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Abstract—Epileptic seizures reflect runaway excitation that
severely hinders normal brain functions. With EEG recordings
reflecting real-time brain activity, it is essential to both predict
seizures and improve the classification of seizures in EEG signs.
Towards this aim, nonlinear tools are strongly recommended
to select the seizure-sensitive features prior to classification.
However, the choice of the feature remains challenging. With
the multitude of entropy parameters available in literature, and
in order to perform a judicious selection of features that are
fed to classifiers, this paper presents a comparative study of a
host of candidate promising feature extraction techniques. Four
entropy features namely Approximate Entropy, Sample Entropy
and Renyi entropy of order 2 and Renyi entropy of order 3,
were implemented as the standard techniques. Three kernel-
based features namely Triangular Entropy, Spherical Entropy
and Cauchy entropy were implemented. The former and latter
entropies were computed from EEG recordings during induced
seizures in three distinct phases: the pre-ictal (pre-seizure) phase,
the ictal (seizure) phase, and the post-ictal (post-seizure) phase.
Results showed that, among kernel-based methods, Spherical
entropy features exhibited the largest parameter sensitivity to
(Seizure-Normal) phase changes with the highest normalized
relative separation (100%). The sample entropy feature in turn
showed the most sensitive to EEG phase changes with the
highest relative separation (94.85%), among the studied entropy
alternatives.

Index Terms—Approximate Entropy, Sample Entropy, Renyi
Entropy, Kernel-based Entropy, EEG, Seizure, Detection.

I. INTRODUCTION

Normal brain operation is contingent on the orchestration
of neural firing activity among a neuronal subtypes over
several scales ( 10−6–10−2m). Principally, the endogenous
balance of excitation and inhibition (positive and negative
drives), allows for information transfer, storage and retrieval.
Epileptic activity is a transient symptom of excessive or
synchronous neuronal activity in the brain [1] that arises either
spontaneously (in pathology) or due to external stimulation (in
therapeutic protocols). The Epilepsy is mainly assessed using
EEG recordings obtained from multiple electrodes placed
on the scalp (or over the cortical surface pre-operatively).
Subsequent analysis of collected data aim to locate epileptic
focus and propagation patterns over brain area [2], [3], a

time-consuming task that is often conducted by experienced
physicians. Therefore, the development of automated signal
analysis techniques that aid in identifying the occurrence of
an ictal (epileptic) event, as well as the eminence of such
event, continue to be a highly valuable endeavor.

Towards the general aim of distinguishing epileptic from
normal EEG signals, several studies have embarked on us-
ing nonlinear methods to detect and quantify characteristics
changes in nonlinear EEG dynamics. Babloyantz et al. [4]
used nonlinear parameters like Correlation Dimension (CD)
and Largest Lyapunov Exponents (LLE) to study the sleep
wave signal. Non-linear dynamical methods that are based on
the chaos theory have been applied to biological signals [5],
with epilepsy identification being one of the most common
areas. In 2001, Andrzejak et al. [6] presented a framework
that used a new measure designed to discriminate between
nonlinear deterministic and linear stochastic dynamics of EEG
signals. Their results demonstrated that signals from within
the epileptogenic zone had strong indications of nonlinear
determinism, while those from other sites had linear stochastic
dynamics. This was a particular indication that nonlinear
time series analysis of EEG signals might be capable of
providing potentially useful diagnostic information in patients
with epilepsy.

Entropy is the measure of the degree of irregularity and
disorder of analyzed time series. It is a nonlinear processing
tool realized by evaluating the probability of finding m-similar
patterns within the signal. Various Entropy descriptors were
derived from the latter concept and used to process biomedical
signals [7]. Recent studies have utilized entropy methods to
detect epilepsy [1]. These methods included the Approximate
Entropy (ApEn), Sample Entropy (SampEn) as being the
standard entropy tools, among others [1]. Mekyska et al. have
recently introduced kernel-based entropy measures and applied
it to speech signals analysis [8]. Their work demonstrated that
such entropy methods were sensitive to different signal phases
or types.

