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Abstract 

 

Intracellular pathogens are known to manipulate host cell regulatory pathways to establish an 

optimal environment for their growth and survival. Pathogens employ active mechanismsto 

hijack host cell metabolism and acquire existing nutrient and energy store. The role of the 

cellular energy sensor AMP-activated protein kinase (AMPK) in the regulation of cellular 

energy homeostasis is well documented. Here, we highlight recent advances showing the 

importance of AMPK signalinginpathogen-host interactions. Pathogens interact with AMPK 

by a variety of mechanisms aimed at reprogramming host cell metabolismto their own benefit. 

Stimulation of AMPK activity provides an efficient process to rapidly adapt pathogen 

metabolism to the major nutritional changes often encountered during the different phases of 

infection. However, inhibition of AMPK is also used by pathogens to manipulate innate host 

response,indicating that AMPK appears relevant to restriction of pathogen infection.We also 

document the effects of pharmacological AMPK modulatorson pathogen proliferation and 

survival. This review illustrates intricate pathogen-AMPK interactions that maybe exploited 

to the development of novel anti-pathogen therapies.  

 

 

 

Introduction 

 

 Essential requirement for survival, multicellular organisms have developed a variety 

of mechanisms to recognize and eliminate invading bacterial, parasite and viral pathogens. 

Infection triggers powerful cellular signaling events, which result ina wide range of possible 

immune responses. Innate and adaptive host immunity is essential for inducing and 

maintaining an optimal immune response andprotection against infection. However, in return, 

pathogens have evolved specific mechanisms to circumvent the immune response to survive 

in infected hosts. In addition, successful pathogens remodel the host cell to establish an 

optimal environment for their persistence and to reallocate resources for their replication. To 

acquire essential nutrient and energy fortheir own growth and proliferation, intracellular 

pathogens exploit the existing host nutrient stores and energy producing sources[1].The 

metabolic manipulation of host cells resources is currently recognized to play an important 

role in the pathology of infection and there is growing interest in identifying the underlying 

mechanisms.Here, we detail how intracellular pathogens hijack cellular metabolism by 

suppressing or increasing the activity of the energy sensor AMP-activated protein kinase 

(AMPK). 

 

 

AMPK regulates cellular energy homeostasis 

 

• AMPK, a cellular fuel gauge 

 

 A critical requirement for cell survival and growth is the maintenance of energy 

balance. This coordination is achieved through the function of AMPK, a cellular “fuel gauge” 

that directs metabolic adaptation to support the growth demands[2]. At a critical level of 

signals related to impaired cellular energy status (high AMP/ATP and ADP/ATP ratios), 

occurring when cells are exposed to metabolic stress (e.g., nutrient deprivation, hypoxia and 

viral infection), AMPK functions to restore energy homeostasis by switching off biosynthetic 

pathways consuming ATP while switching on catabolic pathways that produce ATP. 
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AMPKhas been conserved throughout eukaryote evolution as a central sensor and regulator of 

energy homeostasis.  

 

 

• AMPK structure and regulation 

 

 Mammalian AMPK is a heterotrimeric complex consisting of a catalytic () and two 

regulatory ( and ) subunits, encoded by different genes (1, 2, 1, 2, 1, 2, and 3), 

enabling the formation of a diverse collection of heterotrimer combinations. AMPK is 

activated by binding of AMP and/or ADP to the -subunit, causing structural changes and 

subsequent phosphorylation of a conserved residue within the activation loop (Thr172) of the 

catalytic subunit, which is required for AMPK activity[2]. In addition,another effcet of AMP 

and ADP binding is to prevent dephosphorylation of Thr172 and subsequent inactivation of 

the AMPK complex by cellular phosphatases. Furthermore, the binding of AMP (but not 

ADP) enhances AMPK activity by allosteric activation. Of note, all the effects of AMP and 

ADP are antagonized by binding of ATP, indicating that cellular AMP/ATP and ADP/ATP 

ratios primarilydefine the levels of AMPK activation.The major upstream kinase is liver 

kinase B1 (LKB1), a tumour suppressor mutated in Peutz–Jeghers syndrome. Interestingly, 

LKB1 appears to be constitutively active, reinforcing the importance of AMP/ ADP bindingin 

the resistance of AMPK to dephosphorylation in the mechanism of AMPK activation. Anon-

canonical activation mechanism involves the phosphorylation of Thr172 by 

calcium/calmodulin-dependent proteinkinasekinase (CaMKK) in response to a rise in 

intracellular Ca
2+

[2]. 

 

 

• Downstreameffects of AMPK activation 

 

 It is well established that AMPK represents a point of conversion of regulatory signals 

monitoring cellular energy status. In addition, recent evidence indicates thatAMPK may also 

maintain cell survival through the regulation of processes other than metabolic pathways, 

such as autophagy, cytoskeletal organization, cell cycle and inflammation. The many 

proposed downstream responses to AMPK activation are summarized in Figure 1.There have 

been many excellent reviews recently published which cover the downstream effects of 

AMPK activation (e.g., [2, 3]).Briefly, in response to energy stress, activation of AMPK 

maintains cellular energy homeostasis by changing the balance between anabolism and 

catabolism. The overall result is the inhibition of energy-consuming biosynthetic pathways, 

such as lipidand protein synthesis, and activation of ATP-producing catabolic pathways, such 

as fatty acid oxidation, glucose uptake, and glycolysis (at least in the heart).AMPK regulates 

these pathways via acute and long term mechanisms, involving the phosphorylation of key 

enzymes and regulation of gene expression. It is important to note that AMPK phosphorylates 

acetyl CoA carboxylase (ACC), a key enzyme for fatty acid synthesis and oxidation. AMPK-

dependent phosphorylation of ACC suppressesmalonyl-CoA synthesis. As malonyl-CoA is 

both a critical precursor of biosynthesis of fatty acids and an inhibitor of fatty acid uptake into 

mitochondria via the transport system involving carnitine palmitoyltransferase-1, this has the 

dual effect of inhibiting fatty acid synthesis and enhancing fatty acid oxidation[4].In 

complement to this metabolic switch, AMPK stimulates expression and translocation to the 

plasma membrane of glucose transporter 4 (GLUT4) through inhibition of HDAC5 activity 

and TBC1D1 and AS160, two Rab-GAP (GTPase-activating protein) proteins[5]. AMPK 

positively regulates glycolysis by phosphorylating 6-phosphofructo-2-kinase (PFK-

