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Abstract 

Vaccine-induced antibodies may wane more quickly in persons living with HIV than in healthy 

individuals. Here, we reviewed the literature on vaccines routinely recommended in HIV-infected 

patients to estimate how seroprotection decreases over time in those who initially responded to 

immunization. For each study retrieved from the literature, the decrease of seroprotection was modeled 

with a log binomial generalized linear model, and data were pooled in a meta-analysis in order to 

provide estimates of seroprotection two and five years after last vaccine administration. Our analyses 

confirmed that duration of seroprotection was shorter in HIV-infected patients, and that with current 

guidelines, a substantial proportion of patients would have lost protective antibodies before being 

proposed a booster. We therefore discuss the implications on the monitoring of antibody levels and 

timing of revaccination in these patients. 
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Introduction 

Immune responses to most vaccines are known to be impaired in HIV patients [1,2].However, besides 

primary response, long-term persistence of protection has been poorly documented. As of today, 

recommendations on the timing of booster injections were based on data collected in healthy persons 

although antibody decay patterns may be different. In this respect, an important question is to estimate, 

among patients who initially responded to immunization, how seroprotection decreases over time. 

Here, we reviewed data on long-term persistence of antibody concentrations after vaccination in HIV-

infected patients. This choice was supported by three main reasons: (i) antibody concentrations are 

reported in most vaccine trials, providing enough data to allow meta-analysis, (ii) correlates of 

protections have been defined for most vaccines and (iii) antibody levels can be routinely assessed for 

most antigens with standardized methods. For some vaccines (i.e. measles, varicella, yellow fever), 

cell-mediated immunity is the critical determinant of protection, however methods of evaluation of 

cellular responses are not easily comparable between studies and correlates of protection not yet 

established. Our goal here was to provide a summary of available data to guide recommendations on 

revaccination in HIV-infected persons.  

Methods 

Search strategy and selection criteria 

We searched the MEDLINE database for English-language articles up to January 2013 using Pubmed, 

without date restriction, using the terms “vaccine”, “antibodies”, “follow-up” “long-term”, “decline”, 

“duration”, and “HIV” (see search equation in the supplementary material). The review and meta-

analysis were conducted according to the PRISMA guidelines. Studies were selected by one author 

(SK) according to the eligibility criteria: original experimental or observational studies on licensed 

vaccines in patients living with HIV, reporting measurements of antibody titers beyond 6 months after 
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the last vaccine dose administration. Reports on influenza vaccines were excluded. The reference lists 

of all relevant articles were examined for additional data sources.  

For each article, we abstracted the study design, vaccination scheme, sample size, follow-up duration 

and the percentage of „primary responders‟ (patients who had mounted protective antibody titers after 

immunization) who remained seroprotected over time. Protective levels defining seroprotection were 

those reported by the authors and are detailed in Supplementary Information. Where relevant, the 

percentages of seroprotected patients were pooled in a meta-analysis. The meta-analysis was restricted 

to prospective studies and to vaccine antigens where at least two studies were available. No meta-

analysis was undertook for pneumococcal vaccines since the specific antibody levels necessary for 

adequate protection against pneumococcal disease are not clearly defined, even in healthy persons [3]. 

Data analysis 

To account for the great heterogeneity in follow-up times between the different studies, we first 

modelled for each study the decrease of seroprotection P(t), as a function of time since immunization, 

as P(t) = exp(- t), where  exp(-β) was the relative decrease in protection per additional time unit since 

immunization. Data were fit using log binomial generalized linear models. The predicted percentages 

of seroprotected individuals two and five years after immunization in each study were then pooled in a 

meta-analysis with random effects and presented in forest plots. All analyses were made using the R 

software version 2.13.2 (R Development Core Team, R Foundation for Statistical Computing, Vienna, 

Austria, http://www.r-project.org). 

Results 

Of the 159 potentially relevant studies, 54 were selected for the qualitative review (figure 1). 