To improve the classification of EEG signals and to predict
seizure, it is essential to choose the best classifier [7]. How-
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Fig. 1: The Block diagram of EEG complexity analysis
through standard and kernel-based entropy.

ever, as classifiers require feature selection, and since there
is no consensus on the choice of the features which lead to
the most accurate results, it was essential for us to investigate
the performance of existing nonlinear entropy features on our
signals. By analogy to the work of Mekyska et al., this study
aims to utilize some kernel-based entropy measures for feature
extraction in sample EEG data.

We herein compare the standard entropy measures to kernel-
based entropy methods on three distinct EEG phases corre-
sponding to different physiological states: an pre-ictal state,
an induced seizure state, and a post-ictal (after seizure) state.
Four entropy features namely Approximate Entropy (ApEn),
Sample Entropy (SampEn) and Renyi entropy of order 2 and 3,
were implemented as the standard techniques. Three kernel-
based features namely Triangular Entropy (TrEn), Spherical
Entropy (SpEn) and Cauchy entropy (CaEn) were imple-
mented to be tested on EEG recordings obtained from the
three aforementioned states.

II. MATERIALS AND METHODS

The major steps of this study are summarized in the block
diagram in Fig. 1. Fig. 1 showcases the biomedical system,
which is the brain, and the entropy analysis methods used
to extract complexity parameters. Fig. 1 is divided into two
parts, part one comprises the standard estimation of the entropy
parameters such as ApEn, SampEn and others. The second part
comprises the kernel-based entropy methods [8].

A. Samples

Three EEG sets were used from the recorded database of
the American University of Beirut Medical Center (AUBMC).
Three distinct phases were distinguished as the pre-ictal phase,
the seizure (ictal) phase and post-ictal phase. The EEG signals
were recorded during Electro-Convulsive Therapy (ECT), and
a sample of the recordings is illustrated in Fig. 2. The various
phases are characterized by the magnitude, temporal profile
and the frequency of the dominant oscillations. In particular,
EEG obtained during pre-ictal state is known to have large
amplitude waves of low frequency (1-3 Hz, or delta range).
Seizure-related EEG, on the other hand, shows stereotypical
patterns that contain spikes of excessively large amplitude
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Fig. 2: EEG recordings. (Top) EEG during the pre-ictal phase,
(Middle) EEG during the seizure phase and (Bottom) EEG
during the post-ictal phase.

( 200 µV) followed by wave component and repeat at slightly
higher frequencies (2-5 Hz). Finally, post-ictal EEG signals
have more ”quiet” random character with significantly reduced
amplitudes and multitude of frequencies common in normal
EEG recordings.

In each phase, 10 second recordings (sampled at a 1 KHz
rate) were utilized and windowed to produce sub-signals (or
frames). For each signal, 1000 samples per second were
produced and thus for 10 seconds 10000 samples were ob-
tained. As the window size is 240 and the shift is l = 20,
500 subsignals (10000/20=500), each comprised 240 samples,
were produced from each EEG. Provided that AUBMC data
comprised 4 pre-ictal, 4 ictal and 4 post-ictal EEG recordings,
2000 pre-ictal, 2000 ictal and 2000 post-ictal EEG subsignals
were used in the entropy analysis.

B. Protocol

The EEG recordings were obtained from subjects under-
going a clinical procedure known as ECT. This technique
is highly effective treatment for patients with drug-resistant
depression. During ECT, subjects are first anesthetized (first
EEG phase), subsequently, brief repetitive large amplitude
currents are administered through two stimulating electrodes
located on scalp over the front-central brain areas. This electri-
cal stimulation induces an epileptic seizure in the underlying
cortical areas (second EEG phase) that then propagates into
deep brain structures and lasts for a few seconds. Finally, the
induced seizure is suppressed spontaneously by internal brain
mechanisms leading to the post-ictal period (third EEG phase)
during which the brain recovers its normal operation, albeit
with reduced depression symptoms.



C. Entropy Complexity Analysis
Each biomedical time series has its own information in-

terpreted by the data in it or even by the regularity and the
complexity of the signal. Entropy measures help in analyzing
these signals by providing the amount of information they
carry (Renyi Entropy) or by estimating the system complexity
upon computing them (ApEn and SampEn and others).

