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Abstract

Background: In comparative genomics, orthologs are used to transfer annotation from genes already characterized
to newly sequenced genomes. Many methods have been developed for finding orthologs in sets of genomes.
However, the application of different methods on the same proteome set can lead to distinct orthology
predictions.

Methods: We developed a method based on a meta-approach that is able to combine the results of several
methods for orthologous group prediction. The purpose of this method is to produce better quality results by
using the overlapping results obtained from several individual orthologous gene prediction procedures. Our
method proceeds in two steps. The first aims to construct seeds for groups of orthologous genes; these seeds
correspond to the exact overlaps between the results of all or several methods. In the second step, these seed
groups are expanded by using HMM profiles.

Results: We evaluated our method on two standard reference benchmarks, OrthoBench and Orthology Benchmark
Service. Our method presents a higher level of accurately predicted groups than the individual input methods of
orthologous group prediction. Moreover, our method increases the number of annotated orthologous pairs
without decreasing the annotation quality compared to twelve state-of-the-art methods.

Conclusions: The meta-approach based method appears to be a reliable procedure for predicting orthologous
groups. Since a large number of methods for predicting groups of orthologous genes exist, it is quite conceivable
to apply this meta-approach to several combinations of different methods.

Background
Performing an accurate gene/protein functional annota-
tion is one of the crucial steps of any new genome pro-
ject. It is partly achieved by performing the functional
annotation of groups of orthologs.
Orthologs are genes in different species that arose from

a common ancestral gene by speciation events [1]. Based
on the ‘orthology-function conjecture’ [2,3], the orthologs
retain the same function and thus can be used for the
transfer of functional annotation from experimentally
characterized genes to uncharacterized genes [4].

In this article, an ortholog group contains all the
genes that evolved by gene duplication since the most
ancestral speciation event of a given set of genomes [4].
Thus, ortholog groups include orthologs, co-orthologs
and paralogs that evolved by lineage specific duplication
after the relevant speciation event (in-paralogs) [5] (see
Additional file 1).
The prediction of orthologous genes is a difficult task

because of non-uniform evolutionary rates, extensive
gene duplication, gene loss and horizontal gene transfer
[6]. Over the last decades, a large number of methods
and tools have been developed to perform orthologous
gene prediction, and nowadays not less than 37 databases
offer groups of orthologs [7]. However, the results pre-
dicted by these various methods are often uncertain. In
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particular, users should be aware that the application of
different methods on the same proteomes can lead to dis-
tinct orthology predictions [6,8,9]. Accordingly to these
results, it is particularly difficult to know which method
or database will be the most appropriate. In addition, we
might reasonably question the relevance of biological
findings drawn from the orthology prediction obtained
by any single method.
Sequence similarity is a good predictor of homology

but does not define homolog sequences. Like the similar-
ity used to predict homolog sequences, the genome con-
text could be used to predict toporthologs (orthologous
genes that retain their ancestral genomic position). This
precision is motivated by the biological significance of
genomic context [10] (genes that are near each other are
more likely to interact [11] and are possibly coordinately
expressed [12]). Because the gene order changes rapidly
[13] and can not be use for distant species, we focus on
the prediction of ortholog groups, without subdividing
this groups into toporthologs and atoporthologs.
Prediction of gene orthology is based on two main

approaches, namely tree-based methods and graph-
based methods [14].
Tree-based methods are based on a tree-like evolution-

ary scenario and the evolution of the entire group of
homologous genes is performed at the same time. The
pairs of orthologs are inferred from the analysis of gene
family trees and these methods [15-19] use the definition
of orthology in order to distinct orthologs and paralogs.
Gene orthology selection is generally done by tree reconci-
liation [20] with a reference species tree [17-19]. However,
this last step becomes an issue when horizontal gene
transfer plays a major role in the evolution of the organ-
isms [21]. Moreover, tree-based methods are sensitive to
artifacts, such as long and short-branch attraction at large
or small evolutionary distances [22]. The results also
depend of the quality of the species tree, which can con-
tain errors especially at large evolutionary distances.
Graph based methods rely on the assumption that

