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Abstract 

Endovascular repair of abdominal aortic aneurysms faces some adverse outcomes, such as kinks or 

endoleaks related to incomplete stent apposition, which are difficult to predict and which restrain its use 

although it is less invasive than open surgery. Finite element simulations could help to predict and 

anticipate possible complications biomechanically induced, thus enhancing practitioners’ stent-graft 

sizing and surgery planning, and giving indications on patient eligibility to endovascular repair. The 

purpose of this work is therefore to develop a new numerical methodology to predict stent-graft final 

deployed shapes after surgery. The simulation process was applied on three clinical cases, using 

preoperative scans to generate patient-specific vessel models. The marketed devices deployed during 

the surgery, consisting of a main body and one or more iliac limbs or extensions, were modeled and their 

deployment inside the corresponding patient aneurysm was simulated. The numerical results were 

compared to the actual deployed geometry of the stent-grafts after surgery that was extracted from 

postoperative scans.  We observed relevant matching between simulated and actual deployed stent-

graft geometries, especially for proximal and distal stents outside the aneurysm sac which are 

particularly important for practitioners. Stent locations along the vessel centerlines in the three 

simulations were always within a few millimeters to actual stents locations. This good agreement 

between numerical results and clinical cases makes finite element simulation very promising for 

preoperative planning of endovascular repair. 

 

Introduction 

Rupture of abdominal aortic aneurysm (AAA) is the primary cause of death of over 10,000 people in the 

United States each year (Kochanek et al., 2011). Prevention of AAA rupture is achieved either by open 

surgery or endovascular repair (EVAR). EVAR is associated with reduced postoperative mortality and 

morbidity compared to conventional surgery. However, the incidence of aneurysm related secondary 

procedures remains higher following EVAR than after open repair (Greenhalgh et al., 2010). 



Endoleaks and stent-graft (SG) limb thrombosis are among the most frequent causes of secondary 

interventions following EVAR. Endoleaks may be associated with incomplete SG apposition on the 

arterial wall (Albertini et al., 2001, 2005). Graft kinking has been proved to favor stenosis and thrombosis 

(Carroccio et al., 2002; Cochennec et al., 2007). Highly tortuous and stiff calcified arteries are commonly 

associated to difficult outcomes (Albertini et al., 2006; Sternbergh et al., 2002).Therefore, mechanical 

behaviors of both SG and arterial wall appear to play an important role in the pathophysiology of these 

complications. 

Within this context, finite-element analysis (FEA) could help predicting SG positioning inside patient-

specific AAA, thus enabling surgeons to anticipate complications. Several teams have started to 

investigate this promising research field. Some of them focused on EVAR long term outcomes through 

fluid dynamics (Figueroa et al., 2010; Georgakarakos et al., 2014; Howell et al., 2007) and fluid-structure 

interactions to estimate the blood mechanical action onto SGs (Layman et al., 2010; Li and Kleinstreuer, 

2006; Molony et al., 2010; Prasad et al., 2013). Despite their major interest, these studies present the 

following limitations: (i) they do not take into account SG deployment and (ii) most of them use 

oversimplified SG models, with a single equivalent homogenous mechanical behavior. Other groups 

investigated stent mechanics and their deployment in arteries (Auricchio et al., 2011; Holzapfel et al., 

2005; Mortier et al., 2010). Following these pioneering studies, a number of researchers (De Bock et al., 

2013; Kleinstreuer et al., 2008) have used FEA to model stent-graft structures, with both stents and graft 

mechanical behaviors. Our group recently achieved similar simulations (Demanget et al., 2013, 2012a) on 

several marketed SG limbs, which were validated against in-vitro bending tests (Demanget et al., 2012b). 

A step further has consisted in simulating SG deployment in aneurysm models. We developed 

simulations of SG deployment in idealized iliac aneurysm models (Perrin et al., 2015). De Bock et al. 

(2012) performed a SG deployment inside a silicone model and compared simulated and in-vitro SG 

positions. Auricchio et al. (2013) simulated the deployment of a custom-made tube aortic SG inside the 



corresponding patient-specific aneurysm model. Each of the above mentioned studies had limitations. 

The first one did not model patient-specific aneurysms and the second did not validate the simulation 

against in-vivo data. The third study simulated a tubular custom-made SG, much simpler than the 

bifurcated manufactured SGs usually used to treat AAAs. . 

 The objective of the present study was to develop a FE methodology to simulate the deployment of 

marketed bifurcated SGs in patient-specific aneurysm models. In order to reduce computational costs, 

an original morphing technique was developed to simulate SG deployment. 