2)[6].AMPK decreases protein synthesis by phosphorylating the tuberous sclerosis complex 
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1/2 (TSC1/2), an inhibitor of the mammalian target of rapamycin (mTOR) signaling pathway, 

andthe regulatory associated protein of mTOR (raptor), and targeting the eEF2K/ eEF2 

signaling pathway[7-10]. Furthermore, it has been postulated that AMPK-dependent 

phosphorylation of PGC1 stimulates mitochondrial biogenesis[11]. In addition to a role in 

regulating metabolism, AMPK is a critical component of autophagy induction by 

phosphorylating and activating ULK1, the protein kinase that initiates the process[12, 13] and 

also through the inhibition of mTOR signaling pathway. Recent studies have also implicated 

AMPK in actin polymerization and phosphorylation of cytoskeletal targets[14]. 

A wide variety of AMPK agonists (i.e., AICAR and metformin) have been commonly used to 

define the downstream actions of AMPK activation (Table 1). However, several recent 

studies have reported that many of the effects of these pharmacological compounds are 

AMPK-independent [15, 16] and activates AMPK indirectly through the modulation of 

cellular AMP:ATP ratio [17]. In the recent years, the use of more specific AMPK agonists 

that directly bind to the AMPK heterotrimer complex has emerged as a valuable 

pharmacological alternative to assess the physiological role of AMPK activation [18-20] 

(Table 1). However, it is highly recommended to confirm the results obtained with 

pharmacological AMPK activators with genetic knockdown/ inactivation of AMPK subunits 

as specific controls for activity rather than using the only available AMPK 

inhibitor,compound C, originally described as a specific inhibitor[21].This compound, also 

known as dorsomorphin, has many AMPK-independent effects due to the inhibition of many 

other kinases with greater potency[22]. 

 

 

AMPK in the control of viral infection 

 

 To achieve optimal levels of proliferation and spread, viruses are dependent on a 

balanced interaction between viral and cellular proteins. Especially protein kinases are 

important regulators of virus-host interaction and many different host cell signaling pathways 

are subverted to enable the generation of the next round of infectious virions. In one hand, 

viruses turn off anti-viral and pro-apoptotic pathways, and in the other hand activate anti-

apoptotic and pro-survival pathways. To identify host factors influencing the replication and 

spread of viruses, functional high throughput small interfering RNA (siRNA) and 

bioinformatics-based screens as well askinome profiling approaches have been carried out 

and havehighlighted the important role of the cellular protein kinase AMPKduring viral 

infection [23-27]. Given the recognized role of AMPK in the control of cell metabolism, it is 

not surprising that this energy sensorappears as a specific target for virus-mediated 

reprogrammation of host cells. All over the sophisticated lifecycle of viruses,a number of 

temporally regulated stepshave been linked with the suppression orincrease inAMPK 

activation, including virus entry, expression of early gene products, replication, and assembly 

(Figures2A and B).  

 

 

• AMPK contributionto virus entry 

 

 Entry is a critical step for the initial establishment of infection. Internalization by 

macropinocytosis is the primary entry mechanism used by a number of viruses to enter host 

cells.Macropinocytosis is a well-established endocyticprocess that involves extensive actin-

cytoskeletal rearrangement, leading to membrane ruffling and internalization of large cargo. 

By performing a kinomeRNAi screen, in Drosophila cells Moser et al.found that AMPK 

promotes early steps of the vaccinia virus lifecycle and is specifically required for vaccinia-
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induced macropinocyticentry (Figure 2A) [25].The regulation of macropinocytosis by AMPK 

is achieved throughmetabolic-independent functions on actin cytoskeletal remodeling[25]and 

phosphorylation of key cytoskeletal targets [28-30]. Interestingly, the requirement of AMPK 

in macropinocytic events has been also reported for the entry of the Zaire Ebola virus in Vero 

(African green monkey kidney) cells [27]. These results raise the possibility that AMPK may 

act as an importantcomponent for other viruses, such as influenza A and African swine fever 

viruses, also dependingon this endocytic pathway to enter host cells. However, future studies 

investigating the contribution of AMPK in the entry of these viruses are warranted. 

 

 

• AMPK contribution to virus replication 

 

 AMPK has been identified in different high-throughput screensas a pro-viral host 

factor that influence the replication of human cytomegalovirus (HCMV) [24, 26, 31] and 

vaccinia virus in a panel of human tumor cell lines [23]. The importance of AMPK in HCMV 

replication is supported by the increase of AMPK phosphorylation at residue Thr172 in 

HCMV-infected cells [24, 31]. This has been further confirmed by the useofAMPK inhibitor 

Compound C showing an antiviral action [24, 31].Inhibition of AMPK attenuates the 

expression of early gene expression as well as viral DNA replication efficiency. Interestingly, 

the expression of the AMPK upstream kinase CaMKK is induced by viral infection and 

appears also to be an important host factor for HCMV replication [32]. The inhibition of 

CaMKK by the specific inhibitor STO-609 or the expression of a CaMKK kinase-dead allele 

inhibits the production of HCMV viral progeny. Furthermore, inhibition of CaMKKreduced 

the phosphorylation of AMPK and downstream targets during HCMV infection, indicating 

that HCMV infection requires CaMKK activity to activate AMPK [31]. However, the exact 

mechanism responsible for CaMKK activation remains unclear, but may potentially involve 

the release of endoplasmicreticulumCa
2+

stores during HCMV infection [33]. Of note, LKB1 

is probably not involved in the activation of AMPK in response to viral infection as this 

protein kinase has never been identified as hit in thesiRNAkinome screens performed to date 

[24-26]. 

