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ABSTRACT   

Recurrent nerve paralysis (RP) is one of the most frequent complications of thyroid surgery. It 

reduces vocal fold mobility. Nasal endoscopy, a mini-invasive procedure, is the reference 

procedure to detect RP, and is based on the examination of vocal fold mobility. A new 

approach based on laryngeal ultrasound acquisition and using a dedicated data analysis was 

designed to help with the automated detection of RP. 

One hundred and fifty subjects were enrolled for this feasibility study: 50 controls, 50 patients 

with RP and 50 patients without RP, according to nasal endoscopy. The ultrasound protocol 

was based on a ten seconds B-mode acquisition in an axial plane during normal breathing. 

Image processing included three steps: 1) the detection of two consecutive closing and 

opening images corresponding to extreme positions of vocal folds in the sequence of B-mode 

images; 2) the positioning of three landmarks and the robust tracking of these points using 

multi-pyramidal refined optical flow approaches; 3) the estimation of quantitative parameters 

indicating left and right fractions of mobility and motion symmetry.  

Results provided by the first two image processing steps were compared to those obtained by 

an expert. Motion symmetry and fraction of mobility indices were systematically computed 

using the automated procedures. Associated sensitivity and specificity values for detecting RP 

were then calculated. To optimize the performances of the system, a mixed CAD system, 

which integrates the automatic steps of image processing and a possible correction of its 

results by a trained operator was developed.  

Laryngeal ultrasound combined with appropriate image processing helped in the diagnosis of 

recurrent nerve paralysis and could be proposed as a first–line method.  
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1. INTRODUCTION  

	  

Thyroid surgery concerns tens of thousands of people every year in France 

(http://stats.atih.sante.fr). It is performed in similar proportions in developed countries. One of 

the major complications of this surgery is recurrent nerve paralysis (RP), which can occur in 

up to 10% of patients (1). Clinical markers are voice dysphonia or swallowing disorders. In 

most cases, the troubles are temporary and disappear within the days following the surgery. 

However this paralysis, especially in case of bilateral paralysis can be serious and generate 

higher morbidity (2). Therefore, an early detection of these troubles is crucial to propose a 

customized and fast care to the patients. Indeed, an early reeducation including speech therapy 

favors the recovery.  

Nasal endoscopy, a minimally invasive procedure, is presently the gold standard method to 

establish RP. This technique can require some local anesthesia and may be hard to bear for 

patients just after surgery. This procedure is thus not systematically used, but it is proposed to 

patients presenting some symptoms of RP after surgery. Furthermore, the nasal endoscopy 

requires some dedicated material and the presence of a trained physician and thus all patients 

cannot beneficiate from such an exam shortly after the surgery. 

Ultrasound has already been proposed to study laryngeal anatomy. Larynx motion was also 

studied using cine loops (3,4). Therefore, to detect recurrent nerve paralysis, we decided to 

use dynamic B-mode ultrasound imaging, which is a fast, widely available, cheap and non-

invasive tool (5). As currently done in nasal endoscopy and as proposed by previous studies in 

ultrasound, the analysis of dynamic acquisitions was first based on the visual assessment of 

the vocal folds mobility. The anatomical description of the observable structures from 

ultrasound acquisitions, namely the true vocal folds, the vestibular folds, the thyroid cartilage 

and the arytenoids was reported in a first paper (5). True vocal folds appear as isoechoic or 



hypoechoic structures, while the thyroid cartilage and arytenoids, on which vocal folds are 

attached, are hyperechoic well defined structures on ultrasound images. Furthermore the 

dynamic analysis during free breathing conditions reveals that the true vocal folds cannot be 

fully tracked in a 2D plane. It was thus proposed to choose the thyroid cartilage and the 

arytenoids as surrogate markers to study the vocal fold motion. Dedicated software was 

subsequently developed to study these landmarks on the dynamic acquisition. Briefly, the 

operator first selects two images in the sequence corresponding to abduction (opening) and 

adduction (closing) of vocal folds, thus showing vocal folds extreme positions during motion. 

Then the operator positions three landmarks: thyroid cartilage (T), and left (L) and right (R) 

arytenoids on each image from which several geometrical indices, including length and area 

measurements are finally computed. On fifty control subjects, these indices were significantly 

larger for abduction than for adduction. These indices were similar when computed for the left 

and right sides, the mid-sagittal plane being the symmetry plane.  

