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Motor function in the elderly
Evidence for the reserve hypothesis

ABSTRACT

Objective: The reserve hypothesis accounts for the lack of direct relationship between brain
pathology and its clinical manifestations. Research has mostly focused on cognition; our objective
is to examine whether the reserve hypothesis applies to motor function. We investigated whether
education, a marker of reserve, modifies the association between white matter lesions (WMLs), a
marker of vascular brain damage, and maximum walking speed (WS), an objective measure of
motor function. We also examined the cross-sectional and longitudinal association between edu-
cation and WS.

Methods: Data are from 4,010 participants aged 65–85 years in the longitudinal Three-City–
Dijon Study with up to 4 WS measures over 10 years. We examined the interaction between
education and WMLs for baseline WS. We studied the association between education and
repeated WS measures using linear mixed models, and the role of covariates in explaining the
education-WS association.

Results: Education was strongly associated with baselineWS; the difference in meanWS between
the high and low education groups (0.145 m/s, 95% confidence interval 5 0.125–0.165) was
equivalent to 7.4 years of age. WMLs were associated with slow WS only in the low education
group (p interaction 5 0.026). WS declined significantly over time (20.194 m/s/10 years, 95%
confidence interval 5 20.206, 20.182), but education did not influence rate of decline. Anthro-
pometric characteristics, parental education, general health, and cognition had the strongest role
in explaining the baseline education-WS association.

Conclusions: Participants with more education were less susceptible to WMLs’ effect on motor func-
tion. Higher education was associated with better motor performances but not with motor decline.
These results are consistent with the passive reserve hypothesis. Neurology� 2013;81:417–426

GLOSSARY
BMI 5 body mass index; MMSE 5 Mini-Mental State Examination; OR 5 odds ratio; PR 5 percentage reduction; SE 5
standard error; SES 5 socioeconomic status; WML 5 white matter lesion; WS 5 walking speed.

The concept of brain reserve accounts for the lack of direct relationship between brain pathology
and its clinical manifestations.1–3 High reserve, assessed via anatomical features of the brain or
markers of enriched environments (e.g., education, socioeconomic status [SES]), has been
associated with reduced clinical manifestations of neuropathologic changes.4–6 Risk factors have
also been found not to be related to the same extent to functional measures among those with
high and low reserve.7,8 Recent evidence suggests that higher education is strongly associated
with better cognitive performances but not with a slower rate of cognitive decline.9–12 These
findings are interpreted as supporting a “passive reserve” hypothesis: higher education is asso-
ciated with better performances because of the persistence of earlier differences rather than
differential rates of cognitive decline. In longitudinal studies, this translates into baseline
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differences between education groups with
parallel decline over time. This model is gen-
erally opposed to an “active” model that posits
education to be associated with higher func-
tion but also with less pronounced decline
through active compensation; this translates
into baseline differences that increase over
time.1

Research on reserve has mainly focused on
cognitive function. Motor decline is another
key aspect of aging and is highly heteroge-
neous across people. Our objective was to
examine whether the reserve hypothesis ap-
plies to motor function, assessed using objec-
tively measured maximum walking speed
(WS). First, we tested whether more-educated
persons were less susceptible to the effects of
brain vascular lesions on motor function by
examining the interaction between education
and white matter lesions (WMLs), a marker
of vascular brain damage associated with
poor motor function.13,14 Second, although
there is cross-sectional evidence of an associa-
tion between lower education and poorer
motor function,15–17 few studies have exam-
ined the association of education with motor
decline.18–20 To distinguish active from passive
reserve models, we examined cross-sectional
and longitudinal associations of education
with WS. Finally, we investigated the role of
a wide range of covariates in explaining the
education-WS association.