 

 It has been shown that AMPK plays a major role in the interaction between avian 

reovirus (ARV)and host cells.AMPK is activated during ARV infection and contributes to 

maintain the efficiency of replication in Vero cells and transformed chicken embryo 

fibroblasts[34]. AMPK facilitates mitogen-activated protein kinase (MAPK) kinase (MKK) 

3/6 - MAPK p38 signaling that is critical for ARV replication.The action of AMPK is 

independent of the inhibition of phosphatidylinositol 3-kinase (PI3K) or mechanistic target of 

rapamycin complex 1 (mTORC1) signaling, as wortmannin and rapamycinhave no negative 

effects on ARV replication. Inhibition of AMPK by compound C causes down-regulation of 

MKK3/6 and MAPK p38 phosphorylation and ARV replication, indicating that MAPK p38 is 

a critical downstream factor involved in the regulation of ARV replication. Interestingly, 

activation of MAPK p38 signalingappears to be specific to avian viruses becauseMAPK 

p38phosphorylation is not observed after infection with the mammalian counterpart viruses 

[34]. 

 

 As an energy sensor, not surprisingly, AMPK is involved in the regulation of 

autophagy and may serve as a logical target for manipulation to enhance virus replication 

(Figure 2A). Indeed, it is now recognized that many viruses exploit the autophagy machinery 

to facilitate their replication and survival in host cells. Autophagy is a catabolic cellular 

process that involves the degradation and turnover of damaged organelles and long-lived 
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proteins after forming a cytoplasmic double-membrane vesicle or autophagosome. Activation 

of autophagy during nutrient starvation is a way to provide a limited amount of nutrients for 

the survival of cells. Thus, many viruses have evolved mechanisms to promote autophagy to 

support the high energy cost of replication. Some viruses (mainly positive stranded RNA 

viruses) use the autophagy machinery to hide their RNA replication intermediate into the 

cytoplasmic vesicles. However, autophagy can also destroy cytosolic pathogens by targeting 

viral components to degradation through lysosomes, in a process called xenophagy. While the 

evasion of autophagy by pathogens has been demonstrated, recent work suggests that some 

viruses require components of the autophagic machinery to benefit their replication and is 

therefore a critical process in viral pathogenesis [35]. Recent evidence have showed that 

dengue virus (DENV) inducesautophagy to degrade lipid droplets (lipophagy) and release free 

fatty acids required for efficientvirus replication in human hepatoma cell lines [36]. This 

concept is further supported by the rescue of DENV infection by addition of exogenous fatty 

acid when autophagy is inhibited[36]. Interestingly, some viruses encode autophagy-

promoting proteins to induce autophagy. Simian virus 40 (SV40) small T antigen activates 

AMPK through the inactivation of protein phosphatase 2A (PP2A) which results in the 

inactivation of mTOR and induction of autophagy for survival during glucose deprivation of 

cancer cells[37]. Similarly, the nonstructural protein p17 of ARV functions as a positive 

regulator of autophagy by activating AMPKVero cells and transformed chicken embryo 

fibroblasts[38]. Another example is the capsid protein from porcine circovirus type 2 (PCV2) 

that induces autophagosome formation and enhances autophagic flux by increasing AMPK 

phosphorylation with a concomitant inhibition of mTORsignalingin porcine kidney cells[39]. 

In the context of the human immunodeficiency virus (HIV-1) infection, inhibition of 

autophagy reduces viral replication. Although in this model the role of AMPK has not yet 

explored, it is interesting to note that infection of CD4
+
 T cells is associated with a 

mitochondrial depolarization and ATP loss, concomitantly with the activation of the 

autophagy pathway [40]. Thus AMPK could be involved in the regulation of HIV replication. 

 

 

 

• AMPK-mediated coordination of cellular metabolism during viral infection 

 

A growing body of evidence implicates a key role for metabolic function during viral 

infection and recent studies have reported that viruses target the host cell metabolic 

machinery to favor their propagation.For instance, upon infection, HCMV takes control of 

numerous cellular processes and reprograms the metabolic activity of the host cell by 

increasing glucose uptake through the increase of glucose transporter GLUT4 levels at the 

plasma membrane [32, 41]. Consistent with the role of AMPK in the modulation of key 

glycolytic enzymes, including glucose transporters (Glut1 and Glut4), hexokinase, and 

phospho-fructokinase-2 (PFK-2), to increase glycolytic flux[2], AMPK has been linked to a 

substantial subset of metabolicchangesinduced during HCMV infection in human fibroblasts 

[26, 31]. By stimulating glucose uptake, AMPK provides fuel for glycolysis and the TCA 

cycle.These results demonstrate that AMPK is required to create a favorable metabolic 

environment for HCMV replication by phosphorylating multiple substrates that switch on 

catabolic pathways producing ATP.However, AMPK activation also induces the 

phosphorylation of substrates that block ATP-consuming anabolic pathways, such as fatty 

acid and protein synthesis,disfavoring viral replication[42]. The substrates of AMPK are ACC, 

playing a key role in the synthesis and metabolism of fatty acids, and the tuberous sclerosis 

protein complex TSC1/2, which negatively regulates translation through inhibition of 

mTOR[2]. Thus, HCMV-induced activation of AMPK would be detrimental to infection by 
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inhibition of both fatty acid synthesis and protein translation. To resolve this paradigm, 