Using these first results, this study proposes to develop and test some automated image 

processing methods to assist the operator in the selection of 1) the abduction and adduction 

images and 2) the landmarks. For that purpose, an automated detection of images 

corresponding to abduction and adduction of vocal folds, and thus to extreme positions of 

vocal folds in the sequence of B-mode images, was proposed. Furthermore a tracking of the 

landmarks using multi-pyramidal refined optical flow approaches was defined. These steps 

were evaluated by comparing results obtained by the automated methods with the selection 

performed by an expert on a large database including fifty control subjects, fifty patients (after 

thyroid surgery) with recurrent paralysis and fifty patients (after thyroid surgery) without 

recurrent paralysis. Finally two quantitative parameters indicating fractions of mobility, and 

motion symmetry were proposed and evaluated.  

 



2. METHODS 

2.1 Database and associated data 

2.1.1 Population 

Fifty control subjects and a hundred patients were included in this database. All selected 

patients had post-surgery voice disorders and thus were examined by nasal endoscopy. A 

paralysis of the recurrent nerve was established for fifty patients. For further classification, 

control subjects and patients without recurrent nerve paralysis were pooled in a first group 

(n=100), constituting the group without paralysis of the recurrent nerve. Patients with 

paralysis of recurrent nerve (n=50) defined the second group.  

 

2.2.2 Ultrasound data acquisition  

Each subject of the database underwent an ultrasound acquisition, using portable 

SonixTouch® from UltraSonix™ (Richmond, Canada) with a 7-14 MHz linear probe. The 

probe was placed over the middle portion of the thyroid cartilage. The operator was instructed 

to position the probe in order to provide an axial view, the horizontal axis being perpendicular 

to the sagittal plane, and showing thyroid and arytenoids cartilages (Figure 1). A B-mode cine 

loop was then recorded during 10 seconds at a frame rate of 30 images per second, while the 

subject breathed normally. During breathing, vocal folds and arytenoids showed successive 

phases of opening and closing.  

2.2.3 Motion analysis 

To quantify motion, a three-steps approach was proposed (5) including: 1) the detection of 

two images corresponding to extreme locations of the vocal folds; 2) the selection and 



tracking of three landmarks; 3) the quantification of motion features from the location of these 

landmarks. 

The expert first selected a pair of images from the cine loop using a dedicated video analysis 

tool; these two images IC (closing phase) and IO (opening phase) corresponded to two extreme 

positions of the vocal folds and arytenoids. Figure 1 shows an example of the selected images. 

Then the expert defined on each image three landmarks (Figure 1): the top of the thyroid 

cartilage (T), since it was a motionless point during the examination which enabled to define 

the two halves of the larynx, and the centers of the left and right arytenoid cartilages (L and 

R) since their apparent motion in the plane could be surrogate markers for studying motion of 

vocal folds.  This procedure was applied to the 150 studies. The expert results were thereafter 

considered as the gold standard results for further image processing steps.   

From the thyroid cartilage, the intersection of the mid-sagittal plane with the axial plane was 

first defined (dashed line in Figure 2), then the intersection ML (MR) of this axis and its 

perpendicular passing through the left (right) arytenoid provides one left (right) triangle 

TLML (TRMR), the areas of which are computed. Being estimated on both IC and IO images, 

four areas were thus defined: LAC, RAC, LAO and RAO. In the example shown in Figure 2, 

areas defined on IC image are obviously smaller than areas defined on IO image. 

 

 

2.2 Automated tracking of landmarks 

Our first objective was to assist the operator in the definition of the landmarks on images IC 

and IO, in order to make this task less tedious. The automatic definition of the landmarks on 

each image appeared to be a very challenging task, not easily reachable due to the variability 

of patterns observed in ultrasound images. Thus we proposed to track the three landmarks (for 



instance defined on the IC Image by the operator) and to automatically report their position on 

the IO image. A first approach consisted in applying different optical flow approaches to 

estimate motion between IO and IC. However our tests showed quite deceiving results (6). 

Thus we opted for an alternate solution consisting in estimating motion between each pair of 

consecutive images and to follow step by step the three landmarks. This solution was not 

initially retained because it was more time consuming and could generate some additional 

errors in the tracking, due to the iterative process. However, the motion estimation between 

two consecutive images can be more successful than between IO and IC, since two consecutive 

images are relatively similar to each other, and displacement amplitudes are reduced and thus 

more easily estimated by optical flow approaches.  

