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Abstract  

The polymerase inhibitor favipiravir is a candidate for the treatment of Ebola 

virus disease. Here, we designed a mathematical model to characterize the viral 

dynamics in 20 mice experimentally infected with Ebola virus, which were either 

left untreated or treated with favipiravir at 6 or 8 days post infection. This 

approach provided estimates of kinetic parameters of Ebola virus reproduction, 

such as the half-life of productively infected cells, of about 6 hours, and the basic 

reproductive number which indicates that virus produced by a single infected cell 

productively infects about 9 new cells. Furthermore, the model predicted that 

favipiravir efficiently blocks viral production, reaching an antiviral effectiveness 

of 95% and 99.6% at 2 and 6 days after initiation of treatment, respectively. The 

model could be particularly helpful to guide future studies evaluating favipiravir 

in larger animals. 

 

1. Introduction  

Ebola virus (EBOV) is among the deadliest pathogens currently known, leading to 

multiple organ failure and death in 40-90% of cases (Feldmann and Geisbert, 2011). Despite 

substantial and rapid progress (Geisbert, 2015), vaccines remain in early phases of clinical 

trials and potent antiviral drugs are urgently needed. Last year, two studies published in 

Antiviral Research showed that favipiravir, a pyrazinecarboxamide derivative approved for 

complicated influenza in Japan, had a large antiviral effectiveness against EBOV both in vitro 

and in vivo in infected mice (Oestereich et al., 2014; Smither et al., 2014). Moreover 

favipiravir can be given orally and has shown a good safety profile in over 2,000 patients 
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worldwide, leading the WHO to consider it as a potential antiviral candidate against EBOV. 

Indeed favipiravir, along with few other molecules, is currently tested in human clinical trials 

(Sissoko et al., 2015).  

In order to support the development of new drugs, it is crucial to have a better 

quantitative understanding of EBOV dynamics in vivo. This can be achieved using 

mathematical models based on ordinary differential equations which characterize the non-

linear interactions between the pathogen, the host and the drug. This type of approach has 

provided many insights in the pathogenesis of several viruses, in particular influenza, HCV 

and HIV (Baccam et al., 2006; Neumann et al., 1998; Perelson, 2002). Further, by 

characterizing the effect of treatment on the viral load, these models have allowed to better 

understand the mechanisms of action and the antiviral effect of drugs in vivo (Perelson and 

Guedj, 2015). 

Here we applied this approach to characterize the viral kinetics in mice treated with 

favipiravir or left untreated, using data previously published (Oestereich et al., 2014). Further, 

drug concentration data obtained in uninfected mice from different experiments were used to 

construct a pharmacokinetic model for favipiravir. By using a model combining both the viral 

kinetic and the pharmacokinetic data, we could provide an estimation of the infected cell half-

life, the basic reproductive number of EBOV and the effectiveness of favipiravir in reducing 

viral production in vivo.  

 

2. Material and methods 

2.1 Data 

2.1.1 Pharmacokinetic  

The pharmacokinetic data were provided by Toyama Chemical (Tokyo, Japan) and 

came from two separate studies of N=54 Crlj:CD1 female mice in total treated with 

favipiravir 150 mg/kg twice a day by oral route for 14 days. Nine sampling times were 

available on day 0 and on day 14. For each sampling time, three mice were sampled and then 

sacrificed. Plasma concentrations were quantified using high performance liquid 

chromatography, with a limit of quantitation of 0.1 µg/mL. 

2.1.2 Viral kinetic 

We reanalyzed viral load data from twenty C57BL/6 female mice lacking the type I 

interferon receptor that were infected with Zaire EBOV Mayinga 1976 strain (Oestereich et 

al., 2014). In brief, mice were either left untreated (n=10) or were treated with oral favipiravir 

150 mg/kg BID for 7 days, starting at 6 (n=5) or 8 (n=5) days post infection (dpi), 

respectively. All mice treated at 6 dpi survived while all mice left untreated or treated 8 dpi 
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died within 15 dpi (Figure 1). Viral load was quantified in immunofocus assay as focus 

forming units (FFU) with a limit of quantitation of 1.5 log10 FFU/mL. 