HCMV uncouples the catabolic and anabolic regulation by AMPK. An HCMV-encoded 

protein (pUL38)binds to the TSC1/2 complex and preventsthe inactivation of mTOR 

signaling by activated AMPK in human foreskin fibroblasts[43, 44].Although mTORis an 

essential component of protein translation in the productive viral growth cycle, it is also 

required for HCMV-mediated induction of ACC expression and activation of fatty acid 

synthesis through the proteolytic processing of sterol regulatory element-binding protein 

1c(SREBP1c)[42]. HCMV also exploits host defense mechanisms to increase lipogenesis in 

infected cells. Upon infection, HCMV induces the expression of interferon-inducible host 

protein, viperin[45]. Interaction with the viral mitochondrial inhibitor of apoptosis (vMIA) 

relocalizesviperin to the mitochondria where it inhibits-oxidation as shown in human 

fibroblasts [45]. This results in reduced cellular ATP levels and activation of AMPK. In turn, 

AMPK activation induces GLUT4 expression,stimulates glucose uptake and increases 

glycolytic flux in infected cells. Increase in intracellular glucose,in addition to the induction 

of glycolysis, leads tothe enhanced transcription of genes encoding lipogenic enzymes 

through the translocation to the nucleus of the glucose-regulated transcription factor 

carbohydrate response element-binding protein(ChREBP)[46]. These data indicates that 

viperinis a major effector in the remodeling of host cell lipid metabolism during 

infection,facilitating the formation of HCMV membrane envelope. 

 

During the course of infection, herpes simplex virus type 1 (HSV-1) differentially 

regulates the activity of AMPK for its propagation andsurvival in primary cortical 

neurons[47]. At early times post infection, HSV-1 downregulates AMPK phosphorylation but 

this inhibition is gradually reversed during the course of infection. Initial inhibition of AMPK 

would be beneficial for the synthesis of viral proteins and lipids, as AMPK activation inhibits 

protein translation and lipid synthesis [2]. At later times point, AMPK activationrepresentsa 

strategy to counteract antiviralhost mechanism (e.g., induction of apoptosis) andto hijack the 

cellular metabolic pathways to maintain cellular energy status and establish latency in 

infected cells [47].The effects of AMPK are carried out through the modulation of cellular 

NAD
+
 levels and activation of sirtuin 1 (SIRT1), a NAD

+
-dependent histone deacetylase, 

interfering with the p53-dependent pro-apoptotic response and metabolic pathways. SIRT1 

and AMPK are known to both regulate each other and share similar effects on diverse 

processes such as cellular fuel metabolism and mitochondrial function [48]. On one hand, 

AMPK can function as a SIRT1 activator by increasing the cellular NAD
+
/NADH ratio via 

transcription of the NAD
+
 biosynthetic enzyme nicotinamidephosphoribosyltransferase 

(Nampt), convertingnicotinamide into NAD
+
, leading to SIRT1 activation. On other hand, 

SIRT1 modulation of the acetylation status of LKB1 is involved in the activation of AMPK, 

consistent with the concept that AMPK and SIRT1 are components of a cycle. During HSV-1 

infection, activation of the AMPK/SIRT1 pathwaycontributes to the metabolic homeostasis of 

cell host by activation of peroxisome proliferator-activated receptor co-activator-1 

(PGC1), a master regulator of mitochondrial biogenesis [47]. 

 

 

• AMPK in innate antiviral response 

 

 Recent discoveries have revealed a critical relationship between innate immune 

response to pathogens andcellular metabolic sensing pathways to confer an efficient defense 

against infection [49].Emerging evidence indicate that AMPK have intrinsic innate immune 

functions and restricts the replication of viruses (Figure 2B). Moser et al. showed evidence 

that AMPK activation with Rift Valley fever virus (RVFV) infection restricts its replication 
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by blocking fatty acid synthesis through ACC phosphorylation in mouse embryonic 

fibroblasts[50].This was further supported by the rescue of AMPK-mediated RVFV 

restriction by pre-treatment with palmitate, the first product of fatty acid synthesis. Inhibition 

of AMPK by compound C significantly increased RVFV infection but treatment with the 

mTORC1 inhibitor rapamycinshowed no significant difference in RVFV infection, indicating 

that mTORC1 signaling is not required for the antiviral activity of AMPK. Activation of 

AMPK is dependent on the upstream AMPK kinase LKB1, and is triggered by incoming 

particles but not viral replication.Inhibition of the alternative upstream kinase CaMKK by 

STO-609 had no effect on infection level. Additionally, AMPK and LKB1 also appears to act 

as intrinsic immune components to inhibit viral replication of multiple arboviruses, 

includingflaviviruskunjin virus (KUNV), togavirussindbis virus (SINV), and rhabdovirus 

vesicular stomatitis virus (VSV) [50]. These results indicate that LKB1/AMPK signaling 

represents a potential pharmacological target to limit viral replication, at least for viruses 

known to have important lipid dependencies. Interestingly, RFVF and KUNV infection was 

significantly decreased in the presence of the direct AMPK activator A-769662 in a dose-

dependent manner(Table 1). 