METHODS Subjects. The 3C Study is a cohort study of

community-dwelling persons aged 65 years and older in 3 French

cities (Bordeaux, Dijon, Montpellier).21 Data reported here were

collected in Dijon (n5 4,931). At baseline (wave 0, 1999–2001),

eligible Dijon inhabitants were invited to participate. Participants

were then seen approximately every 2 years; 6 waves of data col-

lection took place until 2010. Participants aged 85 years and

younger were invited to the study center at each wave to be

interviewed and for additional investigations, including WS

measures. From wave 2 onward, participants were offered the

opportunity of being seen exclusively at home. Wave 3 consisted

of a self-administered questionnaire.

Study protocol approvals, registrations, and patient
consents. The study protocol was approved by the Ethics Com-

mittee of Kremlin-Bicêtre University Hospital. Participants

signed an informed consent form.

Walking speed. WS was measured in participants aged 85 years

and younger who visited the study center at baseline and after

4 years (wave 2, 2003–2004), 8 years (wave 4, 2007–2008),

and 10 years (wave 5, 2009–2010). WS was measured using

2 photoelectric cells (6 m apart) connected to a chronometer.

Participants were asked to walk at “usual” and “fast” (without

running) speed. WS was computed as 6 m divided by time (sec-

onds). Short-term reproducibility was assessed by taking 2 meas-

ures 5 minutes apart in a random sample (n 5 51, mean age 5

80.1 years, SD 5 3.4). Intraclass correlation coefficients (stan-

dard error [SE]) were as follows: usual WS 5 0.84 (0.02); max-

imum WS 5 0.92 (0.02).22 Given similar results for both

measures and higher reproducibility of maximumWS, we present

results using this measure.

White matter lesions. WML volumes (total, periventricular,

deep) were measured at baseline in participants aged 80 years

and younger on brain MRI scans using an automated method

(e-Methods on the Neurology® Web site at www.neurology.org).23

We previously showed that higher WML volume was associated

with slower baseline WS and change in WS based on 2 measures.13

Covariates. Data were collected during face-to-face interviews

using standardized questionnaires administered by trained psy-

chologists. Education was self-reported at baseline as the highest

degree obtained. For our main analyses, we categorized education

as a 3-level variable in order to have sufficient power for interac-

tion analyses: primary school degree or less (low), secondary

school degree (intermediate), high school or university degree

(high). In sensitivity analyses, we used a more detailed definition

(6 levels). Other covariates are described in e-Methods.

Statistical analysis. Participants with conditions that cause gait

impairment (Parkinson disease, dementia, stroke, recent hip frac-

ture) were excluded. Baseline participants’ characteristics were

described overall and by education and sex-specific tertiles of WS.

To assess the interaction between education and WMLs on

the risk of slow WS, we used logistic regression stratified by edu-

cation with WS below the sex-specific median as the dependent

variable and WML volume as the explanatory variable. The inter-

action term allowed testing for differences in odds ratios (ORs) of

slow WS by education. Analyses were adjusted for age, sex,

height, body mass index (BMI), cognitive function (Mini-Mental

State Examination [MMSE]), and total white matter volume.

Because the relation betweenWS andWMLs may not be linear,13

we repeated these analyses by dichotomizing WMLs at the 90th

percentile.

To investigate the association of education with baseline WS

and change inWS, we used a linear mixed-effects model with ran-

dom effects for the intercept and slope, allowing individuals to

have different baseline WS and rates of decline. Time since base-

line (years) was included as a continuous linear term and divided

by 10; regression coefficients correspond to a 10-year increment.

Adding a quadratic term did not improve the models’ fit (p 5

0.54). Models were adjusted for the 2 main correlates of WS (sex

and continuous baseline age). Education’s main effect corre-

sponds to its association with baseline WS; the education3 time

term represents its effect on WS change over time. WS measures

over the follow-up were missing because of death, participants

becoming older than 85 years, incident causes of gait impairment,

home examination (where WS was not measured), and nonre-

sponse. To investigate the influence of missing data, we replicated

the analyses using multiple imputation (e-Methods).