Methods 

Clinical summary 

Three patients were included in this study after informed consent and approval from the Institutional 

Review Board. Patients, SGs and aorto-iliac characteristics are reported in Table 1. The devices were 

marketed by Medtronic (Santa Rosa, CA, USA) except for one right limb in clinical case #2 made by Cook 

Medical (Bloomington, Indiana, USA). Pre-operative and one-month post-operative computed 

tomography angiography (CTA) scans were available for all patients. 

Vessel geometries and constitutive modeling 

Surgery oriented Endosize® software (Therenva, France) was used to extract aortic and iliac vessel 

centerlines and vascular lumen contours from pre-operative scans (Kaladji et al., 2013). Centerlines of 

the arteries were constituted of a set of points, spaced by 5 mm to obtain a smooth centerline 

interpolation, onto which were centered B-splines describing the vascular lumen contour. Each B-spline 

had 10 control points on the lumen surface, in each plane orthogonal to the centerline. The continuous 

geometry of lumen surface was generated by surface interpolation driven by the B-splines in ANSYS 

DesignModeler software (ANSYS, Inc., Canonsburg, PA). The arterial lumen surface was then meshed 



with 3-node linear shell elements (1.5 mm mean edge length) with 1.5 mm and 1.0 mm thicknesses for 

aortic and iliac surfaces, respectively. 3D pre-operative scans (A) and corresponding triangular meshes 

(B) are shown in Fig.1. 

Assuming that SG deployment induced small strains within the arterial wall, the latter was modeled as an 

orthotropic linear elastic material. In-plane mechanical parameters were computed by linearizing, 

throughout the physiological range of pressures, Holzapfel-Gasser-Ogden anisotropic hyperelastic model 

(Gasser et al., 2006), with parameter values obtained for above 61 year-old patient abdominal aortas by 

Haskett et al. (2010). For that purpose,  a hyperelastic pipe (20 mm diameter, 1.5 mm thickness, 100 mm 

length) was subjected to in-vivo loading conditions (100 mmHg internal pressure and 10% longitudinal 

stretch (Horný et al., 2013)). Then, the tangent stiffness matrix around these in-vivo conditions was 

derived by subjecting the pipe to different loading increments: pressure (5 mmHg), twist (2°) or 

longitudinal displacements (0.2 mm). The longitudinal, circumferential and shear elastic moduli, along 

with the Poisson ratio were obtained from the results of these simulations. The same value as in-plane 

shear modulus was chosen for the transverse shear moduli. The parameters of the hyperelastic model 

and the linearized elastic moduli are reported in Table 2. 

Stent-graft modeling 

Digitized geometries of SG main bodies and limbs were provided by the manufacturer, except the Cook 

Medical limb whose model had been validated in Demanget et al. (2012b), the dimensions of which were 

scaled to the current clinical case. Stents were meshed with linear beam elements (0.075 mm mean 

length). The superelastic behavior of Nitinol stents was modeled with Auricchio’s model (Auricchio and 

Taylor, 1997) and implemented in a subroutine included in FEA software Abaqus (Simulia, Dassault 

Systems, Providence, RI, USA). The constitutive parameters of Nitinol, in the range of literature values, 

were provided by the manufacturer. Grafts were meshed with linear 4-node shell elements (0.4 mm 



mean edge length). Polyester fabric was modeled as an orthotropic elastic material. In-plane and 

bending stiffness characterized in a previous study of our group (Demanget et al., 2012a) were used. 

During SG manufacturing process, expanded stents diameters are oversized compared to graft 

diameters. For Medtronic components, a preliminary FEA was performed to tie the oversized stents to 

the graft. For the Cook limb, Z-stents were not oversized and modeled according to Demanget et al. 

(2012b).. The resulting pre-stressed SG models are depicted in Fig.1C. 

Simulation methodology 

A major challenge of simulating SG deployment in patient-specific models of aneurysm is to find 

appropriate boundary conditions for SG introduction. Our methodology, although different from the 

actual surgical procedure, has the potential to be used for any SG model and any aneurysm model. Also, 

it avoids simulating the full crimping and progressive deployment of the SG which are time expensive 

and may lead to numerical instabilities. A detailed description of the four steps of our simulation, which 

are described hereafter, is provided in Appendix A. 