 

 Since AMPK acts asa restriction factor for virus replication, mainly by inhibiting host 

catabolic and biosynthetic activities, viruses has evolved mechanisms of evasion to limit 

AMPK activity during the course of infection (Figure 2B). Different mechanisms for 

repression of AMPK signaling have been reported. Hepatitis C virus (HCV)-encoded NS5A 

protein has been shown to down-regulate AMPK activation by inhibiting AMPK Thr172 

phosphorylation in human hepatoma cell lines[51]. HCV infection activates the protein kinase 

B (PKB)/(AKT) pathway to phosphorylate AMPK at Ser485, resulting in the inhibition of 

AMPK activation.The importance of Ser485 phosphorylation for HCV genome replication of 

Ser485was confirmed by over-expression of a nonphosphorylable mutant (S485A)[51]. This 

mechanism of AMPK inhibition may be shared with HMCV during the early time points post-

infection where expression of immediate early proteins is associated with increased 

PKB/AKT activation [43, 52]. Similarly, it has been shown that PKB/AKT antagonizes 

AMPK activation by increasing AMPK Ser485 phosphorylation in ischemic heart in response 

to insulin[53]. Reduced AMPK activity during HCV infection permits the synthesis of lipids 

at high levels,which are required for virus replication. Conversely, activation of AMPK with 

pharmacological agonists (Table 1) abrogates lipid accumulation and reduced HCV 

replication [51].To promote proliferation and transformation, the Epstein-Barr virus (EBV)-

encoded latent membrane protein 1 (LMP1) oncogenic protein inhibits the activity of AMPK 

through the phosphorylation of LKB1 at Ser325 and Ser428 mediated by the ERK-MAPK 

signaling pathway in human nasopharyngeal epithelial cells[54].By altering the cellular redox 

state (decreased NAD
+
 levels), the HIV-1-encoded Tat protein inhibits the activity of host 

NAD
+
-dependent histone deacetylase SIRT1 leading to decreased AMPK activity in HeLa 

cell line that expresses high levels of CD4 [55]. In this context, the inhibition of the 

SIRT1/AMPK cellular checkpoint is associated with increased Tat-induced HIV-1 LTR 

transcription and enhanced HIV-1 replication [55]. Inhibition of HIV-1 transcription 

transactivation may be related to the SIRT1-mediated deacetylation of Tat[56] because Tat 

transcriptional activity is dependent on cellular acetylation by targeting cellular histone 

acetyltransferases[57]. However, the role of AMPK appears more complex. Indeed, AMPK 

activation was found to coordinate the reactivation of latent HIV-1 proviruses process via 

protein kinase C (PKC) signaling[58]. Therefore these results suggest - that AMPK has 

differential roles during HIV-1 lifecycle. 
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• Antiviral therapeutics opportunities 

 

 Given the importance of virus-host interaction in controlling the different steps of viral 

infection, drugs targeting host proteins are of attractive therapeutic potential. Manipulation of 

the energy sensor AMPK has emerged as a promisingantiviral strategy. In Table 1are listed 

pharmacological compounds with significant antiviral activity acting either through the 

activation or inhibition of AMPK signaling. Notably, cannabinoid 1 (CB1) antagonist AM251 

shows effective antiviral effects against HCV in human hepatoma cells[59]. These effects are, 

at least in part, due to the inhibition of lipogenesis mediated by activation of AMPK. This is 

consistent with previous results obtained with the AMPK agonists5-aminoimidazole-4-

carboxamide-1--D-ribofuranoside(AICAR), metformin and A-769662 on the inhibition of 

HCV replicationby decreasing lipid accumulation [51] (Table 1).In addition, the use of 

AMPK agonist AICAR has been reported to protect mice from the deleterious effect of 

influenza infection [60]. 

 

 AMPK activation was shown to be a crucial component in the inhibitory effect of 

Tanshinone II A (a lipid-soluble monomer extracted from the root of Salvia miltiorrhiza) on 

Tat-induced HIV-1 LTR transactivation in a HeLa-derived cell line expressing surface CD4, 

CXCR4, CCR5, and containing a chromatin-integrated HIV-1 LTR[61]. Tanshinone II A 

playsan important role in the regulation of cellular redox balance during HIV-1 infection and 

can revertTat-induced inhibition of SIRT1 activity. These effects are mediated by redox-

regulated Nampt activity and modulation of Nampt through activation of AMPK [61]. Thus, 

targeting redox signaling emerges as a novel therapeutic strategy to fight against HIV-1 

infection and may lead to the development of new class of drug with potential antiviral 

activity. 

 

 

 

Bacterial infection and AMPK 

 

• Control of bacterial infection by xenophagy 

 

Recent evidence demonstrates that autophagy, best known as a mechanism for 

surviving starvation, is now considered as a critical arm of the host defense against 

intracellular bacterial pathogens. This selective autophagic destruction of intracellular 

pathogens, also known as xenophagy, plays a critical role in innate immune response to 

bacterial invasion[62]. Several pathways critical for the specific control of xenophagy have 

been identified. Recently, AMPK has emerged as a potential key player in the signaling 

pathways that contribute to the induction of autophagy during infection(Figure 3). It has been 

reported that infection of intestinal epithelial cells by enterotoxigenicEscherichia coli(ETEC) 

induces autophagy through activation of AMPK [63]. Induction of autophagy may serve as a 

host defense against infection because inhibition of autophagy resulted in decreased survival 

of infected cells. In addition, Toll-like receptor (TLR) stimulation by the lipoprotein LpqH 

from Mycobacterium tuberculosis (Mtb) was found to activate antibacterial autophagy 

through increases in intracellular calcium following AMPK activation in human primary 

monocytes[64]. Consistently, siRNA-mediated knockdown of CaMKK- and AMPK 

significantly abrogated LpqH-induced autophagy. Another important upstream signal 

triggering xenophagy defense pathwayis host membrane damage (e.g., by bacterial toxins) 

[65, 66].Indeed, damages of the plasma membrane are known to cause cellular amino acids 

starvation and energy shortage, the classic inducers of autophagy. Various bacterial pore-
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forming toxins (PFT), including -hemolysinfrom Staphilococcusaureus and cytolysin from 

Vibrio cholerae, have been demonstrated to activate AMPK by causing a massive, but 

transient drop of intracellular ATP in a non-virally transformed human keratinocyte cell 

line[65]. In turn, AMPK activation leads to the deactivation of mTORC1 signaling. HeLa 

cells infected with Shigellaflexneritriggers a rapid induction of an intracellular amino acid 

starvation, which leads to the deactivation of mTOR signaling and induction of autophagy 

[66]. 