1) Renyi Entropy: a mathematical generalization of Shan-
non Entropy which preserves the additivity of statistically
independent systems and were compatible with Kolmogorov’s
probability axioms [8]. The Renyi entropy of order α, where
α ≥ 0 and α 6= 1 is defined as:

Hα =
1

1− α
log

 n∑
i=(0)

Pαi

 . (1)

where X is a discrete random variable with outcomes
1, 2, ......, n and corresponding probabilities Pi = Pr(X = i)
and log is based 2. Renyi Entropy has unique properties
depending on the data spread and how the probability changes
as order increases. Therefore, it is beneficial to study Renyi
Entropy of order 2, 3 etc.

2) Approximate Entropy: is a method extensively used
to assess the predictability and regularity of changes
in a time series [8]. For a given time series of data
u(1), u(2), u(3), ....., u(N), we define embedding dimension
as the length of compared runs and denote it as m, and a
filtering variable, r, which acts as the embedding tolerance.
Furthermore a sequence of vectors, X(i) is defined as:

Xi = [u(i), u(i+ 1), . . . , u(i+m− 1)], (2)

Furthermore Cmi is defined as:

Cmi =
1

N −m+ 1

N−m+1∑
j=0

k(i,j,r), (3)

for each i, 1 ≤ i ≤ N − m + 1, we define the center of
pressure position angle, φm(r), as:

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCmi (r), (4)

and then, ApEn is given as:

ApEn(m.r) =
[
φm(r)− φm+1(r)

]
. (5)

It remains to define k(i,j,r) which is the kernel that’s equal
usually to the Heaviside function but can be changed to one
of these kernels [9]:

Triangular Kernel:

k(i, j, r) =

{
1− ||Xi−Xj)||

r ; ||Xi −Xj)|| ≤ r,
0, ||Xi −Xj)|| > r,

(6)

the corresponding entropy is called Triangular Entropy and
denoted through this work by (TrEn).

Spherical Kernel:

k(i, j, r) =


1− 3

2
||Xi−Xj)||

r + 1
2

(
||Xi−Xj)||

r

)3
;

‖|Xi −Xj)|| ≤ r,
0, ||Xi −Xj)|| > r,

(7)

the corresponding entropy is called Spherical Entropy and
denoted by (SpEn).

Cauchy Kernel:

k(i, j, r) =

{ 1

1+
(||Xi−Xj)||)

2

r

; ||Xi −Xj || ≤ r,

0, ||Xi −Xj)|| > r,
(8)

the corresponding entropy is called Cauchy Entropy and
denoted by (CaEn).

3) Sample Entropy: due to the self comparison of a time
series template vector with itself , ApEn values are interpreted
to be more regular than they actually are. This disadvantage
of ApEn was avoided using Sample Entropy (SampEn), Sam-
pEn measures the complexity without including self similar
patterns.

SampEn(m.r) =
[
φm(r)− φm+1(r)

]
, (9)

where φm(r) is given by Eq. 4 yet:

Cmi =
1

N −m+ 1

N−m+1∑
j=0,i6=j

k(i,j,r), (10)

The algorithm builds up runs of points matching within the
tolerance r until there is not a match, and keeps track of
template matches continued until the end of the data [7].

III. RESULTS

To increase the sensitivity of this comparative study, the
entropy analysis has been applied on each sub-signal (frame)
produced after windowing the EEG recordings.

A. Quantification Comparison

Table I reports the seven average entropy values of the
EEG during the pre-ictal (pre-seizure), the Seizure and the
post-ictal (post-seizure) phases of the recordings using the
standard and kernel based methods. For each En method used,
averaged entropy values are reported for the three phases. For
ApEn, the asterisk is associated with the distinctly higher value
and corresponds to the Normal EEG (0.309). Similarly, for
SampEn, SpEm, and CaEn the asterisk is also associated with
the value obtained from the Normal EEG (0.075, 20.00 and
0.025, respectively).