2.2 Pharmacokinetic model of favipiravir  

Favipiravir plasma concentration over time, C(t), was characterized by a standard one 

compartment model with first-order absorption and elimination. In that model total plasma 

concentration, C(t), is given by: 

 𝐶(𝑡) =
𝐷

𝑉𝐷

𝑘𝑎

𝑘𝑎−𝑘𝑒
(𝑒−𝑘𝑒𝑡 − 𝑒−𝑘𝑎𝑡)                             (Eq. 1) 

where D is the dose, VD is the apparent volume of distribution, ka is the absorption rate 

and ke is the elimination rate. Further a protein-binging rate, fu, of 0.90 (data from the 

manufacturer) was used, and therefore, the active free concentration of favipiravir was 

defined to 𝐶𝑢(𝑡) = 𝐶(𝑡) × 𝑓𝑢 where C(t) is given by (Eq. 1). 

2.3 Viral kinetic model for EBOV  

The change in viral load was characterized using a standard viral dynamic model during 

acute infection (Baccam et al., 2006): 

𝑑𝑇

𝑑𝑡
= −𝛽𝑉𝑇 

 

               (Eq. 2) 

 

𝑑𝐼1

𝑑𝑡
= 𝛽𝑉𝑇 −  𝑘𝐼1 

𝑑𝐼2

𝑑𝑡
= 𝑘𝐼1 −  𝛿𝐼2 

𝑑𝑉

𝑑𝑡
= 𝑝𝐼2 − 𝑐𝑉 

where T, I1, I2 and V denote uninfected target cells, non-productively infected cells, 

productively infected cells and free virions, respectively (Figure 2). These four compartments 

are parameterized as concentrations related to plasma volume. Free virions infect target cells 

at rate β, and are cleared at rate c, i.e. ln(2)/c is plasma virion half-life. After infection, cells 

do not immediately produce virus and rather enter into an eclipse phase of half-life equal to 

ln(2)/k. Lastly productively infected cells produce p virions per day and are lost with rate δ, 

i.e. ln(2)/δ is the infected cell half-life. Therefore, the average total infected cell lifetime, tinf, 

is given by 1/k + 1/δ. 

The model predicts first an exponential growth of the viremia as long as there is a large 

number of available target cells for infection (up-slope). At the end of this first phase, the 
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target cells are largely depleted, the number of new infections declines and therefore the loss 

of infected cells can no longer be compensated by new cell infections. Consequently, the 

number of infected cells, and hence the total viral production, rapidly declines (down-slope). 

Mathematical analysis shows that this decline is exponential with a rate proportional to the 

infected cell half-life. One can derive from this model the basic reproductive number, R0, 

representing how many new productively infected cells would be generated by one infected 

cell, and is given by 𝑅0 =
𝑝𝛽𝑇0

𝛿𝑐
. The model was reparametrized as a function of R0, such as 

β=1/R0, and we constrained it to be larger than 1 to ensure productive infection. More details 

on viral dynamics models can be found in  (Canini and Perelson, 2014; Smith and Perelson, 

2011). 

2.4 Antiviral effect of favipiravir 

Favipiravir is metabolized by host enzymes into a nucleotide analog that selectively 

inhibits the viral RNA dependent RNA polymerase or causes lethal mutagenesis upon 

incorporation into the virus RNA (Furuta et al., 2005). This mechanism of action can be 

incorporated in the model by assuming that favipiravir reduces the viral production rate, noted 

p in Equation 2. If we let ε the antiviral effectiveness of favipiravir in blocking production, 

i.e., ε=1 corresponds to 100% effect and ε=0 corresponds to no effect, the viral production 

during treatment can be written as p(1-ε). In order to model the relationship between the drug 

antiviral effectiveness and the plasma free drug concentration, Cu(t), a direct E-max model 

and a model with an effect compartment were tested.  

In the direct E-max model the drug effectiveness is directly related to the plasma free 

concentration Cu(t) (Eq. 3).   

 휀(𝑡) = 𝐸𝑚𝑎𝑥  
𝐶𝑢(𝑡)𝑛

𝐸𝐶50
𝑛 + 𝐶𝑢(𝑡)𝑛 (Eq. 3) 

 where Emax is the maximal effect of favipiravir, EC50 is the concentration inhibiting 

50% of viral production and n is the Hill coefficient. 

In the effect compartment model, the possibility of a delay between the plasma 

concentration and the pharmacological effect is taken into account using an effect 

compartment, and the drug effectiveness is related to the free favipiravir concentration Ceu(t) 

in this compartment (Eq. 4).             