To assess the role of confounders and mediators in explaining

the education–baseline WS association, we used linear regression

serially adjusted for covariates. Model A included education, age

(continuous), and sex. We assessed the extent to which the asso-

ciation was explained by covariates (models B–J): anthropometric

measures, health behaviors, cardiovascular risk factors, chronic

conditions, cognitive function, depressive symptoms, psychoso-

cial factors, parental education, and general health. Model K

includes all covariates. The percentage reduction (PR) of the
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education-WS association was computed as 100 3 (bModel i 2

bModel A)/bModel A.

The p values were 2-tailed and p # 0.05 was considered

statistically significant. Statistical analyses were performed using

SAS 9.2 (SAS Institute, Cary, NC).

RESULTS Study population characteristics. At base-
line, 4,421 participants (aged 65–85 years) were seen
at the study center. After excluding 136 participants
with conditions that cause gait impairment, 4,285
were eligible and 4,012 had at least one WS measure
over the follow-up. Participants without any WS
measure (n 5 273) were older (p , 0.0001), more
disabled (p , 0.0001), had higher BMI (p ,

0.0001), lower MMSE scores (p , 0.0001), tended
to be less physically active (p5 0.08), and male (p 5
0.13) at baseline than those included in analyses.
Education was similar in the 2 groups (OR low vs
high/intermediate 5 1.02, 95% CI 5 0.77–1.34).
Data on education were missing for 2 participants;
the analytic sample comprised 4,010 persons. Over
the follow-up, 619 participants died, 424 reached 86
years (and were no longer invited to the study center),
1,356 preferred home interviews, and 249 were
excluded because of incident conditions causing gait
impairment. Overall, 961 participants (24.0%) had
4 WS measures, 754 (18.8%) had 3, 944 (23.5%)
had 2, and 1,351 (33.7%) had 1; 3,709 had a baseline
measure. Highly educated participants were less likely
to have missing WS measures (table e-1); however,
this difference was lost after adjustment for character-
istics associated with missingness (greater age and BMI,
disability, low physical activity, lower MMSE score).

Table 1 describes participants’ characteristics.
Approximately one-third had high education. More-
educated participants were taller and in better health.
Men walked faster than women. Ten years’ greater age
was associated with a WS difference of 20.196 m/s
(95% CI 5 20.215, 20.178). In age- and sex-
adjusted analyses, faster WS was associated with better
physical and mental health and higher education.

Interaction between WMLs and education. Mean (SE)
WML volume (cm3 adjusted for age, sex, total white
matter volume) was similar (p 5 0.93) across educa-
tion groups: low5 5.60 (0.22); intermediate5 5.48
(0.22); and high5 5.51 (0.20). Analyses of the inter-
action between education and WMLs are based on
1,621 participants (61% women, mean age 5 72.3
years) with MRI data (table 2). Increasing WML vol-
ume was associated with greater ORs of slowWS only
in the low education group; this association weakened
as education increased (p interaction 5 0.026). Re-
sults remained unchanged after adjustment for
height, BMI, and MMSE score. Similar patterns were
observed for periventricular and deep WMLs. High
WML volumes were not associated with slow WS

among highly educated participants (OR 5 0.72),
but were associated with a 2-fold-increased risk of
slow WS among those with low education (OR 5

3.19/1.615 1.99). The association between low edu-
cation and slow WS was stronger among those with
high volumes (OR5 3.19/0.725 4.43) compared to
those with low volumes (OR 5 1.61) (table e-2).

Longitudinal association between education and WS.

WS decreased in a fairly linear way (figure e-1).
Between-subject heterogeneity was significant, more
pronounced for baseline WS (0.074, SE 5 0.002,
p , 1024) than decline (0.023, SE 5 0.003, p ,

1024), and decreased after adjustment for age, sex,
and education (intercept 0.048, SE 5 0.002; slope
0.020, SE 5 0.003).