 

The importance of this innate immune defense mechanism has been highlighted by the 

identification of bacterial strategies that were evolved to escape from degradation mediated by 

autophagy. SalmonellaTyphimuriumescapes this defense pathway by the recruitment and 

reactivation of mTOR at the surface of the Salmonella-containing vacuole in infected HeLa 

cells[66]. Pseudomonas entomophila paralyzes the global host response to infection in gut 

Drosophila by causing a severe reduction in protein synthesis, thereby inhibiting immune and 

repair gene programs [67]. After ingestion of bacteria, the severity of cellular damages 

induced by monalysin, a P. entomophila PFT, andmicrobicidal reactive oxygen species 

(ROS)production in the Drosophila gutinduces an excessive and detrimental stress response 

that ultimately disrupts gut integrity. Interestingly, reduction in AMPK activity partially 

restored host translation in P.entomophila infected flies and makes flies more resistant to P. 

entomophila infection, indicating that activation of AMPK by monalysin and ROS production 

plays a detrimental role in the pathogenesis [67]. 

 

 

• Antibacterial therapeutics opportunities 

 

 The increasing prevalence of drug-resistant bacteria has stimulated the development of 

host-directed therapies to amplify endogenous effector mechanisms. It is now clear that 

autophagy is associated with innate immune response and contributes to antibacterial defense 

during infection. Thus, autophagy is an attractive candidate. Interestingly,AMPK-activating 

drugs have already demonstrated beneficial outcomes on antimicrobial responses (Figure 3). 

It has been established that AICAR promotes antibacterial autophagy against Mtb infectionin 

murine bone marrow-derived macrophages (Table 1), in part through theinduction of PGC1 

and subsequent transcriptional upregulation of mitochondrial biogenesis and autophagy-

associated genes [68].AICAR-induced autophagy activation is mediated through the down-

regulation of mTOR signaling and the phosphorylation of ULK1, the upstream kinase of 

autophagy machinery. In addition, another AMPK activator, the oral anti-diabetic biguanide 

metforminhas been recently shown to control the growth of Mtb in infected mice by 

improving the immune response [69]. The effects of metformin were abolished in human 

monocyte-derived macrophages where AMPK is knocked-down or inhibited chemically. The 

protective effect of metformin ismediated by its cellular innate antimicrobicidal functions and 

increased acidification of mycobacterial phagosome. Metformin-mediated inhibition of 

mitochondrial complex I (NADH dehydrogenase) activity is known to induce the production 

of mitochondrial ROS [70]. Importantly, metformin therapy has been associated with 

beneficial clinical outcomes in patients infected with Mtb[69]. Furthermore, metformin 

enhances the efficacy of conventional anti-Mtb drugs, indicating that this drug can be use as 

adjuvant therapy to improve the effective treatment of Mtb infection. 

 

 

 

Interaction between AMPK and parasites 
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 Like bacteria or viruses, parasites manipulate host cells to establishment a successful 

infection after parasite entrance. Once inside the host, intracellular or extracellular parasites 

must negotiate their surrounding nutritional and signaling environment to obtain energy and 

biosynthetic precursorsthat support their survival and high growth rate.At this level a nutrient 

competition is established between themanipulative parasite tryingto obtain usable energy and 

metabolites and the host attempting to sequesterthe same precursors from the 

pathogen.Moreover, some parasites are auxotrophic for several metabolites being the host the 

only viable source for acquisition. The balance between these mechanisms becomes crucial 

for the parasite survival. In the core of this metabolic network, AMPK has emerged as a 

potential candidate modulated by parasites due to its crucial role on key metabolic pathways. 

 

 

• AMPK on the core of host-parasite metabolic coupling  

 

Metabolic manipulation of host metabolism is regularly identified as required for 

intracellular pathogen growth. Recent studies with Toxoplasma gondii[71], 

Trypanosomabrucei[72], Leishmaniaspp[73, 74], Schistosomamansoni[72] and Plasmodium 

berghei[75] have paved the way to our understanding on the molecular mechanisms used by 

parasites to take advantage of the nutritive host resources. Nevertheless, the role of 

AMPKduring themetabolic host-parasite crosstalk remains largely unexplored. 

 

Caradonnaet al. by employing a genome-wide RNA interference screen, targeting host genes 

in HeLa cells infected with Trypanosomacruzi for the identification of cellular processes that 

fuel parasite growth showed that sustained AKT-mTORC1 pathway regulate intracellular T. 

cruzi growth [76]. The maintenance of high cellular ATP/ADP ratios at higher levels provided 

a distinct advantage for the parasite, which therefore kept AMPK activity in check. Thus, 

acute silencing of AMPK catalytic (PRKAA1) or the regulatory subunit (PRKAB1) provides 

a more favorable growth environment for intracellular T. cruzi. Although so far it has not 

been confirmed in vivo, AMPK inhibition is suggested to contribute for T. cruzi survival. 

Recently we demonstrated that AMPK is in contrary crucial for the establishment of a 

microenvironment more prone to L. infantumsurvival in macrophages [73]. Previous analysis 

on the transcriptomic signature of L. majorinfected macrophages has revealed that 

carbohydrate and lipid metabolism were among the most altered pathways during infection. 