The main body, the iliac limbs and extensions were first compressed radially (slight crimping stage) and 

assembled (Fig.2A). Then, the assembled SG was inserted inside a virtual tubular shell (Fig.2B). From this 

configuration, proper displacements were prescribed onto the nodes of the virtual shell to morph its 

geometry onto the pre-operative geometry of the patient’s aneurysm while prescribing contact to 

maintain the SG inside the shell. Note that, during this step, the shell did not present any mechanical 

behavior and only acted as a geometrical constraint. At the end of this step, the deployment of the SG 

inside the pre-operative geometry of the AAA was simulated (Fig.2C). Finally, the shell elements were 

ascribed the linearized AAA mechanical properties and all the boundary conditions previously assigned 

onto the AAA were released, for the SG to recoil and deform the vascular lumen until reaching static 

mechanical equilibrium (Fig.2D). Only proximal and distal ends of the vessels remained clamped. 



All simulations were carried out with the explicit FE solver of Abaqus v6.12 software. Time increments 

(adjusted via mass scaling) and time steps (Table 3) were chosen to obtain fast results while keeping the 

ratio of kinematic and internal energies under 10% to avoid spurious dynamic effects, as shown in Fig.3. 

The FE simulations were run on 12 CPUs computers, 2.66GHz, 24 GB RAM. 

Contacts were modeled using the general penalty algorithm implemented in Abaqus, with standard 

Coulomb friction law. The friction coefficient was set to 0.4, i.e. in the range of  literature values (Vad et 

al., 2010). 

Model validation methodology 

Post-operative scan registration and stent segmentation 

To validate the simulations, post-operative scans following EVAR procedures were used to quantify the 

position error of the simulated SGs. The voxel sizes of the three patient scans were respectively 

0.85x0.85x0.625mm
3
, 0.76x0.76x0.7mm

3
 and 0.85x0.85x0.7mm

3
. Firstly, rigid image registration was 

used to align post-operative and pre-operative scans in the same coordinate system. Ten anatomical 

landmarks were picked on iliac bones, vertebras and vessel calcifications far from the surgical area, on 

each set of pre-operative and post-operative CTAs. A Matlab® function based on the iterative closest 

point method was used for the rigid registration. After this procedure, the mean distance between 

registered pre-operative points and post-operative points was 2.0 ± 1.2 mm. 

Therefrom, stent centerlines were segmented by manually picking the center of stent cross-sections on 

each slice of the post-operative scans (Fig.4A). Stents located in overlap regions or in areas where vessels 

were highly calcified could not be properly segmented and were not considered in the validation 

process. 



Cylinder fitting on stents 

In the three registered simulation results and post-operative CTAs, a cylinder was defined for each stent 

using a Matlab® routine, so that the distance from stent points to the cylinder surface was minimal. For 

example, Fig.4B shows cylinders fitted on case #3 post-operative stents. In order to gauge the relevance 

of the simulations, radius and cylinder center position were compared between registered simulations 

and post-operative scans. For each simulated stent, diameter error eD was estimated and normalized by 

the actual deployed stent diameter. The position error of stents center was split into a longitudinal 

distance error ecl along the arterial centerline and a transverse distance error et in the plan normal to the 

centerline. 

Results 

Qualitative assessment 

The simulation results for the three clinical cases are presented in Fig.5A. The superimposition of 

simulated and real stents, shown in Fig.5B, gives a visual assessment of the results. 

In the first clinical case, simulated and post-operative stent locations are nearly identical except for the 

distal stents of the right iliac limb. These stents and the two stents inside the left iliac aneurysm were not 

fully deployed; they are smaller in our simulation. 

In the second case, simulated and actual stents are well superimposed at the proximal and distal SG 

ends. However, 75 degrees longitudinal axial rotation of the main aortic body is not reproduced in the 

simulation.  

In the third case, simulated iliac limbs are shorter and distal stents are transversally shifted, while good 

agreement of aortic body stents position can be observed. 



It is also worth mentioning the ability of the simulation to reproduce SG kinks in a realistic manner, as 

highlighted by the black arrow present in the third case in Fig.5B.  

Quantitative comparison 

Values of previously defined errors are plotted in Fig.6. Averaged error values for all stents are reported 

in Table4. 

Case #1 presents almost only small values of ecl (mean value is 0.2 ± 1.6 mm). Stents located in the 

aneurysm sac and at the distal end of the right limb, have the worst position along the centerline 

(maximum ecl value is 2.9 mm). The values of et are rather small and uniformly distributed on all stents 

(mean value is 2.7 ± 2.2 mm), the maximum transverse position error being in the aneurysm sac. 