Higher education was associated with faster base-
line WS (table 3); the age- and sex-adjusted difference
in WS between high and low education groups
(0.145 m/s) represents 0.47 SD of the WS distribu-
tion, and is equivalent to an age effect of 7.4 years.
On average, WS declined over time: the average
10-year decline was 20.194 m/s (95% CI 5

20.206, 20.182). Decline was slightly more pro-
nounced in more-educated participants, but the dif-
ference did not reach statistical significance (p 5

0.08). This pattern was not modified by sex (p value
time 3 sex 3 education 5 0.80) or age (p value
time 3 age 3 education 5 0.20) (figure 1). In sen-
sitivity analyses based on a 6-level definition of edu-
cation, education did not influence WS decline (p 5
0.37). Analyses with multiple imputation of missing
values yielded similar conclusions (table 3), and the
trend toward faster decline in more-educated partic-
ipants disappeared (p 5 0.70).

Characteristics explaining the baseline association between

education and WS.Health behaviors, cardiovascular risk
factors, chronic diseases, depressive symptoms, and
psychosocial factors had a small role in explaining
the education-WS association (table 4; 0.0% #

PRHigh education#28.2%). Anthropometric character-
istics, parental education, cognition, and general health
had a stronger role (212.2% # PRHigh education #

214.3%) (table 4). All covariates together explained
approximately 40% of the association.

DISCUSSION Our main objective was to examine
whether the concept of reserve, thus far explored
mainly in relation to cognition, also applies to motor
function. In analyses adjusted for age, sex, cognition,
and other covariates, we found an interaction
between education, a marker of reserve, and WMLs,
a marker of brain damage: the adverse effect of
WMLs on WS was observed only in the low educa-
tion group, and the association between low educa-
tion and slow WS was stronger among those with
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Table 1 Baseline characteristics of the participants by education and maximum walking speed

Educationa Maximum walking speedb

Characteristics Overall (n 5 4,010) Low (n 5 1,391) Intermediate (n 5 1,284) High (n 5 1,335) Low (n 5 1,254) Intermediate (n 5 1,258) High (n 5 1,197)

Mean age, y (SD) 73.4 (4.6) 73.7 (4.5) 73.1 (4.6) 73.3 (4.8)c 75.3 (4.7) 73.2 (4.5) 71.7 (4.2)d

Women, % 61.6 66.0 66.6 52.3d 60.9 65.5 58.6d

Married, % 40.4 42.9 41.9 36.5 42.8 41.9 35.9

High education, % 33.3 — — — 23.6 32.8 43.6d

Father’s education, high, %e 26.3 8.8 18.1 49.5d 23.6 24.9 31.1d

Mother’s education, high, %f 22.5 6.9 16.7 42.9d 16.8 22.0 28.4d

Mean height, cm (SD) 162 (9) 160 (9) 161 (8) 164 (9)d 160 (9) 161 (9) 164 (8)d

Mean BMI, kg/m2 (SD) 25.7 (4.0) 26.3 (4.2) 25.6 (4.1) 25.2 (3.7)d 26.7 (4.4) 25.4 (3.8) 24.9 (3.5)d

Intake of fruits and vegetables, %

Low 7.4 8.5 6.6 7.1c 9.3 7.0 6.4g

Intermediate 26.9 27.7 26.3 26.7 27.0 26.9 26.2

High 65.6 63.8 67 66.2 63.7 66.1 67.4

Low physical activity, % 23.7 22.7 24.7 23.9 30.3 20.7 19.5d

Current alcohol consumption, % 79.0 75.4 79.1 82.6g 77.8 78.4 81.0c

Current or ex-smoker, % 38.6 33.4 35.8 46.7d 37.6 36.4 41.6

Psychotropic drug use, % 25.0 28.1 26.1 20.8g 33.4 24.0 18.6d

NSAIDs for joint pain, % 15.0 16.8 14.7 13.4 19.5 14.5 10.6d

CAD/PAD, % 12.4 14.1 9.9 13.0c 17.1 10.8 9.3d

Dyspnea, % 13.2 15.3 13.7 10.4g 21.0 11.9 7.5d

Hypercholesterolemia, % 40.0 44.1 39.6 36.1d 41.6 40.8 37.2d

Diabetes, % 7.5 7.8 8.0 6.7 9.9 6.7 6.0d

Hypertension, % 79.0 82.9 77.9 76.1d 85.6 77.9 73.9d

Mean homocysteine, mmol/L (SD) 14.9 (5.5) 15.1 (5.7) 15.1 (5.8) 14.5 (5.0)d 15.8 (5.9) 14.6 (5.1) 14.3 (5.5)d

