middle are used to identify the shRNA hairpin 

in the library. The hairpin sequence is extracted from the sequencing read and compared to the 

reference sequence. Maximum alignment scores are identified as the primary read; if multiple 

scores exist, the read is marked as ambiguous and not utilized. It is estimated that 75% of short 

reads are verifiably read in genome-wide shRNA screens utilizing NGS for deconvolution. 

Specifically for our studies, we utilized NextGen-sequencing via the Illumina HiSeq 2000 at 

100bp resolution to analyze shRNA abundance at t0 and t10 time points. The resulting data set 

contained ~500 million data points from 90 independent cell populations.  

 

 

 

 

 

 

 
 
Sequencing and quality controls of generated data (detailed) 

For analysis of the NGS data, the short reads generated by the sequencer are first checked 

for quality score (60). Each nucleotide base call in sequencer traces is then checked for the 

probability of base calling correctly, and assigned a quality score. Quality scores are 

Figure 1. Sequence structure composition of each NGS short read. The first six bases in 
blue are from barcodes of experimental design and the 22 nt bases in red are from 
sequences of shRNA hairpins in the library, out of which 19 nt are perfectly matched to the 
genome sequence. 



logarithmically linked to error probabilities, wherein a quality score of 10 (1 in 10) means a base 

was called correctly only 90% of the time; whereas a base score of 30 (1 in 1000) indicates a 

base was called correctly 99.9% of the time. Figure 2A below maps a distribution of generated 

reads. As seen, quality scores typically decrease further out into the strand read, with a peak in 

the proportion of reads with high quality scores (Figure 2B).  A cut-off of reads to consider—

usually the quality score 30 and above—is then set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Functional Enrichment of IBC-depleted candidates (detailed). 

In order to see whether IBC-relevant classes of significantly depleted shRNAs are related to 

functional categories characterizing IBC function and survival, we compared the biological 

functions of the gene targets [as assessed by gene ontology (GO) categories] of shRNAs from 

our screen. Multiple sources of functional databases exist, including 1) Gene Ontology (GO), a 

collection of biological processes, molecular functions, and cellular components for mouse and 

human genomes, 2) Pathway Commons, a collection of biological pathways, and 3) Molecular 

Signatures Database (MSigDB), a collection of annotated gene sets for use with gene set 

enrichment analysis (GSEA) software. Many analysis tools exist to utilize these databases in 

Figure 2. Processing raw screen data. A) The graphic is an illustrative example (SUM 149 
cell line) representing the correlation of the base’s relative position in the read (from 1 to 50 
bp, x axis) to its quality score (y axis) for the IBC cell line SUM149. As noted, quality scores 
decrease as a base is located further out into the strand read. B) Distribution of average 
base quality, with the majority of reads scoring a quality score between 30-40. Only reads 
above 30 are then considered. 

A B 



tandem with screen shRNA information, and two well established tools of use to us were: 1) 

Database for Annotation, Visualization, and Innovative discovery (DAVID) (28), which supports 

gene annotation functional analysis using Fisher’s exact test, and 2) Gene Set Enrichment 

Analysis (GSEA) (29), a  K-S statistic based enrichment analysis method which uses a ranking 

system.  

We utilized these tools to examine functionally enriched pathways in IBCs. DAVID and 

GSEA utilize gene inputs in different ways. DAVID identifies the most relevant GO 

terms/pathways for a specific differentially expressed shRNA set that is input. A caveat to this 

process is its reliance on pre-selected sets, which might ignore key members of a pathway or 

create more error via smaller sample size when setting a threshold of significance to determine 

enriched pathways. As a more unbiased approach, GSEA uses and ranks all shRNAs relative to 

a differentially expressed condition from most negative to most positive. It then identifies gene 

sets that are unusually near the bottom (depleted/downregulated) or the top 

(enriched/upregulated) of the overall rank list. Although more unbiased, this relative ranking 

approach could possibly miss a true gene of interest—ie, a negative score could imply depletion 

in IBCs but instead really be a large relative enrichment in non-IBCs.   

To create a thorough functional portrait of functionally enriched IBC pathways, we used both 

DAVID and GSEA as complementary approaches in order to perform functional enrichment 

analysis with Gene Ontology (GO) databases. For DAVID, the 71 gene candidates selectively 

depleted in IBC vs non IBC cell lines—representing the top best shRNAs-- comprised our input 

list, and, remarkably, yielded a set of biological processes that were directly and specifically 

related with one of our top candidates (HDAC6). Interestingly, with GSEA analysis, which 

included all screen shRNAs ranked by their depletion in IBCs vs non-IBCs, many top 

functionally depleted pathways were both related to HDAC6 and to cellular response to 

misfolded protein and components of the Unfolded Protein Response (UPR). Since HDAC6 

plays a pivotal role in the metabolism of misfolded proteins due to its role in aggresome 

formation (18,20), these two functional enrichment analysis tools provide a comprehensive and 

intriguing portrait of HDAC6 role in IBC survival and further rationale for selection and study of 

this candidate. 

 

 