Diameter agreement between simulated and real stents is best at the proximal part of the SG, while 

distal stents have a higher diameter error eD, with a maximum error in the left iliac aneurysm (-35.3%). 

In case #2, the distal and proximal stents are well positioned longitudinally (less than 2 mm error) 

whereas the stents inside the aneurysm sac have the worst longitudinal position of all cases (6.5 mm 

maximum error). The same observation can be made for the transverse error; et is small at SG ends and 

presents a maximum inside the aneurysm sac (et rises up to 14.1 mm in this area). As for case #1, most of 

the simulated stents have the same diameter as the actual stents (eD ranges between -15 and 0%) and 

only one distal stent has a rather large diameter error (-35.6%). 

In case #3, ecl is between -2.5 and 2.5 mm (mean ecl value is -1.3 ± 2.6 mm), except for the two most 

distal stents of the main body and the most distal stent of the iliac limb (where ecl maximum is 5.2 mm). 

The transverse error is lower than in the other cases (2.3 ± 1.3 mm) and reaches 4.9 mm for distal stents. 

Mean diameter error is -4.9 ± 7.5%, with one single stent presenting a higher eD value (-23.4%) in the 

aneurysm sac. 



Computation times are presented in Table 3. 

Discussion 

The present study reports a novel methodology to predict deployment of SGs in patient-specific 

aneurysm geometries. To our knowledge, this is the first time that several marketed SGs, with all their 

components, are numerically deployed inside patient-specific AAA models and that the results are 

validated against post-operative scans. Another original point of this work is the very limited manual 

intervention on the patient-specific part, thanks to a mesh morphing technique: the final steps of the 

simulation involving patient-specific data could be automated with previous SG crimping simulation, a 

pre-operative scan and few other parameters (SG diameters, proximal stent landing position, overlap 

lengths) as only inputs.  

We achieved a qualitative comparison by superimposing simulated and segmented actual stents 

geometries (Fig.5). In general, this comparison was satisfactory for all cases. Most of simulated stents 

were at the same location as actual stents. We could observe a slight difference in case #1 where right 

limb curvature and stent diameter were not exactly the same near the iliac artery bifurcation. This can 

be explained by incomplete stent expansion in this area. Right iliac arterial wall was not deformed 

enough by stent expansion and this resulted in a medial deployment of the limb, near the left iliac artery. 

In case #2, main discrepancies were in the aneurysm sac, while position of stents at SG ends was well 

predicted. The initial rotation of the prosthesis around its longitudinal axis was not implemented in our 

simulations. This may explain the large errors (14.1 mm maximum et) at the main body stumps and 

proximal limb extremities. Case #3 is the simulation which showed the best agreement with the post-

operative CT scan. Only marginal differences could be noted between simulated and actual SG shapes 

(especially the two distal stents). 



Quantitative results were extracted to confirm the qualitative analysis. Fitting cylinders onto simulated 

and actual stents allowed us to compare stents center position along centerline’s tangent and transverse 

directions, as well as stents diameter (Fig.6 and Table 4). 

In all cases, longitudinal error was less than 2.5 mm for 75% of stents. In cases #1 and #3, maximum 

longitudinal errors were 2.9 and 5.2 mm, respectively. These errors seem to be due to the fact that 

arteries were not deformed and straightened enough by the SG. In case #2, stents with the larger error 

values were all located in the aneurysm sac. This was partly explained by the axial rotation of the main 

body which was not implemented in the simulation. Another explanation was the lack of mechanical 

constraints around the SG in the aneurysm sac, particularly the absence of intraluminal thrombus (ILT) 

modeling. Finally, longitudinal error was reasonable in the perspective of clinical applications (i.e. less 

than 5 mm). Moreover, it is important to bear in mind that the final error is inherent to the simulation 

itself but also to pre and post-operative scan registration, stent segmentation and cylinder fitting. 

The remarks are quite similar when looking at centerline transverse errors. Mean et value was small in 

case #1 as well as standard deviation (2.7 ± 2.2 mm). High et values were seen only in the right iliac limb. 

Stents at SG ends of case #2 were well positioned radially whereas the actual deployment rotation of the 

main body induced higher et values in the aneurysm sac. In case #3, et confirmed the good agreement of 

simulation and post-operative scan. 

In the three simulations, there was good diameter agreement between simulated and real stents. 