In this work, an iterative optical flow approach based on a robust pyramidal implementation 

(7) of the Lucas-Kanade algorithm (8) was defined for each pair of consecutive images: going 

from IC to IC+1, till IO-1 to IO (assuming that IC was prior to IO). This defined the forward 

approach. A backward method was also tested in the opposite direction of the previous 

forward method: it was based on the same algorithm but it started from IO towards IC. In 

addition, a third strategy (forward, increment 2) was evaluated: the motion was estimated in 

the forward direction, considering every other image from IC to IC+2 and so on till IO.                               

To evaluate these different methods of tracking, the Euclidian distances between the positions 

of the three landmarks estimated after automatic tracking and those defined by the expert 

were computed. 

 

2.3 Definition of quantitative features to test paralysis of recurrent nerve 

Assuming the paralysis of one vocal fold (the contralateral vocal fold moving normally), the 

difference of areas between the left larynx and the right larynx was then expected to be 



different from 0. In order to get a parameter independent of the size of the larynx, this 

difference was scaled by the global area of the larynx, approximated by the sum of the areas 

of the left and right triangles defined in Figure 2. This parameter was called surface ratio 

(SR). As paralysis can occur either on closing or opening positions, it was computed on the 

images IO (SRO) and IC (SRC) and defined by equations (1) and (2):  

 𝑆𝑅𝑂 =    𝐿𝐴!!𝑅𝐴!𝐿𝐴!!𝑅𝐴!
  (1),  

    𝑆𝑅! =    𝐿𝐴!−𝑅𝐴!𝐿𝐴!+𝑅𝐴!
  (2).  

SRO and SRC values were thus expected to be close to 0 (positive or negative) in case of 

symmetrical motion. One of these values, especially SRO, was expected to be higher in case 

of dissymmetry (suspicion of RP). 

Furthermore to quantify the degree of mobility of the left and right vocal folds, the left and 

right fractions of mobility LFM and RFM were defined between the two extreme images IO 

and IC by equations (3) and (4):  

𝐿𝐹𝑀 =    𝐿𝐴!!𝐿𝐴!𝐿𝐴!
  (3), 

𝑅𝐹𝑀 =    𝑅𝐴!!𝑅𝐴!𝑅𝐴!
   (4).  

These fractions were expected to be high for normal cases and to be reduced in case of 

recurrent nerve paralysis. Considering these two measures, the absolute difference between 

left fraction of mobility and right fraction of mobility was defined according to equation (5): 

 𝐷𝐹𝑀 =   𝐿𝐹𝑀–   𝑅𝐹𝑀   (5).   

All these geometrical parameters and more than 30 others which were based on the 

comparison of angles and line segment lengths were systematically tested considering the 

expert measurements. According to areas under Receiver Operating Characteristics (ROC) 



curves based on expert results, which were computed for each parameter in order to select the 

most discriminant ones, the two parameters SRO and DFM were shown to be the most 

powerful to estimate patients with recurrent nerve paralysis (9). From these learning ROC 

curves, two cut-off values, one minimizing the number of misclassified cases and one defined 

such as sensitivity and specificity have similar values, were estimated for each parameter. 

Compared to the first cut-off providing a very high specificity, the second cut-off improves 

the sensitivity. These two cut-off values were used here to estimate the sensitivity and the 

specificity of each automated procedure.  

 

2.4 Automatic detection of abduction and adduction images 

The detection of abduction and adduction images being a tedious task for the operator, 

requiring the careful observation of the cine loop, a second tool for detecting them 

automatically was proposed. Two different approaches for extreme images selection were 

defined and tested. 

The first approach (PCA based method) was inspired from previous works done in our team: a 

method used to detect wall motion abnormalities in echocardiography (10) and a method to a 

posteriori gate  ultrasound dynamic acquisitions according to breathing phases (11,12). The 

estimation was based on a principal component analysis (PCA) of the image sequence, which 

was applied to the entire set of time-intensity curves It(p), these curves being the intensity 

variations observed in a pixel, p, during the 10 seconds acquisition. Using appropriate linear 

combinations of the first two principal components, two time-intensity curves were then 

defined: the most constant curve C1(t) and a second curve C2(t) related to motion, and 

particularly to breathing motion. The time-intensity curve C2(t) was then filtered and stretched 

in order to find its local extreme values. Finally all pairs of extreme images, associating one 

minimal value and the next following maximal value (or one maximal value and the next 



following minimal value) were defined (Figure 3). Using this automatic selection, different 

pairs could thus be tested and several cycles could be analyzed. However resulting parameters 

could vary from one cycle to another for physiological reasons (the motion amplitude could 

vary from one cycle to another) and for image quality reasons. To get rid of these sources of 

variability in this first feasibility study, the image pair the closest to the images IC and IO 

chosen by the expert was selected. 