𝑑𝐶𝑒𝑢

𝑑𝑡
= 𝑘𝑒0(𝐶𝑢(𝑡) − 𝐶𝑒𝑢(𝑡)) 

         (Eq. 4) 
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 휀(𝑡) = 𝐸𝑚𝑎𝑥
𝐶𝑒𝑢(𝑡)𝑛

𝐸𝐶50
𝑛 +𝐶𝑒𝑢(𝑡)𝑛

 

where ke0 is a parameter reflecting the delay between the plasma and the effect 

compartment. 

  

2.5 Parameter estimation 

Drug concentrations and viral load data were fitted separately using non-linear mixed-

effect models (Pinheiro and Bates, 2006). In this approach, each individual parameter can be 

written as 𝜃𝑖 = 𝜃𝑒𝜂𝑖, where 𝜂𝑖~𝑁(0, 𝜔𝑖
2) and θ represents the median value of the parameter 

in the population (called population parameters in the following), and ηi accounts for the 

inter-individual variabilities. The data fitting was performed assuming an inter-individual 

variability of 40% on all parameters, a proportional error on the favipiravir concentration and 

an additive error on the log-viral load. Parameters were estimated by maximizing the 

likelihood using the stochastic approximation expectation–maximization (SAEM) algorithm 

implemented in Monolix Software v4.2 (http://www.lixoft.eu). Population parameters were 

reported with their associated standard error. Bayesian Information Criterion (BIC, the lower 

the better) was used to assess statistical relevance of structural modification.  

After estimations of the population viral kinetic parameters were obtained, the individual 

viral load course was reconstructed using empirical Bayes estimates for the individual 

parameters. This allowed us to calculate the peak viremia value, the time to the peak, the 

average favipiravir effectiveness and the area under the curve (AUC) of viremia from 1 to 9 

dpi. The values found in each group of treated mice were compared to the value found in 

untreated mice using Wilcoxon non-parametric test.  

As no pharmacokinetic data was available in infected mice, we used the median values 

found in uninfected mice to simulate the pharmacokinetic concentrations in infected mice. 

Because the rates of the virion clearance and of the eclipse phase cannot be reliably identified 

using viral load data only, they were fixed to 20 and 4 day
-1

, respectively, as reported for 

other viral infections (Guedj et al., 2013; Smith and Perelson, 2011). Because only the 

product p×T0 can be estimated in Equation 2 (Stafford et al., 2000), T0 was set to 10
8
 

cells/mL, a proxy for the liver size, one of the largest target compartments for EBOV (Olejnik 

et al., 2011). For that reason, the estimated rate of viral production is directly proportional to 

the value assumed for T0. In order to assess the stability of the results, univariate sensitivity 

analysis was carried out on parameters c and k. 

3. Results 
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3.1 Favipiravir pharmacokinetics 

The pharmacokinetic model (Eq. 1) fit well the data with no indication of 

misspecification (Figures 3, S1 and S2).  Median values (standard error) of ka, ke and VD were 

found equal to 62.9 (8.16) d
-1

, 9.67 (0.288) d
-1

 and 0.488 (0.015) L/kg, respectively. 

 

3.2 EBOV kinetics  

The two models used to capture the effect of favipiravir, with or without an effect 

compartment, were tested and the fit of the data was better when a compartment effect was 

introduced (BIC of 202 vs 223, respectively). Therefore only the results of the compartment 

effect model will be discussed below and diagnostic plots of this model are given in Figures 

S3 and S4. 

In all mice, the viremia initially increased exponentially, due to large availability and 

rapid infection of target cells (Figure 4). The basic reproductive number, R0, was estimated to 

9.0 (standard error 2.4) (Table 1). Using the parameter values to reconstruct the viral kinetic 

profiles (Table 2), the median peak of viremia in untreated mice was predicted to be equal to 

7 log10 (FFU/mL) (min-max range: [6.8-7.1]), and the median time to peak was 7.5 dpi with 

little variation among mice. After the peak, the viremia declined exponentially, due to the 

exhaustion of target cells, (Figure 5), revealing a rapid elimination of productively infected 

cells with a median rate δ of 2.59 (0.77) d
-1

, corresponding to a half-life of 6.4 hours. Because 

infected cells pass through an eclipse phase before producing virus (Equation 2), the average 

total infected cell lifetime, tinf, was longer and equal to 15.3 hours.   

3.3 Antiviral effect of favipiravir  

Because of the presence of an effect compartment there was a delay between treatment 

initiation and maximal drug effectiveness. The average drug effectiveness increased over time 

from 50% at day 1 post treatment initiation to 95%, 98.5% and 99.6% at 2, 3 and 6 days post 

treatment, respectively.  