orthologous genes or proteins are more similar than any
other gene or protein coming from the same organisms.
Thus in graph based methods the orthologs are clustered
together according to a similarity measure between the
sequences. Several similarity scoring methods are used to
cluster the sequences, for example BLAST derived scores
[23] or similarity scores computed from Smith-Waterman
alignments [24]. These methods [25-28] are generally
much faster than tree-based methods and can deal with a
larger number of species. However, they fail to detect dif-
ferential gene losses [29,30] and can create mixed groups
in the case of complex mixtures of differently-related
genes.
As stated above, tree-based and graph-based methods

have their advantages and drawbacks. In this work we

propose to combine results obtained by several different
methods by developing a meta-approach. The purpose is
to produce better quality results by using the overlap-
ping results obtained from several individual methods.
The rationale behind our approach is that when identi-
cal results are found by several methods then they are
more likely accurate. This is especially true as the pre-
diction methods use different approaches like tree-based
or graph-based methods. However, the overlap between
multiple orthology prediction methods may lead to the
loss of many true positives orthologs, especially when
the number of initial methods is high. To overcome this
problem the meta-approach is performed in two steps.
An initial step finds seeds for groups of orthologous
genes that correspond to the exact overlaps between all
or at least several methods. In a second step we expand
these seed groups by using HMM profiles.
Using acknowledged benchmark sets and procedures,

we evaluated our metaapproach in relation to two
aspects: the quality of our ortholog groups compared to
known groups, and the relevance of functional sequence
annotation based on our groups. The meta-approach
allows to improve both.

Methods
The meta-approach
The entries of the meta-approach are ortholog groups
obtained by several input methods. The general outline
is as follows. First, we take into account only orthologs
that are predicted by several methods, by selecting the
intersections of their groups. From the sequences of the
intersected groups, we build HMM profiles, possibly
adding other sequences to the groups by comparing the
sequences to the HMM profiles. Selection of the added
sequences is based on the e-value and the percentage of
alignment between the sequences and the HMM pro-
files. This whole process is performed several times,
with the number of methods decreasing at each step, as
detailed below.
At first, let us justify the meta-approach in a few words.

It combines results from several methods, each of them
having a given level of sensitivity and specificity. The first
stage is stringent (specific), and tends to generate small
orthologous groups, because each group is the intersec-
tion of the groups obtained by several methods. Recalling
that our main objective at the end is annotation, what is
important is not to have the largest possible groups, but
to ensure that the genes that are in the same group will
share the same function. From these small groups, which
we call intermediate groups, HMM profiles are built. Pro-
teins which are not in any intermediate group are called
unassigned proteins. Each unassigned protein is com-
pared to the profile HMM of each intermediate group
and can be added to a group if the results of comparison
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satisfy conditions on the e-value and the minimum
length of the alignment. Using the HMM profiles aims to
improve the sensitivity of the results. Moreover, because
the HMM profiles are made from several strongly
selected protein sequences, we expect this step still to
have a good specificity.
We present below the algorithm in more detail (see

also Figure 1).

1 Collect ortholog groups from N input methods
(N ≥ 2)
2 set i = N .
3 Compute all sets of proteins that are intersections
of groups of i methods: that is, two proteins are in
the same set if and only if they are in the same
group in i methods. Additionally, sets are selected

according to their size: a set is selected only if its
size is higher or equal to a given threshold (mini-
mum size equals 4 as default). The selected sets
form the intermediate groups. The proteins that do
not belong to any intermediate group are called
unassigned proteins. A protein cannot be in several
intermediate groups. If this is the case, the largest
intersection is kept (this occurs only when i < N ). If
there is some ambiguity for one protein (two distinct
available groups of the same size) one of them is
retained randomly.
4 For each intermediate group, a multiple alignment
is generated with MUSCLE [31]. From each align-
ment, a profile HMM is computed using HMMER
[32].
5 Each unassigned protein sequence is compared to
each HMM profile. An unassigned protein is added
to an intermediate group if: (i) the e-value of the
comparison is lower than a given threshold (default
1E−10) and (ii) the length of the alignment is above a
given ratio compared to the lengths of the sequence
and of the profile (default 40%). An unassigned pro-
tein can be added to one intermediate group at
most. If several HMMs satisfy the thresholds for the
same unassigned protein, the lower e-value is
retained, then the higher length ratio if necessary.
6 The groups obtained after the previous step are
kept aside. This means that the proteins contained
in these groups are not used for the next steps. They
will be final ortholog groups.
7 If i >2 and if there still some unassigned proteins,
then i ¬ i − 1 and GOTO step 3.
8 Otherwise (i = 2), the loop stops. There can
remain intersection groups that have not been
selected as intermediate groups because their cardin-
ality is smaller than the minimum size. These groups
are added to the final ortholog groups (note that
these are necessarily results of intersections of two
methods only.)