Depressive symptoms, % 12.7 13.1 12.8 12.4 18.1 11.4 9.5d

Mean MMSE score (SD) 27.5 (1.9) 26.8 (2.1) 27.5 (1.7) 28.1 (1.4)d 27.0 (2.1) 27.6 (1.8) 27.8 (1.7)d

Feeling of loneliness, % 14.5 16.0 15.2 12.1 19.1 13.2 11.2d

Mean social activities score (SD) 6.5 (2.9) 6.2 (2.9) 6.3 (2.8) 7.0 (2.9)d 6.1 (2.8) 6.5 (2.8) 7.0 (2.9)d

Self-rated health, %

Poor or very poor 3.5 4.1 3.5 2.8 2.7 4.6 9.3d

Average 36.0 39.3 36.0 32.7 45.4 56.0 63.3

Good 54.9 52.1 56.2 56.6 45.5 36.7 25.9
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Table 1 Continued

Educationa Maximum walking speedb

Characteristics Overall (n 5 4,010) Low (n 5 1,391) Intermediate (n 5 1,284) High (n 5 1,335) Low (n 5 1,254) Intermediate (n 5 1,258) High (n 5 1,197)

Very good 5.6 4.5 4.3 7.9d 6.4 2.7 1.5

Medical contacts per year, %h

‡5 24.9 27.2 26.8 20.8 35.0 22.9 17.5d

3–4 49.8 54.3 51.5 43.5 51.2 52.2 45.9

£2 25.3 18.5 21.7 35.7d 13.9 24.9 36.6

Hierarchical disability index, %

0 54.2 53.3 55.6 53.7 40.4 52.7 69.1d

1 41.0 40.5 40.0 42.6 49.8 44.0 29.3

2 or 3 4.8 6.2 4.4 3.7 9.7 3.4 1.7

Falls in the preceding year, % 16.4 16.3 17.8 15.1 19.6 17.0 12.2d

Mean walking speed, m/s (SD)a 1.5 (0.3) 1.4 (0.3) 1.5 (0.3) 1.6 (0.3)d 1.2 (0.2) 1.5 (0.1) 1.8 (0.2)d

Abbreviations: BMI 5 body mass index; CAD 5 coronary artery disease; MMSE 5 Mini-Mental State Examination; NSAID 5 nonsteroidal anti-inflammatory drug; PAD 5 peripheral artery disease.
aEducation was defined according to the highest degree obtained and categorized into 3 levels: primary school degree or less (low), secondary school degree (intermediate), high school or university degree (high).
The p values were computed using the Mantel-Haenszel trend test for categorical variables and analysis of variance (linear contrasts) for continuous variables, adjusted for age and sex where appropriate.
bMaximum walking speed was measured at baseline and categorized according to sex-specific tertiles (men: tertile 1 5 #1.50 m/s, tertile 2 5 1.51–1.82 m/s, tertile 3 5 .1.82 m/s; women: tertile 1 5 #1.30 m/s,
tertile 2 5 1.31–1.50 m/s, tertile 3 5 .1.50 m/s). Because maximum walking speed was not available at baseline in all 4,010 participants (301 participants had no baseline measure but had at least one measure
during the follow-up), analyses of the relation between participants’ characteristics and baseline walking speed are based on 3,709 participants. For clarity of the presentation, we present percentages and means
by sex-specific tertiles of walking speed, but p values were computed using analysis of covariance with walking speed as the dependent continuous variable and were adjusted for age and sex where appropriate.
cp Value , 0.05.
dp Value , 0.001.
e Father’s education was dichotomized as high school or university degree (high) vs lower and was not available for 530 participants.
fMother’s education was dichotomized as high school or university degree (high) vs lower and was not available for 346 participants.
gp Value , 0.01.
hUsual number of contacts with a general practitioner per year.
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high WML volumes. The corollary, that more-
educated persons are less susceptible to the deleterious
effects of brain vascular lesions on motor function, is
in favor of the reserve hypothesis. Our results show
robust cross-sectional education-WS associations;
the WS difference between high and low education
is clinically meaningful because a 0.1 m/s higher