B. Relative Difference Comparison

The mean measure of irregularity corresponding to the
average value obtained for all sub-signals (frames) extracted
from the 10 second original data (in each of pre-ictal, seizure
and post-ictal) has been used to compare the relative difference
between phases. The relative difference RD(En) (in %) is
defined as follows:

RD(En) =
|Ēn(EEGphase i)− Ēn(EEGphase j)|

Ēn(EEGphase j)
, (11)

where i={Anaesthesia, Seizure,Normal} and i 6= j.
Table II summarizes the relative difference of the seven pre-

vious parameters. The important RD values were highlighted
in bold. RD(En)’s are arranged in an ascending order of seizure
- post-ictal phase separation: RD(TrEn) < RD(ApEn) <
RD(CaEn) < RD(RenyiEn−order 2) < RD(RenyiEn−



TABLE I: The average entropy values of the EEG during pre-ictal, seizure and post-ictal phases using the standard and kernel
based methods.

Average Entropy Pre-Ictal EEG Seizure EEG Post-Ictal EEG
ApEn 0.045 0.163 0.309∗

SampEn 0.004 0.004 0.075∗
Renyi-En (order 2) 11.25 13.50 8.647
Renyi-En (order 3) 7.020 8.539 5.084

TrEn 0.691 0.691 0.690
SpEn 0.010 0.040 20.00∗
CaEn 0.016 0.010 0.025∗

TABLE II: The relative difference (RD) and normalized values (in %) of the average entropy between EEG during pre-ictal
and seizure, EEG during seizure and post-ictal phases and EEG during pre-ictal and post-ictal phases.

Relative Difference Pre-Ictal
- Seizure
EEG

Seizure -
Post-Ictal
EEG

Pre-Ictal -
Post-Ictal
EEG

Normalized
Values
Pre-Ictal -
Seizure

Normalized
Values
Seizure -
Post-Ictal

Normalized
Values
Pre-Ictal -
Post-Ictal

RD(ApEn) 2.610 0.4725 0.8544 87.00% 47.27% 85.46 %
RD(SampEn) 0.000 0.9467 0.9467 0.00% 94.85% 94.71 %
RD(Renyi-En (order 2)) 0.200 0.5612 0.3010 6.67% 56.17% 30.02 %
RD(Renyi-En (order 3)) 0.216 0.6796 0.3808 7.20% 68.05% 38.01 %
RD(TrEn) 0.000 0.0014 0.0014 0.00% 0.00% 0.00 %
RD(SpEn) 3.000 0.9980 0.9995 100.00% 100.00% 100.00 %
RD(CaEn) 0.3750 0.6000 0.3600 12.50% 60.06 % 35.93 %

order 3) < RD(SampEn) < RD(SpEn). Moreover,
RD(En)’s are arranged in an ascending order of pre-ictal -
seizure phase separation: RD(SampEn) = RD(TrEn) <
RD(RenyiEn − order 2) < RD(RenyiEn − order 3) <
RD(CaEn) < RD(ApEn) < RD(SpEn).

IV. DISCUSSION AND CONCLUSION

The findings derived from Table II suggest that the best
parameter that emphasizes the distinction between normal
and seizure EEG data was RD(SpEn). Therefore, it was
advantageous to choose a spherical kernal-based entropy over
the standard ApEn and the other presented alternatives. Note
that RD(SampEn) surpasses ApEn, while in pre-ictal -
seizure phases ApEn surpasses SampEn. Therefore, the choice
of the feature is dependent on the application at hand.

SpEn kernel-based entropy feature showed the highest sensi-
tivity to EEG (Seizure-Normal) phase changes with the highest
normalized relative separation (100%). Among the alternative
entropy measures studied, the sample entropy feature (SamEn)
exhibited the most sensitive to EEG phase changes with the
highest relative separation (94.85%).

The large scores (asterisk) of the four entropy measures
Table I were in accordance with the medical evidence that
Normal EEG signals are more irregular and complex than EEG
in a seizure phase.

Finally, we note that yet other entropy features can be
studied and compared with the most sensitive parameters
provided in this work. Still, the representation power of the
extracted features (measures), as part of an automated analysis

procedure, needs to be tested in a variety of classifiers, such as
Support Vector Machine and K-Nearest Neighbour. Moreover,
additional subjects should be considered in the analysis.
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