 

The second alternate approach (triangle area based method) that we tested was directly 

inspired from the previous one and from the tracking of the three landmarks T, L, and R by 

the optical flow approach described in section 2.2. Indeed, the three landmarks defined on the 

image IC were then tracked by the optical flow algorithm image by image, both in the forward 

and backward directions, until reaching the extremities of the image sequence. From this 

tracking, the temporal curve showing the area of the triangle defined by the three landmarks 

could be computed. Then following the procedure described for the C2(t) curve in the 

previous paragraph, all couples of images corresponding to a local minimum and to a local 

maximum of the area were defined. Once again, the pair of images, which was the closest to 

the images IC and IO selected by the expert, was chosen.  

 

3. RESULTS  

	  

3.1 Automatic tracking methods  

For each tracking approach, the mean Euclidian distances and standard deviations (in pixels) 

between the three estimated landmarks and reference landmarks (defined by the expert) were 

calculated on the database. Figure 4 presents the resulting diagrams landmark by landmark. 



These results show that the three tracking approaches have quite similar performances, 

showing higher distance values for the arytenoids (mean between 10.5 and 12.5 pixels) than 

for the top of the thyroid cartilage (mean between 7 and 8.5 pixels). 

Defining a limit distance of ten pixels to validate the tracking procedure, the percentage of 

‘non acceptable’ landmarks was obtained (Figure 5). 

The backward method provided the lowest number of acceptable points: 77% for point T, 

50% and 60% for points L and R. The most performant approach was the forward method 

with the lowest number of points out of the 10 pixels threshold. The forward and ‘forward, 

increment 2’ methods showed close results. 

For each tracking method, sensitivity and specificity of recurrent nerve paralysis associated 

with parameters SRO (Table 1) and DFM (Table 2) were calculated according to the two cut-

off values presented in section 2.3.  

Best results were obtained for the RSO parameter, using the backward approach. Indeed, the 

sensitivity and specificity respectively reached 72% and 92% for the first cut-off value, and 

84% and 73% for the second cut-off value. The forward method provided also satisfying 

results for this RSO parameter. For the DFM parameter, the performances of the method 

showed higher sensitivity and lower specificity values with the backward method than with 

the forward method. 

	  

3.2 Automated selection of abduction and adduction images  

It was difficult to compare the two methods of selection alone and to find an automatic way of 

quantifying it. Thus it was decided to study its impact on the final estimation of sensitivities 

and specificities for the detection of the recurrent nerve paralysis. To avoid asking the expert 



to select the landmarks on each pair of selected images, we decided to use the automated 

tracking procedure, using either the forward or the backward approaches defined in section 

2.2 for defining the landmarks location on the selected images. Tables 3 and 4 showed the 

results obtained for the SRO and DFM parameters. 

These results first proved that for both parameters, the second method of image selection (the 

one based on the temporal variations of triangle TLR area) was more relevant than the first 

method of image selection (the one based on the PCA approach). Indeed, the second method 

always presented both higher sensitivity values and higher specificity values. Moreover, 

comparing these results to those obtained for the follow-up of landmarks by the forward 

optical flow method, sensitivity and specificity values of the second method of image 

selection were close to that of the landmarks tracking method. The PCA based image 

selection method showed lower sensitivity and specificity values. 

 

4. DISCUSSION 

	  

Ultrasound acquisitions of laryngeal tract have recently been proposed as a new non-invasive 

procedure to detect recurrent nerve paralysis (3–5,9). From the dynamic cine-loop, including 

about 300 images, a three-steps procedure was defined including: 1) an appropriate selection 

of two images corresponding to abduction and adduction phases; 2) a selection of three 

landmarks, the top of thyroid cartilage and the left and right arytenoids, on each selected 

image; 3) the computation of some geometrical indices (5). The first two  steps require the 

intervention of an expert. To reduce the tediousness of these steps, the present study proposes 

to define an automated computer-aided diagnosis system. Three strategies for an automatic 



tracking were tested and two methods for selecting the pair of abduction and adduction 

images were proposed. 