Increased mRNA levels of glucose transporters as well as key glycolytic enzymes encoding 

genes, such as hexokinases (Hk), pyruvate kinase M2 (Pkm2) and lactate dehydrogenase a 

(Ldha) were induced in the presence of live but not heat-killed L. major promastigotes. L. 

major alsoinduced a down-regulation of a number of genes implicated in the tricarboxylic 

acid (TCA) cycle and oxidative phosphorylation suggesting that infected macrophages mainly 

rely on increased glycolytic flow for energy production. On the other hand, L. major led to 

cholesterol and triglycerides accumulation on infected macrophages by enhancing the 

expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), 

inhibiting cholesterol efflux and increasing the synthesis of triacylglycerides[74]. The 

accumulation of lipid droplets in close proximity to parasitophorous vacuoles advocates the 

former structure as a potential high-energy substrate source for the intracellular parasite. We 

observed that following L. infantum infection, macrophages switch from an early glycolytic to 

an oxidative metabolism, in a process requiring SIRT1 and LKB1/AMPK. In the absence of 

SIRT1 or LKB1, infected macrophages are not able to induce AMPK activation leading to an 

impairment of the metabolic switch. In that sense, the AICAR-induced AMPK activation 

contributes to parasite survival while inhibition of AMPK using compound C resulted in 
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lower parasite numbers in vitro. Interestingly we demonstrated that AMPK inactivation 

specifically in the myeloid population led to a reduce L. infantum burden invivo[73]. 

Gastrointestinal nematodes also affects profoundly host metabolism. The infection of CD11c-

specific AMPK
-/-

 (DC-AMPK
-/-

) mice with the wookwormNippostrongylusbrasiliensis led 

to a dysregulation of Th2 immune response concomitantly with a failure to regenerate tissue 

damage mediated by pathogen. Deregulated responses generated in DC-AMPK
-/-

 mice were 

associated with increased Type-1 responses, greater numbers of Th17 cells, and defects in the 

generation of alternatively activated macrophages. Therefore,AMPK activity in myeloid cells 

was shown to regulate host protection against GI parasites [77]. Although still insufficient, 

these examples highlight the strategies used by the parasites to explore host resources 

shedding some light on cellular metabolic subversion mechanisms induced by microbe 

infections within the host. In this context, the modulation of AMPK activity has been put 

forward as a possible therapeutic target against parasitic diseases. 

 

 

• Conservation of the AMPK machinery in parasite 

 

 With the exception of the Encephalitozooncuniculi obligate intracellular parasite, 

which lack of an identifiable AMPKand presumably relies on host cell AMPK to regulate 

energy balance[78], several members of this highly conserved kinase family were already 

described in yeasts and plants, named sucrose non-fermenting 1 (SNF1) and SNF1-related 

protein kinase 1 (SnRK1), respectively [79, 80]. SNF1 and SnRK1 homologs develop similar 

functions in what concerns the surveillance of the metabolic status in response to nutrient and 

environmental stress through the induction of catabolic processes and a general repression of 

anabolism. Similarly to these organisms, some reports have defined the presence of AMPK 

related proteins in eukaryote parasites. A systematic functional analysis of protein kinases of 

Plasmodium bergheiidentified a homolog of SNF1 described as SNF1/KIN. This protein was 

shown to be important for sporozoite development, particularly in the egression to the salivary 

gland of the mosquito Anophelesstephensi by acting as a regulator of energy metabolism [81]. 

Similarly, a PfKINgene was identified in Pl. falciparumwhere it is predominantly expressed in 

the gametocyte stage being involved in the transmission and adaptation of the malaria parasite 

from the human bloodstream to the mosquito midgut[82].A comparative analysis of the 

kinomes of representative members of pathogenictrypanosomatids, namely 

Trypanosomabrucei, Trypanosomacruzi and Leishmania majorhave highlighted that AMPK 

homologues are relatively poorly represented within trypanosomatid genomes as compared to 

humans, although are predicted to be active [83]. The procyclic formsof T. bruceimonitor 

changes in glucose levels to regulate surface molecule expression, which is important for 

survival in the tsetse fly vector. While the AMPK subunit remains elusive, the  and  

subunits (TbAMPK and TbAMPK, respectively)play a role in surface molecule expression, 

as silencing of the genes leads to upregulation of procyclin expression. Moreover, the 

localization of the scaffold () subunit suggests positioning in the cell consistent with a role 

as an intermediary between surface molecule expression and glycolysis providing thus a 

molecular connection between these two mechanisms [84]. Finally, a SNF1 type protein 

kinase gene from Toxoplasma gondii(TOXPK1)with 58% identity to human AMPKwas 

shown to be transiently expressed to up-regulate glycogen biosynthesis during the 

development of tachyzoites into bradyzoites[85, 86]. Although efforts were made to 

characterize AMPK homologs in parasite organisms, their role during parasite adaptation to 

host remains elusive. 
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Conclusion and perspectives 

 It is now clear that pathogens have evolved multiple mechanisms to manipulate host 

regulatory pathways and hijack host cell metabolism to their own benefit. Modulation of 

AMPK activity appears to be a fundamental process involved in pathogen-hostinteraction. 

Although activation of AMPK helps pathogens to obtain sufficient amounts of energy and 

nutrient for their replication, inhibition of AMPK is also a strategy used by pathogens to 

evade innate host defense. This intricate pathogen-AMPK interaction is not limited to 

mammalian systems and seems to be conserved through evolution. Recent data suggest the 

existence of plant-specific SnRK1 (SNF1-related protein kinase) trimeric complexes involved 

in plant-pathogen interactions [87]. The SnRK1 heterotrimeric complex containing AKIN 

could be implicated in plant pathogen resistance through the interaction in the cytoplasm with 

AtHSPRO1/2 proteins, two defense-related genes, putatively involved in plant defense 

response [87]. In further support of this role, the expression of an antisense SNF1 transgene in 

Nicotianabenthamiana plants causes enhanced susceptibility similar to that conditioned by the 

geminivirus AL2 and L2 transgenes, whereas SNF1 overexpression leads to enhanced 

resistance. These observations suggest that the metabolic alterations mediated by SNF1 are a 

component of innate antiviral defenses and that SNF1 inactivation by AL2 and L2 is a 

counter-defensive measure[88]. 