The early initiation of treatment at 6 dpi stopped the exponential increase in viremia 

(Figure 4) and led to a lower peak than in untreated mice (median peak value of 5.5 vs 7.0 

log10 FFU/mL, P=0.004). As a consequence of the reduction in the viral replication near the 

maximum, the pool of uninfected target cells in early treated mice remained largely preserved 

from EBOV infection (Figure 5). Furthermore, the median cumulative virus production, 

measured by the AUC of viremia from day 0 to day 9, was reduced from 21.9 in untreated 

mice to 18.0 log10 FFU/mL×day in mice treated from 6 dpi, but the difference did not reach 

statistical significance (P=0.065).  
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In mice treated at 8 dpi, the initiation of treatment came too late to impact the course 

of the infection and neither the peak value, the time to the peak, nor the AUC of viremia were 

significantly improved compared to untreated mice (Table 2).  

Univariate sensitivity analysis showed that parameter estimates remained largely 

stable as long as c was larger than 2 d
-1

 and k was smaller than 20 d
-1

 (Table 3). 

 

4. Discussion  

We provided the first mathematical description of viral kinetics during EBOV 

infection in vivo in a small animal model. The model could well reproduce the viral load data 

and provided estimates of the elimination rate of infected cells and the basic reproductive 

number. Furthermore the dramatic decline in viremia in mice receiving oral favipiravir could 

also be modeled, revealing a strong antiviral effectiveness in blocking virion production in 

mice treated at 6 dpi. In mice treated at 8 dpi, the model predicted that death occurred before 

favipiravir achieved its maximal antiviral effectiveness. 

Although Ebola virus infection rapidly leads to high level of viral load and death, the 

estimates of viral kinetic parameters remain comparable to ones reported in other acute viral 

infections. In particular, the half-life of infected cells, found equal to 6.4 hours, is close to the 

values found for influenza PR8-PB1-F2(1918), estimated to be between 7-24 hours (Smith et 

al., 2011). Likewise the basic reproductive number R0, estimated to 9, remained much lower 

than the reproductive number estimated in mice infected with influenza H1N1 or PR8-PB1-

F2(1918), all found to be larger than 20 (Smith et al., 2011). The initiation of favipiravir 

dramatically reduced the viral replication and our model predicted that favipiravir achieved an 

antiviral effectiveness in blocking viral replication of 95% and 99.6% at 2 and 6 days after 

initiation of treatment, respectively.  

Several aspects limited the estimation of the parameters. First, as no pharmacokinetic 

data were available in infected mice, we had to assume that the drug pharmacokinetics in 

EBOV-infected mice was similar to what had been observed in uninfected mice. This 

assumption will need to be verified by assessing drug pharmacokinetics during the course of 

the infection. In particular a study conducted in hamsters has suggested that infection with 

arenavirus led to lower favipiravir plasma and tissue concentration and that the impairment in 

pharmacokinetics increased with higher viral load levels (Gowen et al., 2015). Second the 

viral clearance rate, c, and the eclipse phase rate of transition, k, had to be fixed to ensure 

parameter identifiability. The results of the sensitivity analysis showed that the parameter 

estimates were largely robust as long as c and k remained larger than 2 d
-1

 (corresponding to 

virion half-life of 8 hours) and lower than 20 d
-1 

(corresponding to a median value of 0.83 

hours), respectively. For comparison in vivo virion half-life in Influenza virus, HCV or HIV 

infections were found shorter than 6 hours whereas the median eclipse phase duration in 
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Influenza was larger than 4 hours (Beauchemin and Handel, 2011; Chatterjee et al., 2012; 

Perelson, 2002). Although the intervals found for these viruses may not be true for EBOV, it 

is reassuring that the parameter values found here were not substantially modified by changes 

of k and c within the previously observed range of values for these parameters in vivo.  