However, simulations seemed to slightly underestimate stent diameters as mean eD values were all 

negative (-14.8% to -4.9%). Slightly overestimated AAA material properties may explain such error. In 

case #1, two stents were not fully deployed inside the left iliac aneurysm, as four distal stents of the right 

iliac limb. The effect of blood pressure (included within AAA mechanical behavior) may be one reason for 



the lack of stent expansion in aneurysm sacs. Local diameter underestimations (as for the right distal 

stent in case #2) may be related to the fact that SG balloon dilatation was not simulated. 

SG longitudinal positioning was well predicted in our simulations. Implementation of this type of 

simulation in the pre-operative sizing process could help reducing inter-observer variability and increase 

accuracy of SG design, particularly in complex aortic aneurysms (Banno et al., 2014). Furthermore, 

assessment of SG kinks and stent apposition defects could assist in the prediction of limb thrombosis or 

endoleaks. 

Limitations 

Arterial walls were modeled with constant thickness and mechanical behavior linearized around in-vivo 

loading conditions. This assumption was validated by the good agreement between simulations and 

post-operative scans. Nevertheless, our simulations could benefit from more sophisticated modeling, 

including thrombus (Riveros et al., 2015; Toungara and Geindreau, 2013) and calcifications. This could 

enhance accuracy of SG position in the aneurysm sac. Furthermore, large regional datasets gathered by 

other research teams (Roccabianca et al., 2014), statistical models (Vande Geest et al., 2006) or novel 

image processing techniques (Franquet et al., 2013) could enhance arterial wall modeling, with local 

patient-specific variations. 

During simulations, we imposed as only boundary conditions that aortic and iliac extremities were 

motionless.  Further developments could increase biomechanical realism by assigning elastic connectors 

at the ostias of internal iliac arteries or preventing any posterior displacement near the spine. Blood 

pressure modeling could also be improved. Fluid-structure interaction analysis would be an appropriate 

tool to impose pressure loads on both arterial and SG surfaces in contact with the blood. It would also 



allow to simulate blood flow following SG deployment (Figueroa et al., 2010) and therefore potential 

endoleaks.  

Finally, we did not intend to extensively reproduce all steps of the EVAR procedure in our simulation. Our 

goal was rather to predict final SG position with reduced computational costs. The obtained level of 

accuracy was acceptable from a clinical perspective. However, accuracy of SG position may be further 

increased by implementing intraoperative steps in the simulation, such as arterial deformation by stiff 

guidewire and introducer sheath, as well as SG ballooning. Pioneering work on aorto-iliac by stiff 

guidewire has been recently published by Kaladji et al. (2013). 

Conclusion 

EVAR is a complex surgery which requires cautious pre-operative planning, from patient selection to 

stent-graft sizing, in order to prevent post-operative complications and secondary interventions. Within 

this context, numerical simulations associating patient-specific data and stent-graft modeling could 

provide information to choose the best-suited device in each case and anticipate complications. Towards 

this objective, we have proposed a novel computational methodology to predict the deployment of 

marketed stent-grafts inside patient-specific aneurysms. This strategy was validated on three clinical 

cases and numerical results showed good agreement with actual post-operative scans. These results 

emphasize the potential of numerical simulations to improve pre-operative planning of EVAR. 
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Fig 1: Pre-operative scans (A), corresponding arterial wall meshes (B) and pre-stressed models of the 

various SG components used during EVAR (C) for the three clinical cases 

Fig 2: Consecutive steps involving finite-element analysis: Main body and limbs crimping and relative 

positioning (A); SG insertion and positioning in the tubular shape (B); Mesh morphing from tubular shape 

to actual pre-operative geometry (C); Mechanical equilibrium between SG and arteries (D) 

Fig 3: Representative evolution of the ratio of the kinetic energy divided by the total energy along the 

deployment simulation, for case #1. 1: First contact between SG and morphed AAA. 2: morphing step. 3: 

Beginning of the mechanical equilibrium simulation step. 

Fig 4: Stents segmentation on the post-operative scan (A) and cylinder fitting (red) on these segmented 

stents (black) (B) 

Fig 5: Simulation results (A) and qualitative comparison of the geometry of simulated (red) and actual 

(white) deployed SGs (B) for the three clinical cases 

Fig 6: Stent by stent errors for the three clinical cases: longitudinal position errors (ecl) along the vessel 

centerline (A), transverse position errors (et) perpendicularly to the centerline (B) and relative diameter 

errors (eD)  (C). Each square is one stent; columns are representing different SG components. The error 

for each stent is coded by the color of the square. White squares represent stents which were not 

included in the statistics due to impossible segmentation on the post-operative scan. Crossed squares 

were not included in diameter statistics due to their elliptic shape. 