For each vaccine, percentages of seroprotection retrieved from the literature are presented in figure 2. 

Median follow-up ranged from nine months to nine years after the last vaccine dose. The median 

number of patients included per study was 40 (Interquartile range: 18; 63). Data were available for 13 

vaccine antigens: Streptococcus pneumoniae (n=14), hepatitis B (n=12), measles (n=12), hepatitis A 

http://www.r-project.org/
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(n=5), tetanus (n=8), yellow fever (n=3), Haemophilus influenzae type b (n=3), rubella (n=2), 

varicella, (n=1), pertussis (n=1), polio virus (n=1), mumps (n=1), and Japanese encephalitis (n=1). Of 

the 54 studies included in the review, 19 fitted the eligibility criteria for meta-analysis. Others were 

excluded because they were on pneumococcal vaccine (n=14), were retrospective (n=13), did not 

differentiate outcome of primary responders and non-responders during follow-up (n=4), or because 

only one study was available for the vaccine (n=4: pertussis [4], Haemophilus influenzae type b [5], 

varicella [6], and Japanese encephalitis [7]. 

Hepatitis B 

Twelve studies were included, with follow-up times ranging from 12 to 115 months [8–19]. As 

illustrated on figure 2A, seroprotection typically decreased over time: after 3 doses of 40µg HBsAg , 

71% of primary responders maintained protective antibody titers at year one [8], 33%-61% at year two 

[8,10], and 40% at year five [10]. There was no clear trend of longer persistence of seroprotection with 

high-dose vaccine schemes [8,10]. Three retrospective studies reported data beyond five years after 

immunization [11,15,19] in HIV-infected children born to Ag HBs+ HIV-infected mothers, and  

maintenance of seroprotection was particularly poor: 24% after 5.5 years [11], 45% after 8 years [15], 

to only 1% after 9.6 years [19] after a three 10µg-doses scheme. 

According to the meta-analysis, less than one half of primary responders would maintain protective 

antibody titers two years after immunization (38% (CI95% = 23%; 54%) in adults and 61% (27%; 

90%) in children), and only 17% (CI95%: 3%; 36%) after five years (figures 3 and 4).Vaccine 

schemes with double-dosed schemes did not improve maintenance of seroprotection (compared to 

those with standard doses of vaccine (respectively 41% (CI95% = 14%; 71%), and 50% (CI95% = 

24%; 77%) after two years, P-value=0.65). 

Hepatitis A 

One retrospective [20] and four prospective studies [21–24] were identified on hepatitis A. In adults, a 

slight decrease was observed over time (figure 2B): 100% of responders were still seroprotected after 
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one year [23], 90% after three years [21], and 85% after four years [22]. No data were reported beyond 

four years. In children, persistence of responses was lower: 85% (n=84) after 9 months [20] and 92% 

after 18 months [24] . Percentages of seroprotection were not greater with three-dose schedules 

[22,23], as compared to standard two-dose schedule [21–24]. The pooled percentages of seroprotection 

against hepatitis A were of 92% (CI95% = 89%; 95%) two years after vaccination, and 82% (CI95% = 

76%; 88%) after five years (figures 3 and 4).  

Measles, Mumps and Rubella 

Data on long-term persistence of measles immunity were reported in twelve studies, either in children 

(n=10) [25–34] or adults (n=2) [35,36]. As illustrated on figure 2C, percentages of seroprotection 

varied widely between studies, reflecting the great heterogeneity in the populations studied. In HIV 

vertically-infected Sub-saharian African children not on HAART and vaccinated in the first months of 

life, percentages of seroprotection rapidly dropped during follow-up: 62%-73% of primary responders 

were still protected after 15 months [29,31], 41%-49% after 28 months [25,31],and 30% after 50 

months [28]. HAART improved seroprotection, either for children started on HAART after 

immunization (69% after six months of HAART [28] 40-60% after four to seven years of HAART [26, 

34]) or those who were vaccinated or revaccinated after the start of HAART (73% after one year [30], 

40-82% after four years [32]). In this last study, higher percentages of seroprotection were reported 

four years after vaccination in children started on HAART in their first year of life (82%) compared to 

others (40%) [32]. 
 