Beside the limitations on parameter values, the mathematical model remains a simple 

representation of the complex biological processes occurring during infection. First, the model 

assumes that the infection takes place in a single compartment. This may be appropriate for 

infections having a clear tropism, such as influenza or hepatitis viruses. However in the case 

of a systemic infection such as EBOV, both the viral production and the treatment 

effectiveness may differ in each compartment of the infection. Second the infected mice 

lacked a type-I IFN response, which is a critical component of the immune response against 

systemic viral infections (Mohamadzadeh et al., 2007). Despite the alteration of the innate 

immune response, the viremia dropped after the peak, which was interpreted in the model as 

an effect of target cell exhaustion and rapid elimination of infected cells. Whether this short 

half-life of infected cells is modulated by the adaptive or innate immune response (and may 

be enhanced by IFN in other models) or is mostly the result of the viral cytopathic effect will 

have to be determined. Further the translation of our results to nonhuman primates (NHPs), 

which are generally considered as the gold-standard model for studying  pathogenesis  and  

evaluating  potential  medical countermeasures (Safronetz et al., 2013), or even human, 

remains to be investigated. However, we note that both the patterns of viral kinetics (time to 

the peak, peak viremia) and survival time were very similar here to what has been described 

in NHPs (Geisbert et al., 2003), supporting that the results found here may be relevant for 

understanding EBOV dynamics in larger animals.  

Because the therapeutic dose of favipiravir in ongoing clinical trials was chosen in 

order to achieve the same exposure than the one achieved here in mice (Mentré et al., 2015), 

favipiravir may have the capability to reduce viral load in humans. However, our analysis 

indicated that favipiravir needed at least 3 days to achieve its maximal effectiveness, which 

can be due to the time needed to achieve high levels of intracellular triphosphates. This may 

explain why mice receiving favipiravir 8 dpi, i.e. after the viremia peak was reached, died 

within 1-2 days before a dramatic change in viremia could occur, and predicts that a 

therapeutic effect of the drug can hardly be achieved in patients in the terminal stage of the 

disease.  

5. Conclusion 

This work provided first estimates of kinetic parameters of EBOV dynamics in mice, 

such as a short half-life of infected cells and a moderate basic reproductive number. In 

addition, we estimated the time orally administered favipiravir needs to become fully 

effective. This result reinforces the hypothesis that favipiravir, in order to be effective, needs 

to be administered as early as possible. 
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Figure 1: Survival (top line), mean relative weight loss (middle line), and mean viremia 

(bottom line) in mice IFNαR-/- infected by 1000 FFU of Zaire Mayinga 1976 Ebola virus by 

nasal route, and receiving no treatment (left panels), favipiravir started on day 6 (middle 

panels), and on day 8 (right panels). Mice treated by favipiravir received dose of 150 mg/kg 

twice a day, by oral route. Error bars represent 95% confidence interval of the mean. 

Reproduced from (Oestereich et al., 2014). 

 

Figure 2: Model of the host-pathogen-drug interactions during infection with EBOV and 

treatment with favipiravir. In the viral kinetic part of the model (black), T, I1, I2 and V 

represent target cells, infected non-productive cells, productively infected cells and free 

virions, respectively. Parameters β and k represent the infection and the transition from non-

productively to productively infected cells, respectively, while c and δ are elimination rate of 

free virions and infected cells, respectively. In absence of treatment, infected cells produce p 
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virions per day and this production is lowered in presence of favipiravir using an E-max 

model parameterized by EC50, Emax and n. Drug pharmacokinetics is defined by the absorption 

rate, ka, the elimination rate ke. In order to account for a possible delay between drug 

concentration in plasma, i.e. central compartment C, and pharmacological effect, a 

compartment effect noted Ce (associated with a transition rate ke0) was added. 

 

Figure 3: Observed total plasma concentrations (black dots) and median predicted profile (red 

line) in mice treated by oral favipiravir 150 mg/kg BID, on the first day of administration (left 

panel), and after 14 days of repeated administration (right panel) 
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Figure 4A 

 

Figure 4B 

Figure 4: Viremia data (points) and individual model prediction (line) in A) untreated mice. 

B) mice treated with favipiravir 300 mg/kg/day at 6 dpi (upper panel) or 8 dpi (lower panel). 

Data below the limit of quantification of the assay (30 FFU/mL) are indicated in red. 
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Figure 5: Predicted kinetics of viremia (top left), antiviral effectiveness of favipiravir (top 

right), target cells population (bottom left) and productively infected cells population (bottom 

right) during the course of the infection. Dashed gray are non-treated mice, solid red line are 

mice treated at 6 dpi and solid black line are mice treated 8 dpi. In each treatment group the 

predictions were computed using the estimated population parameter and were run until the 

last observed death time. 

 

 

Table 1: Estimated population parameters of the viral kinetic model. δ is the elimination rate 

of infected cells, p is the virion production rate, V0 is the initial viremia, R0 is the basic 

reproductive number and ke0 is the transfer constant of effect compartment. 