The values of the three parameters (e-value, minimum
length of the alignment and minimum intersection size)
were determined by comparing results obtained with
different parameter combinations from the same data
set (see Additional file 2).
Sotware availability
The MARIO software which implements the meta-
approach is freely available at http://bim.igmors.u-psud.
fr/mario/.

The selected input methods
The meta-approach was performed by using the results
of four methods (BRH [33], Inparanoid [26], OrthoMCL
[25] and Phylogeny [34]). The three graph based methods

Figure 1 Overview of the meta-approach. The numbers in the
boxes refer to the consecutive steps which are detailed in the text.
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that we selected (BRH, Inparanoid, OrthoMCL) present
distinct approaches for predicting ortholog pairs and
then for producing groups. They are among the most
representative of graph-based methods. A method devel-
oped previously in our laboratory called ‘Phylogeny’ was
used as a representative of tree-based methods. All
these methods have been implemented in stand-alone
programs.
The initial Best Reciprocal Hit (BRH) method [33] was

modified by taking into account the sequence alignment
length as well as the alignment score ratio between
query and subject sequences. The score ratio is the ratio
of the raw BLAST score of the alignment and the raw
score of each sequence against itself. All pairs of best
reciprocal hits i.e. were both filters are above the thresh-
old values are considered as orthologs. Pairs of ortho-
logs are clustered by identifying fully connected
orthologous groups: each protein of any given ortholog
group has an orthology relationship with every other
protein in the group (in our case, searching for such cli-
ques is computationally tractable because, in the BRH
method, each group presents up to one protein per spe-
cies). Inparanoid [26] was used with default parameters.
This method predicts pairs of orthologs and inparalogs.
The pairs are clustered into groups in such a way that
each protein of any group is linked to at least 20% of
the other proteins of the group. OrthoMCL [25] uses
the percentage match length to obtain pairs of ortholo-
gous proteins. The method clusters the pairs into groups
by using the MCL program [35]. OrthoMCL was used
with default parameters. Phylogeny [34] is based on the
phylogenetic analysis of homologous genes. No species
tree is required. Homologs detected by BLAST are
grouped transitively. Homologous sequences are aligned
using the MUSCLE program. These multiple alignments
are processed with a maximum likelihood approach to
reconstruct the phylogeny of the corresponding family,
using the PhyML software. Group trees are rooted by
using the program Retree from the Phylip package [36].
The analysis of the rooted tree allows to identify dupli-
cation and speciation events and to distinguish ortho-
logs and paralogs.

Evaluation
In order to evaluate our meta-approach, we checked its
consistency according to the ability to predict ortholog
groups, and the quality of protein functional annotation
within an ortholog group. We used two benchmarks:
OrthoBench and the Orthology Benchmark Service. The
values of the parameters used on both benchmark tests
for the meta-approach were the same, as stated above:
minimum e-value 1E−10, minimum alignment length of
40%, minimum intersection size equal to four.

Evaluation on 70 reference ortholog groups
Taking orthoBENCH [37] as a reference benchmark, we
compared the results of the four initial methods, and
those obtained by the meta-approach, to the reference
ortholog groups (RefOGs). The orthoBENCH dataset
involves 1519 proteins from 12 metazoan species
divided into 70 manually curated ortholog groups. For
our analysis, we downloaded the proteome version of
Ensembl 72 [38]. As orthoBENCH is based on Ensembl
62, the proteins removed or added between the versions
60 and 72 of Ensembl were not taken into account.
Moreover, if a gene has splice variants, When compar-
ing the groups produced by the meta-approach or the
individual methods with those of orthoBench, two types
of errors were defined: group fissions (proteins of a
RefOG are in two or more ortholog groups), and group
fusions (more than 3 proteins have been added to a
RefOG) [37].
Functional annotation conservation test
The Orthology Benchmark Service is a recent web ser-
ver (http://orthology.benchmarkservice.org) allowing us
to compare methods of orthologous gene prediction.
This is based on a common set of 66 species (2011
quest for orthologs reference dataset) [39,40]. The
benchmark service proposes two types of procedures for
evaluating orthologous groups: phylogeny-based defini-
tion tests and functional annotation conservation test.
In the Phylogeny based tests, orthologous groups are
defined in such a way that every pair of genes in the
group is either orthologous or inparalogous with respect
to the last speciation event in their clade. However, we
refer to a different and more recent definition of ortho-
log groups [4]. Thus this test is not relevant for our pur-
pose (see Additional file 1 for further details).
The web server proposes also evaluation procedures for