In adults, data were scarce and showed conflicting results. In adults vaccinated during childhood 

before HIV infection, at the median age of 35 years, 95% still had protective antibody titers (n=59) 

[36], whereas after revaccination of 26 HIV-infected adults at the age of 31 years, only 43% were still 

above the detection level after one year [35]. 

Because of great heterogeneity, the meta-analysis was restricted to five studies focusing on HIV 

vertically-infected children [26,27,29–31], immunized at the age of 6-42 months, with either one [31] 

or two doses [26,27,29,30] of the MMR vaccine. The pooled analysis estimated that in this particular 
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population, protective antibody levels would persist in 68% (CI95% = 45%; 88%) of primary 

responders after two years, and 40% (CI95% = 10%; 73%) after five years (figure 3C). 

Only three studies reported data on rubella [26,34] and mumps
 
[26]. After four years on HAART, 

antibodies persisted in 62% of children against mumps and 27-89% against rubella, the highest 

seroprotection rates being reported for children with virological response.  

Tetanus, Poliomyelitis and Pertussis 

Studies on tetanus included 241 children followed from 12 to 53 months after immunization (figure 

2E) [28,30,32–34,37–39]. Retrospective studies accounted for 76% of participants (n=182). 

Percentages of seroprotection were high: 67-90% within the first two years [30,33,34,37–39],
 
78% 

after 4 years [28]. Meta-analysis of the four prospective studies estimated overall percentages of 

seroprotection (figure 3D) of 74% (CI95% = 57%; 87%) and 43% (CI95% = 21%; 66%) two and five 

years after immunization, respectively. One study reported data on immunization against polio virus 

[37], one against pertussis [4], and one against diphtheria [34]. In all reports, duration of seroprotection 

was shorter than in healthy children.  

Streptococcus pneumoniae  

All 14 studies on persistence of antibodies against S. pneumoniae were prospective, either in children 

(n=5) [40–44] or adults (n=9) [45–53] and either on a conjugate vaccine (PCV, n=6) [40–44,49] or the 

23-valent polysaccharide vaccine (PPSV23, n=9) [45–48,50–53]. Follow-up ranged from 8 to 60 

months after immunization (median: 12). The median number of patients was 33. The definition of 

response varied greatly between studies:  either a two-fold and greater increase in antibody titers 

[47,49], or an antibody concentration above either 0.35 µg/mL [42,43,47], 0.5, µg/mL [40], or 1 

µg/mL [40,41,48,49,52])
 
or on the GMTs alone [44–47, 49, 50]. After PPSV23 in adults, rates of 

decrease of antibody concentrations were either similar [45,48,52,53] or more rapid [46,50] to that 

observed in
 
healthy individuals. Beyond five years, [47,48], antibody concentrations had dropped 

below the cut-off values for most serotypes. This was reportedly more frequent in patients with low 
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CD4 cell counts at vaccination or those who failed to achieve virological suppression [47]. 

Vaccination with PCV was not directly compared with PPSV23 in adults, but two doses of 7-valent 

PCV elicited more sustained responses than one during the one year-follow-up [49].  

In HIV-infected children, the immunogenicity of PCV has been assessed from eight months to five 

years after primary immunization [40–44]. Here again, results were variable: HIV-infected children 

reportedly experienced a significantly greater decline of antibody levels during follow-up than HIV-

uninfected children [42–44]; however with a vaccine scheme including two PCVs and one PPSV23 at 

8-weeks intervals, Abzug et al. showed that 22 months after immunization, decline in antibody 

concentrations were similar to those in HIV-uninfected infants after PCV alone [40].  