The three tracking methods based on a multi-pyramidal optical flow algorithm showed that 

the arytenoids were more difficult to track than the top of the thyroid cartilage (Figures 4 and 

5). These results could be explained by the image contrast variation in the arytenoids during 

the image sequence. Furthermore the motion amplitude is larger for the arytenoids than for the 

thyroid cartilage. It is known that the Lukas-Kanade algorithm used for tracking is less robust 

for large amplitude motion. Thus an alternative solution could be to track landmarks locally 

by a strategy based on a block-matching algorithm, and not globally on the whole field of 

view, as it was done in this study. Furthermore the backward method provides results that 

differ from those obtained by the forward method, which confirms the importance of testing 

the two directions to evaluate a tracking approach based on optical flow. The iterative 

procedure of tracking leads inevitably to an accumulation of errors in estimations, but they 

can be different in the forward and backward directions. Thus future work should investigate 

the automated combination of both approaches. Despite the reduced processing time brought 

by the two by two estimation strategy (about twenty seconds for fifty images on a standard 

workstation), this forward, increment 2 approach, appears less interesting, because its results 

are always worse than results obtained by the one by one forward method. Errors can be very 

important in case of motion with large amplitude due to swallowing or large respiratory 

motion. To avoid such a phenomenon, it should be helpful to exclude images with high 

amplitude motion. Another source of errors in the tracking of landmarks could come from the 

low quality of some B-mode images sequences, which are unavoidable when dealing with a 

large number of data, for which no a priori selection was done. However, despite these 

imperfections, the sensitivity and specificity values that were obtained for the SRO parameter 



were quite high. For these reasons, the best compromise would be to ask the operator to 

systematically draw the three landmarks on IO images. 

Results for the two automated methods for the detection of abduction and adduction images 

indicate that the method based on the variations of the larynx area (represented by the area of 

the triangle defined by the three landmarks) is more relevant than the method based on PCA 

algorithm. The possible reason for explaining such differences is that PCA synthesizes not 

only the breathing motion but also all sources of variation of intensities during the image 

sequence, thus increasing its sensitivity to noise. However, the second method requires an 

initial positioning of the landmarks. Furthermore its robustness was studied only in the 

neighborhood of the initially selected images. Its robustness when selecting other pairs of 

images in the sequence remains to be tested. Thus the decision process concerning the choice 

of either the selection based on PCA or the selection based on the triangle area remains to be 

established.  

Being aware that a fully automatic procedure for landmarks positioning, tracking and extreme 

images selection cannot be 100% effective, a dedicated software component for making the 

diagnosis easier was developed. Briefly it proposes an automatic image selection while 

keeping for the operator the possibility to modify the selection of images. Then the operator is 

invited to position the three landmarks on the IO image. The automatic tracking is then 

executed, offering the operator the possibility to modify the estimated position of the 

landmarks after tracking in case of large errors. Finally motion-based parameters including 

SRO, SRC, LFM and RFM are calculated to suggest the diagnosis: recurrent nerve paralysis or 

absence of paralysis. The resulting interface (Figure 6) has already been tested by final users. 

It now needs to be included in ultrasound devices in order to facilitate the diagnosis task. 

 



	  

5. CONCLUSION  

	  

An innovative procedure based on laryngeal ultrasound imaging and dedicated software 

defining specific image processing steps was proposed in order to detect recurrent nerve 

paralysis. Automatic methods for extreme images selection and landmarks tracking were 

defined and evaluated on a large database including 150 subjects. The performance of the 

automatic procedure was directly expressed in terms of sensitivity and specificity for the 

detection of recurrent nerve paralysis. A combined approach between operator and image 

processing algorithms provided a new platform dedicated to the diagnosis of recurrent nerve 

paralysis. This hybrid system will be evaluated in the next future by end users in terms of 

precision in the diagnosis, inter/intra operator variability, time of analysis, and ergonomics. 