measuring the homogeneity of the functional annotation
of the pairs of orthologs [7]. For each pair, if both pro-
teins are annotated, the similarity of the annotation is
computed with the Schlicker similarity [41]. This mea-
sure allows partial matches, resulting in a robust similar-
ity score for the comparison of gene products with
incomplete annotation or for the comparison of multi-
functional proteins. This score ranges between 0 and 1,
from low to high functional similarity. We computed this
measure for Enzyme Commission (EC) numbers [42] and
for Gene Ontology (GO) terms [43]. For GO terms, only
annotations with experimental support (EXP, IDA, IPI,
IMP, IGI and IEP) were considered.

Results and discussion
At first we briefly present the results of the four initial
methods and of the metaapproach on the orthoBENCH
dataset. Then we compare the meta-approach to twelve
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other state-of-the-art methods from the functional simi-
larity point of view.

Comparing the results of the four initial methods with
those of the meta-approach
The results obtained for each of the four initial methods
were compared with those obtained by the meta-
approach (Table 1 and see Additional file 3) on the
orthoBENCH dataset. First we observe that all the meth-
ods produce different numbers of ortholog groups (ran-
ging from 14 771 for the meta-approach to 25 384 for
BRH), and, in addition predict orthology relationships
for different numbers of proteins. In order to measure
the similarity between the groups obtained by each
method, we computed the Jaccard coefficient by dividing
the number of ortholog pairs in common between two
methods by the total number of pairs of orthologs (|A ∩
B|/|A ∪ B|). The Jaccard coefficient value is expected to
be between 0 (no or-tholog pairs in common) and 1 (all
couples are identical). In our case, all the values range
from 0.164 to 0.541. This means that all the methods
individually produce rather different results. The Jaccard
coefficient values between the meta-approach and any
of the input methods are even lower (lower than 0.156).
In other words, none of the selected methods alone can
explain the result of the meta-approach.
Quality of ortholog groups
Among the four input methods, BRH and Inparanoid
give the highest level of accurately predicted groups
(groups without fusion or fission events) (Figure 2A).
BRH presents the highest number of fissions and the
smallest number of fusions (Figure 2B). Inparanoid
allows the detection of in-paralogs between each pair of
proteomes and thus the number of fusions is higher
than with BRH and Phylogeny. The Phylogeny approach
presents the smallest number of groups impacted by
fusions or fissions. The OrthoMCL method presents
groups largely impacted by fusion events compared with
the other three methods. The larger number of fusions
is associated to a lower number of fissions. This result
on orthoMCL is consistent with the results obtained by
Dalquen et al [6] on a dataset of mammalian genomes.
As for the meta-approach, it presents the lowest

percentage of groups affected by fission or fusion events
(Figure 2C). It also allows an increase of 73.7% in the
number of accurately predicted groups compared to the
highest result obtained with the four initial methods

Table 1 Comparison on OrthoBENCH [37], Jaccard
similarity coefficient

BRH Inp. Ort. Phy. Meta

Jaccard BRH 0.541 0.172 0.389 0.060

similarity Inp. 0.248 0.340 0.093

coefficient Ort. 0.164 0.156

Phy. 0.079

#Proteins 140561 163850 155982 124206 187902

Abbreviations : ‘Meta’ refers to Meta-approach, ‘Phy.’ to phylogeny, ‘Inp.’ to
inparanoid and ‘Ort.’ to orthoMCL.