Other antigens 

After immunization against Haemophilus influenzae b, estimates of seroprotection ranged from 16% to 

78% [5,30,54] in vertically HIV-infected children at different time points after immunization. In the 

only report on varicella vaccine, less than 50% of 94 HIV-infected children (aged 1-8 years) still had 

detectable VZV IgG one year after the start of immunization [6]. For yellow fever, three retrospective 

studies [55–57]
 
suggested that immunogenicity of YF immunization waned more quickly in HIV 

patients: the proportion of patients with non-reactive titers increasing from 17% to 23% over the ten 

years-period post-vaccination [57]. In the single study on an inactivated Japanese encephalitis vaccine 

in 50 HIV-infected children on HAART, only 4/38 primary responders lost protective antibodies 

during the three-year follow-up, suggesting long-term benefit of the vaccination in this population [7].    

Discussion 

Duration of seroprotection, as assessed by quantitative measurement of antibody responses, is shorter 

in HIV-infected patients than in otherwise healthy persons for most licensed vaccines. As a 

comparison, 65-95% of healthy children and 80% of adults maintain protective anti-HBs 

concentrations ten years after vaccination against hepatitis B. With inactivated hepatitis A vaccine, 

mathematical models estimate that protective levels of anti-HAV could be present for more than 25 
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years in adults and 14–20 years in children. Percentages of seroprotection reach 93-10% in healthy 

children ten years after tetanus vaccine and 95-100% after measles vaccine (see references in table 2 of 

the supplementary material). 

 

Our analyses showed a rapid decrease in seroprotection after immunization in HIV-infected patients 

and have several implications: 

 Because of high prevalence and severity of chronic hepatitis B in HIV-infected patients, it 

appears that anti-HBs antibodies should be measured yearly in adults and every 2-5 years in 

children at risk (those in close contact with Ag HBs+ persons or living in a high endemicity 

country). Closer monitoring of anti-HBs titers could be considered in those with the lowest 

antibody titers at the end of the vaccination course (10 to 100 IU). 

 For persons at increased risk for hepatitis A (i.e. travelers, men who have sex with men, users 

of drugs, persons with occupational risk for HAV infection or chronic liver disease), anti-HAV 

antibodies should be monitored every five years since almost 20% of primary responders 

would have lost seroprotection by year five after immunization. 

 For tetanus, the meta-analysis of prospective studies found that around 75% of HIV-infected 

children would maintain protective concentrations after two years, and retrospective studies 

reported percentages of seroprotection around 70-80% after five years. In this respect, the 

interval of ten years between boosters seems reasonable. 

 To improve maintenance of seroprotection against measles, the initial vaccination scheme 

should include two doses, ideally administered after the start of HAART, in children with 

undetectable viral load. Children vaccinated before the start of HAART and/or with detectable 

HIV viral load at the time of immunization could be proposed a third dose 2-5 years after 

primary vaccination, when CD4-cell count is >200 or >15%. 

 The WHO recently stated that a single dose of yellow fever vaccine was sufficient to confer 

life-long immunity against the disease in immunocompetent persons. Data show that immunity 
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wane more quickly in HIV-infected persons. In these patients, determination of antibody titers 

should be considered in case of potential exposure, and revaccination proposed to those with 

negative titers. 

 For now, data on immunogenicity of PCV or strategies combining PCV and PPSV23 are too 

preliminary to state on the optimal timing of booster injections in adults. 

 

Several methodological issues warrant discussion. First, it is remarkable that the median number of 

patients per study was only 40. Data on immunogenicity of vaccines in the immunocompromised host 

are scarce and the small samples in each category gave little power for comparisons between age 

classes or vaccine schemes. Second, only prospective studies were included in the meta-analysis, 

which may have lead to a certain degree of underestimation of seroprotection. Indeed, as illustrated for 

tetanus, studies pooled in the meta-analysis were those with the shortest duration of follow-up and 

lower percentages of seroprotection. This choice was however essential to guarantee the quality of data 

analyzed. Conversely, relying on the exponential decrease could lead to overestimate the decrease in 

seroprotection. The choice of the model was supported by the good fit in studies where at least two 

follow-up points were available (see supplementary material). This model however leads by structure 

to an always decreasing trend in seroprotection with time, implying that all vaccinees will loose 

seroprotection at some point. An alternative assumption would be that some individuals would remain 

seroprotected permanently over time, as it has been hypothesized for example with hepatitis A vaccine. 

