Figure S1 .

A

B

c

Figure S2.

Figure S3.

Figure S4.

A

B

$$
\begin{aligned}
& \text { WT ALWDDGEKMFHAHWFCRGTDTVLGESSDPLELFLVDECEDMQLSFIHGKVNVFYKAPSEN } \\
& \text { Mutant ALWDDGEKMFHAHWFCRGTDTVLGESSDPLELFLVDECEDMQLSFIHGKVNVFYKAPSEN } \\
& \text { Splicing MO ALWDDGEKMFHAHWFCRGTDTVLGESSDPLELFLVDECEDMQLSFIHGKVNVFYKAPSEN } \\
& \text { WT WYMEGGMDEDIKVIDDDGESFFYQLHYEGECARFETPPKVTPSEDCKYKFCASCTRNKER } \\
& \text { Mutant WYMEGGMDEDIKVIDDDGESFF--- } \\
& \text { Splicing MO WYMEVHAPKCGQCLCLTNWAEVLTLLLF----------------------------------- } \\
& \text { **** }
\end{aligned}
$$

Figure S5.

Figure S6.

	WT	MO dnmt1
$\begin{aligned} & \stackrel{-1}{0} \\ & 0 \end{aligned}$		
$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$		
$\begin{gathered} \infty \\ \stackrel{\omega}{\omega} \\ \end{gathered}$		
$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$		

Figure S7.

Figure S8.

Figure S1. WISH assays of hematopoietic markers of ldd794. (A) EGFP positive cells in Tg(cmyb:EGFP) dnmt1 mutant embryo were sharply decreased compared with wild-type siblings. (B) The primitive hematopoietic markers of mutant embryos were comparable with siblings at 22hpf. (C) The vascular markers flk1 and ephrinB2 were normal in ldd794 mutant.

Figure S2. WISH analysis of dnmt1. Zebrafish dmnt1 was expressed ubiquitously.

Figure S3. WISH analysis of erythroid, myeloid and lymphoid markers in dnmt1 morphants. The mature erythrocyte marker hbae1 (A, B), myeloid-specific marker mpx (C, D) and lymphoid-specific marker rag1 (E, E', F, F') were all decreased.

Figure S4. The dnmt1 splicing specific morpholino effectively affects splicing of precursor RNA. (A) Wild-type dnmt1 PCR product was 449bp (white arrow) and dnmt1 splicing specific morpholino triggered abnormal spliced dnmt1 PCR product was 526bp (red arrow). (B) The sequence result indicated that aberrant splicing leads to a 748AA truncated protein without DNA methylation catalytic domain.

Figure S5. TUNEL assays in sibling and dnmt1-/- mutant. Double positive cells in sibling and dnmt-/- mutant were indicated by arrows.

Figure S6. DNA methylation analysis of cebpa regulation region. Bisulfite sequencing of four CpG islands within cebpa regulation region of cmyb-EGFP positive cells sorted from WT
embryos and Dnmt1 morphants. Each line represents an individual sequenced clone. White circles denote unmethylated CpG dinucleotides, black circles denote methylated CpG ones.

Figure S7. WISH assays of hepatocyte marker Ifabp and pancreas marker trypsin. The expressions of lfabp and trypsin were clearly decreased in ldd794 mutants. Note that SUMO2-C/ebpa was unable to rescue the development defects of liver and pancreas.

Figure S8. WISH assays of cmyb in cebpa null mutants and siblings with or without dnmt1 knock down. (A) WISH assay of cmyb in siblings. (B) WISH assay of cmyb in siblings injected with dnmt1 morpholino. Note that cmyb was markedly decreased. (C) WISH assay of cmyb in cebpa null mutants. (D) WISH assay of cmyb in cebpa null mutants injected with dnmt1 morpholino. Note that cmyb was comparable with un-injected siblings. (A'-D’) Magnified images of the boxed regions in A to D respectively. Red arrows indicate cmyb-positive HSPCs in the CHT.