Table 1: Clinical summary of the three EVAR procedures 

Table 2: Parameters of hyperelastic Holzapfel-Gasser-Ogden model used for linearization and in-plane 

parameters of linearized orthotropic model 

Table 3: Time parameters of all steps involving FEA and corresponding computation times, for the three 

clinical cases. Time step is the length of the step prescribed to Abaqus. Time increment is the targeted 

increment, achieved using mass scaling. CPU time reflects the time a single processor would require 

computing the simulation. Real time reflects the real time required computing the simulation on our 12 

processors setup.  

Table 4: Mean, standard and maximum errors over all stents of the SG for each clinical case. The two 

crossed squares of Fig 6 were not included in diameter statistics due to their elliptic shape. 
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 Case #1 Case #2 Case #3 

Age (y) 70 58 78 

Sex Male Male Male 

Stent-graft: 

 Main body 

 Right limb 

 Left limb 

 Left extension 

 

ENBF-28-13-C-145-EE 

ENLW-16-20-C-95-EE 

ENLW-16-28-C-80-EE 

None 

 

ENBF-28-13-C-145-EE 

ZSLE-13-56-ZT 

ENLM-16-13-C-95-EE 

ENEW-13-13-C-80-EE 

 

ENBF-28-20-C-170-EE 

ENLW-16-24-C-95-EE 

None 

None 

Aorto-iliac anatomy and 

SG deployment features 

Left and right iliac 

aneurysms 

 

 

Main body rotated by 

75° around the 

longitudinal axis 

 

 

60° angulated AAA neck  

 

 

Aneurysm sac thrombus Length: 60 mm 

Maximum thickness: 20 

mm 

Length: 100 mm 

Maximum thickness: 20 

mm 

None 

 

Table 1



Parameters and values of hyperelastic Holzapfel-Gasser-Ogden model: 

c10 (MPa) Stress-like material parameter 100.9 

k1 (GPa) Stress material parameter 4.07 

k2 Dimensionless parameter 165.55 

κ Level of dispersion parameter 0.16 

θ (°) Fiber orientation angle 48.4 

K (GPa) Bulk modulus 75.5 

In-plane parameters and values of linearized orthotropic linear elastic model: 

Ez (MPa) Elastic modulus along vessel centerline 3.58 

Eθ (MPa) Elastic modulus along vessel circumferential direction 1.11 

νθz Arterial wall in-plane minor Poisson ratio 0.44 

Gzθ (MPa) Arterial wall in-plane shear modulus 4.0 

 

Table 2



 Simulation parameters Computation times 

Time step (s) Time increment (s) CPU time (h) Real time (h) 

Case #1      

 SG  assembling 

and crimping 

0.04 5E-8 199:00 16:35 

 Deployment in 

the preoperative 

geometry 

0.03 3E-8 147:00 12:15 

 Mechanical 

equilibrium 

0.15 3E-8 845:00 70:25 

Case #2      

 SG  assembling 

and crimping 

0.05 4E-8 282:00 23:30 

 Deployment in 

the preoperative 

geometry 

0.07 4E-8 266:00 22:10 

 Mechanical 

equilibrium 

0.15 4E-8 534:00 44:30 

Case #3      

 SG  assembling 

and crimping 

0.017 5E-8 84:00 7:00 

 Deployment in 

the preoperative 

geometry 

0.03 5E-8 113:00 9:25 

 Mechanical 

equilibrium 

0.15 5E-8 474:00 39:20 

 

Table 3



 

 Case #1 Case #2 Case #3 

Stents position error along the 

centerline (mm): 

 Mean ± standard deviation 

 Maximum 

 

 

0.2 ± 1.6 

2.9 

 

 

1.1 ± 2.6 

6.5 

 

 

-1.3 ± 2.6 

5.2 

Stents position error perpendicularly 

to the centerline (mm): 

 Mean ± standard deviation 

 Maximum 

 

 

2.7 ± 2.2 

7.7 

 

 

5.4 ± 3.5 

14.1 

 

 

2.3 ± 1.3 

4.9 

Stents diameter relative error (%): 

 Mean ± standard deviation 

 Maximum 

 

-14.8 ± 12.5 

-35.3 

 

-10.2 ± 7.8 

-35.6 

 

-4.9 ± 7.5 

-23.4 

 

Table 4