There was also great heterogeneity in some important variables that complicated comparisons across 

studies: immunologic status at the time of vaccination, use of antiretroviral therapy and whether 

treatment was started before or after vaccination, age, vaccine strain, assays used to measure antibody 

concentrations, antibody levels considered as protective, exposure to wild-type pathogens that could 

confound antibody measurements. The small samples gave little power for comparisons but several 

variables seemed to be associated with persistence of seroprotection. For example, like for 

immunocompetent persons, certain vaccine antigens such as rubella, tetanus and hepatitis A induce 
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more sustained responses than others [58]. The viro-immunologic status and use of antiretroviral 

therapy at the time of immunization is also of critical importance in maintenance of seroprotection. As 

illustrated for measles, persistence of antibody concentrations was improved in children vaccinated or 

revaccinated while on HAART [30, 32], as compared to others [25, 26, 27, 28, 29, 31]. More 

generally, patients immunized while on HAART show prolonged seroprotection for most vaccine 

antigens, as illustrated in a recent review [59]. Similarly, HIV viral load at the time of immunization is 

an important independent predictor of persistence of seroprotection, as illustrated for hepatitis A [21, 

22], yellow fever [55] and Pneumococcus vaccines [43].  On the other hand, whereas increasing the 

dose of antigen is an interesting strategy to improve responses in immuncompromised hosts [60], there 

was no clear trend in our meta-analysis indicating that this strategy would extend duration of 

seroprotection among primary responders. 

Finally, antibody response is only one component of the immune response to vaccines. For some 

antigens (i.e. measles, varicella, yellow fever), cell-mediated immunity is the critical determinant of 

protection, and excluding quantification of CMI may lead to a mistaken conclusion that boosters are 

required for all vaccines. Indeed, loss of antibodies does not necessarily imply loss of clinical 

protection and immune memory can persist, even in the individuals with low antibody concentrations 

[61]. As recently underlined in a recent review: “a large variety of immune cells and functions are 

involved in controlling infections and any assignment of one as the mechanistic immune functions that 

contribute to protection (mCoP) must recognize that others may be involved as supplements or co-

correlates of protection” [62]. In this respect, cellular responses seem to play a crucial role in the 

protection conferred by certain vaccines and our choice to exclude reports on CMI lead to a certain 

degree of imprecision in the evaluation of immune responses. Evaluation of CMI provide important 

data on the degree of protection at an individual level but methods of measurement are not routinely 

available and correlates of protection need to be established.  
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Clinical implications of this work need to be further explored on large prospective cohorts. In the 

future, the evaluation of new vaccines that specifically target persons with impaired immunity 

(inactivated or subunit zoster vaccine, cytomegalovirus vaccine) should confront clinical effectiveness 

with precise evaluation of the both humoral and cellular responses, in an attempt to establish reliable 

correlates of protection in these populations. 
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Figure Legends 

 

Figure 1: PRISMA flow diagram of the search strategy. 

 

Figure 2: Data retrieved from the literature (2A-E) and graphical illustration of the statistical modeling 

for hepatitis B (2F). 

Each symbol represents a percentage of individuals with protective antibody concentrations in relation 

with time (in years) elapsed since immunization, among those who initially responded to the vaccine, 

except for tetanus, where overall percentages of seroprotection are presented (responders and non-

responders pooled together). The size of points is proportional to the sample sizes of studies. Symbols 

are colour-coded according to the vaccination scheme. Figure 2F shows the principle of modeling for 

hepatitis B vaccine: symbols represent the percentages of seroprotection retrieved from the literature 

and lines show extrapolations of the model at two and five years. Estimates of seroprotection (black 

symbols) are provided by the model at two and five years. 