Further developments could allow using this platform as software implemented in ultrasound 

imaging devices for clinical applications. Moreover some additional image processing 

procedures could be developed and tested to improve the automatic part of the system. 
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Captions of figures 

 

Figure 1: Ultrasound images of the laryngeal tract: the two images being the selected images 

IC (image 66/300) and IO (image 123/300) corresponding respectively to adduction and 

abduction phases. The three landmarks - at the top: thyroid cartilage (T), at the bottom: left 

(L) and right (R) arytenoid cartilages defined by the operator on each image are shown as red 

circles. The green circles are the results of the forward tracking of the three points defined on 

IC, using the iterative optical flow approach from IC till IO. 

 

Figure 2: Definition of the geometrical parameters from the three landmarks and the median 

line (shown in white dashes). These elements define the left and the right triangles of interest 

and their areas on images IC and IO. 

 

Figure 3: Example of two temporal curves corresponding to: 1) the breathing motion 

component C2(t) issued from PCA-based procedure (in blue color); 2) the variation of the 

triangle area delimited by the three landmarks (in yellow color). The vertical lines correspond 

to the choice of images IC and IO performed by the expert. 

 

Figure 4: Diagrams showing the mean Euclidian distances, expressed in pixels, (and their 

standard deviations) between the three estimated landmarks T, L and R by forward, backward, 

‘forward, increment 2’ tracking methods and the selected landmarks by the expert. 

 

Figure 5: Diagrams showing the percentage of estimated landmarks positioned at a Euclidian 

distance greater than 10 pixels from the expert positioning. 



 

Figure 6: Interface of the CAD software developed for the project showing the selected pair of 

images: IC (on the left) and IO (on the right). The three landmarks are shown in red color 

before tracking and estimated landmarks after optical flow tracking are shown in yellow 

color.  

 

 

	  

  



Titles of Tables 

 

Table 1: Sensitivity and specificity for detecting recurrent nerve paralysis obtained according 

to the different automatic tracking approaches and using the surface ratio on opening images 

(SRO) parameter. 

Table 2: Sensitivity and specificity for detecting recurrent nerve paralysis obtained according 

to the different automatic tracking approaches and using the difference of fraction of mobility 

(DFM) parameter. 

Table 3: Sensitivity and specificity for detecting recurrent nerve paralysis obtained for the two 

methods of image selection that were tested (the one based on the PCA, and the one based on 

the temporal curve showing the area of the triangle constituted by the three landmarks), using 

the surface ratio on opening images (SRO) parameter. 

Table 4: Sensitivity and specificity for detecting recurrent nerve paralysis obtained for the two 

methods of image selection that were tested (the one based on the PCA, and the one based on 

the temporal curve showing the area of the triangle constituted by the three landmarks), using 

the difference of fraction of mobility (DFM) parameter. 

	  

	  

	  

	  

	  

  



Table 1 

Tracking	  method	   Cut-‐off	  value	  	   Sensitivity	  (%)	   Specificity	  (%)	  

forward	   	  

0.1257	  

66	   77	  

backward	   72	   92	  

forward,	  increment	  2	   66	   73	  

forward	   	  

0.077	  

80	   59	  

backward	   84	   73	  

forward,	  increment	  2	   76	   60	  

	  

	  

	   	  



	  

Table 2 

Tracking	  method	   Cut-‐off	  value	   Sensitivity	  (%)	   Specificity	  (%)	  

forward	   	  

0.2059	  

56	   82	  

backward	   61	   74	  

forward,	  increment	  2	   54	   80	  

forward	   	  

0.112	  

74	   66	  

backward	   80	   55	  

forward,	  increment	  2	   72	   49	  

	  

	  

	  

  



Table 3 

Images	  selection	  	  

method	  

Cut-‐off	  value	   Sensitivity	  (%)	   Specificity	  (%)	  

PCA	  based	  	   	  

0.1257	  

58	   68	  

Triangle	  area	  based	   62	   76	  

PCA	  based	   	  

0.077	  

70	   42	  

Triangle	  area	  based	   76	   60	  

	  

	  

  



Table 4 

Images	  selection	  	  

method	  

Cut-‐off	  value	   Sensitivity	  (%)	   Specificity	  (%)	  

	  PCA	  based	   	  

0.2059	  

50	   75	  

Triangle	  area	  based	   58	   81	  

PCA	  based	   	  

0.112	  

76	   52	  

Triangle	  area	  based	   74	   59	  

	  

	  

	  

	   	  



	  

Figure 1 

	  	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



	  

Figure 2 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



	  

Figure 3 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



Figure 4 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



	  

	  

	  

Figure 5 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



Figure 6 

	  

	  