Figure 2 Comparison of the predicted ortholog groups quality
(benchmark OrthoBENCH). (A) Percentage of accurately predicted
RefOGs (groups predicted without fusion or fission events), (B)
Number of fusions (in dark gray) or fissions (in white), (C)
Percentage of RefOGs affected by a fusion event (in dark gray), by a
fission event (in white) or by the booth (in light gray). A fusion of
groups corresponds to the addition of more than 3 erroneously
assigned genes to a RefOG. Fissions correspond to a RefOG split in
several groups: n group gives n − 1 fissions. Abbreviations: ‘Meta’
refers to Meta-approach, ‘BRH’ to BRH [33], ‘Phy.’ to Phylogeny [34],
‘Inp.’ to Inparanoid [26] and ‘Ort.’ to orthoMCL [25].
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(Figure 2A). At the same time, the meta-approach pre-
sents the lowest number of fissions and a number of
fusions lower than three of the initial methods alone
(Figure 2B). This demonstrate that the meta-approach
improves the results obtained with any of the initial
methods, either graph-based or tree-based.

Functional similarity performance comparison
We compared twelve methods including all those avail-
able in the orthology benchmark service and the four
selected input methods for the analysis of the reference
proteomes [40]. Additionally, in order to evaluate the
impact of using HMM on a single method, we applied
the profile HMM procedure (steps 4, 5 and 8) to the
BRH groups. For the meta-approach, we used the same
values of parameters as those used for the orthoBENCH
analyses.
Enzyme classification conservation test
The Pearson correlation test was performed with and
without the results of the meta-approach in order to
determine the relationship between the number of
annotated orthologs and the average Schlicker similarity
obtained with the EC number annotations. The results
of the metaPhors [18] method stored on the orthology
benchmark service website was not available for all the
species, therefore this approach was not used for the
calculation of correlation. The Pearson correlation is sig-
nificant whether we use results of the meta-approach or
not. The Pearson correlation equals −0.971 (p-value
7.436E−8) using the meta-approach and, −0.964 (p-value
8.573E−7) without the meta-approach (negative correla-
tion hypothesis). This means that increasing the number
of ortholog relations is correlated with a decrease in the
average Schlicker similarity (Figure 3A). All methods
present a percentage of Schlicker similarity higher than
90%, revealing that all methods succeed in predicting
pairs of enzymes with a similar function. Finally, the
meta-approach also finds the largest number of ortholog
relationships.
Gene ontology conservation test
The Pearson correlation test was performed without taking
into account the metaapproach in order to determine the
relationship between the number of annotated orthologs
and the average Schlicker similarity obtained on GO terms.
The results of the metaPhors [18] method were not used
for the same reason as indicated previously. The Pearson
coefficient was -0.804 (p-value 1.419E−3 with the negative
correlation hypothesis). Thus, as for the EC number simi-
larity, the larger number of ortholog relations is correlated
to the decreasing of the average Schlicker similarity. The
meta-approach detects an increased number of ortholog
relations compared to orther methods (Figure 3B). The
Pearson correlation test was performed on the results of all
methods (the meta-approach plus the twelve others) in

order to determine if the meta-appraoch presents results
that are compatible with the same linear regression curve
as obtained with the other methods. The Pearson coeffi-
cient is not significant (−0.471 and p-value 0.06121 with
the negative correlation hypothesis), showing that the
result obtained with the meta-approach is not compatible
with the linear regression. Furthermore, the point repre-
senting the meta-approach is above the linear regression
curve (Figure 3B), showing that the meta-approach outper-
forms the other methods on this dataset. Thus, the meta-
approach increases both the average Schlicker similarity

Figure 3 Function-Based Tests. (A) Enzyme classification
conservation test. The linear regression curve has an intercept value of
101.8 and a regression coefficient of −6.887E−05. (B) Gene ontology
conservation test. The linear regression curve obtained on the GO term
annotation has an intercept value of 54,55 and a regression coefficient
of −5.184E−05. The black lines are the linear regression obtained on all
methods except the meta-approach, the metaPhors and the BRH plus
HMM profiles approach. Error bars for each method are in black.
Fourteen methods were compared: ·: Meta-approach. Δ: metaPhOrs
[18]. □: BRH [33] with complete link. □: BRH with complete link plus
HMM steps. +: Ensembl compara v2 [38]. ×: Inparanoid pairs [26]. œ:
OMA Groups [27]. ∇: orthoinspector 1.30 [44]. 衤: PANTHER 8.0 [45].
▲: phylomeDB [19]. ■: Roundup (RSD 0.8) [28]. ◆: Inparanoid with 20%
simple link. œ: OrthoMCL. ⋆: Phylogeny. ✱: The four methods used for
the meta-approach.
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and the number of ortholog relationships. In addition, the
application of the HMM steps on the BRH groups
increases the number of annotated ortholog pairs. However
and contrary to the meta-approach, the Schlicker similarity
decreases when the number of ortholog relation increase,
as predicted by the linear regression. Therefore, the combi-
nation of the results of several methods is necessary to
improve the quality of the final prediction.