 

Figure 3. Meta-analysis of the percentages of seroprotection 2 years after the last vaccine dose, by 

vaccine antigen. Columns on right detail characteristics of study participants at the time of 

immunization, including mean or median age, percentage receiving highly active antiretroviral therapy 

(HAART), mean or median CD4 cell count (per microliter), mean or median human 

immunodeficiency virus (HIV) load (log copies per milliliter), and percentage with undetectable HIV 

loads. Colors represent vaccination protocols. For hepatitis B, yellow symbols represent 3 

intramuscular 10-μg doses (Lao-Araya et al [13] and Scolfaro et al [18]) or 3 subcutaneous 5-μg doses 

(Mannucci et al [14]) in children or 3 intramuscular 20-μg doses in adults (Kaech et al [12] and Rey et 

al 

[17]). Red symbols represent 3 intramuscular 40-μg doses (Cooper et al [10] and Cruciani et al [8]). 

Heterogeneity: Q = 121.9; P < .001; I2 = 95% [92%–97%]. For hepatitis A, yellow symbols represent 
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1 dose (Weinberg et al [24], Crum-Cianflone et al [21], Kernéis et al [22], and Launay et al [23]); red 

symbols, 2 doses (Kernéis et al [22] and Launay et al [23]). Heterogeneity: Q = 2.9; P = .71; I2 = 0% 

[0%–57%]. For measles, yellow symbols represent 1 dose (Moss et al [31]); red symbols, 2 doses 

(Melvin and Mohan [30], Bekker et al [26], Brunell et al [27], and Fowlkes et al [29]). Heterogeneity: 

Q = 25.6; P < .001; I2 = 84% [65%–93%]. For tetanus, yellow symbols represent 2–5 doses plus 

boosters, according to local practices. Heterogeneity: Q = 2.5; P = .48; I2 = 0% [0%–81.3%]. 

 

Figure 4. Meta-analysis of the percentages of seroprotection 5 years after the last vaccine dose, by 

vaccine antigen. Columns on right detail characteristics of study participants at the time of 

immunization, including mean or median age, percentage receiving highly active antiretroviral therapy 

(HAART), mean or median CD4 cell count (per microliter), mean or median human 

immunodeficiency virus (HIV) load (log copies per milliliter), and percentage with undetectable HIV 

loads. Colors represent vaccination protocols. For hepatitis B, yellow symbols represent 3 

intramuscular 10-μg doses (Lao-Araya et al [13] and Scolfaro et al [18]) or 3 subcutaneous 5-μg doses 

(Mannucci et al [14]) in children or 3 intramuscular 20-μg doses in adults (Kaech et al [12] and Rey et 

al 

[17]). Red symbols represent 3 intramuscular 40-μg doses (Cooper et al [10] and Cruciani et al [8]). 

Heterogeneity: Q = 87.7; P < .001; I2 = 93% [88%–96%]. For hepatitis A, yellow symbols represent 1 

dose (Weinberg et al [24], Crum-Cianflone et al [21], Kernéis et al [22], and Launay et al [23]); red 

symbols, 2 doses (Kernéis et al [22] and Launay et al [23]). Heterogeneity : Q = 6.7; P = .25; I2 = 25% 

[0%–69%]. For measles, yellow symbols represent 1 dose (Moss et al [31]); red symbols, 2 doses 

(Melvin and Mohan [30], Bekker et al [26], Brunell et al [27], and Fowlkes et al [29]). Heterogeneity: 

Q = 47.8; P < .001; I2 = 92% [84%–96%]. For tetanus, yellow symbols represent 2–5 doses plus 

boosters, according to local practices. Heterogeneity : Q = 4.5; P = .22; I2 = 33% [0%–76%]. 
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