 

 Determining how intracellular pathogens manipulate host metabolic functions to 

support their own growth and survival is essential to identify mechanisms of pathogenicity 

and host adaptation. Blocking or activating specific metabolic pathways may improve host 

cells response to intracellular pathogens and could be used in the treatment of infectious 

diseases.Exciting translational opportunities are arising from the use of pharmacological 

AMPK agonists/ antagonists (Table 1) and could pave the way towardsthe design of novel 

host-directed therapies.Thus, a major future challenge will be to dissect the precise role that 

AMPK plays in the life cycle of viruses, bacteria and parasites, allowing a better rationale 

toidentify new targets and designnovel anti-pathogenclinical interventions. 
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Table 1: Drugs acting through AMPK signalingto restrictintracellular pathogens 

survival and proliferation. 

 

Drug Description Pathogen Survival ref 

AICAR 

 

 

 

AMPK activator 

 

 

 

HCMV 

HCV 

HIV-1 

Influenza 

Mtb 

L. infantum 

- 

- 

- 

- 

- 

+ 

[43] 

[51] 

[55] 

[60] 

[68, 69] 

[73] 
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Pl. falciparum - [89] 

Metformin 

 

AMPK activator HCV 

Mtb 
- 

- 

[90] 

[51, 69] 

A-769662 

 

AMPK activator RVFV 

KUNV  

HCV 

- 

- 

- 

[50] 

[50] 

[51] 

Salicylate AMPK activator PRRSV - [91] 

EGCG AMPK activator T. brucei (-) [92, 93] 

Resveratrol SIRT1 activator HIV-1 - [55] 

AM251 CB1 antagonist HCV - [59] 

Tanshinone II A Redox balance HIV-1 - [61] 

Bryostatin PKC inhibitor HIV-1 - [58] 

Compound C 

 

AMPK inhibitor Ebolavirus 

ARV 
- 

- 

[27] 

[34] 

STO-609 CaMKK inhibitor HCMV - [32] 

 

Abbreviations: AICAR, 5-aminoimidazole-4-carboxamide-1--D-ribofuranoside;AMPK, 

AMP-activated protein kinase; ARV, avian reovirus; CB1, cannabinoid 1; CaMKK, 

calcium/calmodulin-dependent proteinkinasekinase; EGCG, (-)-epigallocatechin-3-gallate 

(EGCG)HCMV, human cytomegalovirus ;HCV, hepatitis C virus; HIV-1, human 

immunodeficiency virus-1;KUNV,kunjin virus; L. infantum, Leishmaniainfantum; Mtb, 

Mycobacterium tuberculosis; Pl. falciparum, Plasmodium falciparum; PKC, protein kinase C; 

PRRSV, porcine reproductive and respiratory syndrome virus; RVFV, Rift Valley fever virus; 

SIRT1, Sirtuin 1, T. brucei, Trypanosomabrucei. 
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Figure legends 

 

Figure 1:Target proteins and pathways regulated by AMPK. Main catabolic and anabolic 

pathways activated and inhibited, respectively, by AMPK activation are depicted. The 

proteins that are likely to mediate the effects of AMPK are shown (Direct AMPK targetsare 

labeled with a phosphorylation mark). ACC, acetyl CoA carboxylase; AMPK, AMP-activated 

protein kinase; CaMKK, calcium/calmodulin-dependent proteinkinasekinase;ChREBP, 

carbohydrate response element-binding protein; FAT/CD36, fatty acid translocase/cluster of 

differentiation; HDAC5, histone deacetylase 5; HMGR, 3-hydroxy-3-methylglutaryl-CoA 

reductase; LKB1, liver kinase B1; PFK2, 6-phosphofructokinase 2; PGC1, peroxisome 

proliferator-activated receptor  co-activator-1; SREBP1c, sterol regulatory element binding 

protein TCB1D1/4, Tre-2/BUB2/cdc 1 domain 1/4; TSC2, Tuberous sclerosis 2;ULK1, Unc-

51-like kinase 1. 

 

Figure 2: Viral infection mediatesa differential regulation of AMPK signaling pathway. 

During infection, manipulation of host AMPK activity is essential in the establishment and/or 

maintenance of infection. Virus infection may result in the stimulation(A) or inhibition(B)of 

AMPK to support virus growth and replication.AMPK, AMP-activated protein kinase; 

CaMKK, calcium/calmodulin-dependent proteinkinasekinase;GLUT4, glucose transporter 

4; Nampt, nicotinamidephosphoribosyltransferase; MKK3/6, MAPK kinase 3/6; mTORC1, 

mechanistic target of rapamycin complex 1; LKB1, liver kinase B1; LMP1, latent membrane 

protein 1; NS5A, viral nonstructural protein 5A; p38 MAPK, p38 mitogen-activated protein 

kinase; SIRT1, Sirtuin 1; TSC2, Tuberous sclerosis 2; ULK1, Unc-51-like kinase 1. 

 

 

Figure 3: AMPK ininnate host response to bacterial infection.AMPK acts as a restriction 

factor targeting bacteria to xenophagy. AMPK activation by the drugs AICAR and metformin 

induces antibacterial autophagy.AICAR, 5-aminoimidazole-4-carboxamide-1--D-

ribofuranoside, AMPK, AMP-activated protein kinase; CaMKK, calcium/calmodulin-

dependent proteinkinasekinase;mTORC1, mechanistic target of rapamycin complex 1; 

PGC1, peroxisome proliferator-activated receptor  co-activator-1; ULK1, Unc-51-like 

kinase 1. 

 

  



  21 

 
 

 



  22 

 

 
 



  23 

Graphical abstract 

 

 

 
 

 

Intracellular pathogens interact with the energy sensor AMP-activated protein kinase (AMPK) 

tohijack cellular metabolism for their own benefit. Inversely, AMPK acts as a restriction 

factor to limit pathogen infection. 

 

 