 Estimated population parameters, median (standard error) 

δ (day
-1

) 2.59 (0.77) 

p (day
-1

) 5.56 (3.2) 

V0 (log10(FFU/mL)) -8.02 (1.6) 

R0  9.01 (2.35) 

ke0 (d
-1

) 0.321 (0.094) 
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Table 2: Predicted peak values, times to the peak, viremia AUC and average favipiravir effectiveness according to the treatment group. Six dpi 

treated group and 8 dpi treated group were compared to untreated group using non-parametric Wilcoxon test.  

 

Median peak 

(log10(FFU/mL)) 

[min-max] 

p 
Median time to peak 

(days) [min-max] 
p 

Median viremia 

 AUCD1-D9 

(log10(FFU/mL)•day) 

[min-max] 

p 

Average 

antiviral 

effectiveness 

at 6 dpi 

Average 

antiviral 

effectiveness 

at 7 dpi 

Average 

antiviral 

effectiveness 

at 8 dpi 

Average 

antiviral 

effectiveness 

at 12 dpi 

Non treated 

mice (n=10) 

6.99 

[6.77-7.06] 
NA 

7.59  

[6.17-8.43] 
NA 

21.90*  

[19.28-26.83] 
NA NA NA NA NA 

Favipiravir 6-

13 dpi (n=5) 

5.49 

[3.50-6.82] 
0.004 

6.52  

[4.92-7.02] 
0.028 

18.02  

[10.21-22.12] 
0.065 49.9% 94.6% 98.5% 99.6% 

Favipiravir 8-

14 dpi (n=5) 

7.10 

[6.77-7.18] 
0.358 

7.20 

 [6.98-8.14] 
0.953 

23.22  

[20.37-25.68] 
0.622 NA NA 49.9% 99.3% 

 

*
computed on 8 mice NA, not applicable 
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Table 3: Sensitivity analysis for different values of the viral clearance (c) and the transition rate from non-productively to productively infected 

cells (k). δ is the elimination rate of infected cells, p is the virion production rate, V0 is the initial viremia, R0 is the basic reproductive number 

and ke0 is the transfer constant of effect compartment. 

  
Sensitivity analysis 

Estimated population parameters, median (standard error) 

  c = 2 day
-1

 c = 5 day
-1

 c = 10 day
-1

 c = 30 day
-1

 c = 60 day
-1

 c = 100 day
-1

 

δ (day
-1

) 6.05 (17) 3.34 (1.5) 2.5 (0.77) 2.42 (0.59) 2.84 (0.72) 3.24 (1.1) 

p (cell
-1

day
-1

) 0.76 (2.2) 1.78 (1.3) 2.25 (1.2) 8.07 (3.6) 17.60 (7.2) 54.70 (33) 

V0 

(log10(FFU/mL)) 
-6.91 (1.8) -6.47 (1.6) -6.88 (1.8) -8.55 (0.51) -6.66 (1.2) -7.74 (0.31) 

R0 12.74 (15.58) 9.62 (3.61) 9.52 (3.63) 9.43 (1.78) 6.67 (1.56) 6.62 (1.49) 

ke0 (day
-1

) 1.28 (1.9) 0.47 (0.16) 0.32 (0.10) 0.29 (0.08) 0.28 (0.07) 0.28 (0.08) 

 
k = 2 day

-1
 k = 6 day

-1
 k = 8 day

-1
 k = 10 day

-1
 k = 20 day

-1
 k = 40 day

-1
 

δ (day
-1

) 4.80 (4) 2.44 (0.67) 2.68 (0.67) 2.36 (0.49) 2.59 (0.59) 2.65 (0.71) 

p (cell
-1

day
-1

) 9.52 (9.1) 4.94 (2.6) 7.50 (3.9) 5.82 (2.5) 6.93 (3.4) 7.05 (3.8) 

V0 

(log10(FFU/mL)) 
-8.52 (0.83) -7.60 (1.2) -8.00 (1.1) -8.53 (0.29) -8.23 (1.7) -7.95 (1.9) 

R0 10.42 (4.34) 7.30 (2.13) 6.25 (1.37) 6.58 (1.08) 4.98 (1.09) 4.27 (1.17) 

ke0 (day
-1

) 0.36 (0.12) 0.26 (0.08) 0.27 (0.07) 0.26 (0.07) 0.24 (0.07) 0.24 (0.07) 

 

 