Conclusions
The meta-approach appears to be a reliable method of
prediction of ortholog groups. Based on the combination
of existing methods, the meta-approach finds a consen-
sus of higher quality. Both ortholog group quality and
consistence of group annotation have been positively
tested. We showed with the orthoBench dataset [37]
that, compared to the initial methods, the meta-
approach reduce the number of incorrect groups as well
as the number of fission and fusion events. Furthermore,
the metaapproach presents the largest GO term similar-
ity compared to twelve of the thirteen state-of-the-art
methods on the protein reference dataset [40]. Phylo-
geny’s Schlicker similarity is larger than the meta-
approach, but Phylogeny predicts many less pairs of
annotated orthologs. All other methods present both a
smaller Schlicker similarity and an smaller number of
pairs of annotated orthologs.
The meta-approach combines the results of several

methods in order to obtain specific intersections and
adds to these intersections similar sequences (by using
profile HMMs). The user has to be well aware that
results depend of the selected input methods and on the
selected parameters for the HMM profiles.
The meta-approach presented in this article takes the

benefits from the particular four methods used here, but as
a large number of methods for predicting groups of ortho-
logous genes exist, it would be interesting to apply this
meta-approach to different methods or to more methods.

Additional material

Additional file 1: Comparison of group trees obtained with two
definitions of ortholog groups. The phylogeny-based definition tests
select ortholog groups in which at least one protein of each of the n
species is present. If several proteins are available, one of them is
selected randomly, which can lead to differences between the species
tree topology and the gene tree topology depending on the ortholog
group definition. (A) Example of a specie tree with four species. Each
speciation event is presented by a ‘S’ and a number associated. (B)
Possibles associated gene trees and ortholog groups. Green : ortholog
group at the S1 level, pink: ortholog group with in-paralogs allowed only
if the duplication occurred after the last speciation event (phylogeny tree
test definition). Stars: duplication events. (C) Gene trees possibly evaluates
with the phylogenetic tree test. This gene trees results from the random
selection of one sequence of each species from the ortholog group at
the S1 level (green) presented in sub-figure B. In grey, gene tree
inducing high Robinson-Foulds distance while the ortholog group is

coherent at the S1 level. The larger the number of species used and the
more this type of error will occur.

Additional file 2: The impact of each parameter of the meta-
approach evaluated on orthoBench. Each column (1,2,3) corresponds
to the evaluation of a parameter. Like in the Figure 2, the graphs (A)
corresponds to the percentage of accurately predicted RefOGs, graphs
(B) corresponds to the number of fusions (in dark gray) or fissions (in
white) and graphs (C) corresponds to the percentage of RefOGs affected
by a fusion event (in dark gray) or by a fission event (in white) or by
both types of events (in light gray). The impact of the e-value threshold
is observed in the column 1. The two other parameters are fixed
(minimum alignment length of 40% and minimum intersection size of
six). The variation of the e-value does not involve a large variation in the
quality of the predicted groups. The selected value is 1E−10 (highest
accurately predicted RefOGs and smallest percentage of groups affected
by fission or fusion events). The impact of the minimum alignment
length parameter (used in step 5 of the meta-approach) is observed in
the column 2. The e-value is fixed to 1E−5 and the minimum
intersection size equal three. According to this chart, the increase of the
required alignment induces the decrease of the number of fusion and
the increase of the number of fission. The highest accurately predicted
RefOGs is obtained with the values 40% and 80%. The impact of the
minimum size parameter (used in step 3 of the meta-approach) is
observed on the column 3. The two other parameters are 1E−5 for the
e-value and 40% for the minimum alignment length. Results obtained
with intersections of size four or more presents the highest number of
accurately predicted groups. However, this evaluation was performed on
only 12 species. Thus, the number of ortholog groups containing more
than 4 sequences could have induce an under-evaluation of the value of
this parameter.

Additional file 3: Identical groups on OrthoBENCH. Number of
identical groups finds on OrthoBENCH for every pair of methods.
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