WS is estimated to be associated with a 12% reduced
mortality risk.24 Finally, our results show that WS
decline was similar across education groups. Analyses
using other SES markers (income, main occupation)
yielded similar findings (data not shown). Taken alto-
gether, these results provide evidence for the passive
reserve hypothesis.

Table 2 Association between the volume of brain WMLs and slow maximum walking speed stratified by education

Model 1a Model 2b Model 3c Model 4d

Education ORe 95% CI pf ORe 95% CI pf ORe 95% CI pf ORe 95% CI pf

Total WMLs

Low (n 5 509) 1.43 1.08, 1.89 1.43 1.09, 1.89 1.38 1.05, 1.83 1.39 1.05, 1.84

Intermediate (n 5 513) 1.26 0.91, 1.39 1.10 0.89, 1.36 1.13 0.91, 1.39 1.10 0.89, 1.36

High (n 5 598) 0.97 0.82, 1.15 0.025 0.97 0.82, 1.14 0.034 0.96 0.82, 1.14 0.027 0.96 0.81, 1.13 0.037

Periventricular WMLs

Low (n 5 509) 1.39 1.04, 1.86 1.38 1.03, 1.85 1.34 1.00, 1.80 1.34 1.00, 1.79

Intermediate (n 5 513) 1.12 0.91, 1.39 1.09 0.88, 1.36 1.12 0.91, 1.39 1.10 0.88, 1.37

High (n 5 598) 0.97 0.83, 1.14 0.043 0.97 0.82, 1.15 0.069 0.96 0.82, 1.13 0.049 0.96 0.82, 1.14 0.076

Deep WMLs

Low (n 5 509) 1.26 1.04, 1.51 1.27 1.05, 1.53 1.24 1.03, 1.49 1.26 1.04, 1.52

Intermediate (n 5 513) 1.07 0.92, 1.25 1.05 0.90, 1.23 1.07 0.92, 1.25 1.05 0.90, 1.23

High (n 5 598) 1.00 0.87, 1.16 0.079 0.97 0.84, 1.13 0.055 1.00 0.86, 1.16 0.068 0.97 0.83, 1.12 0.049

Abbreviations: BMI 5 body mass index; CI 5 confidence interval; MMSE 5 Mini-Mental State Examination; OR 5 odds ratio; WML 5 white matter lesion.
aModel 1 is adjusted for age, sex, and total white matter volume.
bModel 2: model 1 1 height and BMI.
cModel 3: model 1 1 MMSE score.
dModel 4: full model.
eORs and 95% CIs computed using logistic regression with walking speed below the sex-specific median (1.50 m/s in women, 1.71 m/s in men) as the
dependent variable and the volume of brain WMLs (continuous variable divided by its sex-specific SD) as the explanatory variable. ORs represent the
change in the probability of walking slower than the median for an increase in 1 SD of the volume of brain WMLs. Sex-specific means (SDs) of WMLs were
as follows: total WMLs 5 5.17 (4.93) cm3 in women and 6.07 (5.14) cm3 in men; periventricular WMLs 5 3.77 (4.19) cm3 in women and 4.40 (4.23) cm3 in
men; deep WMLs 5 1.40 (1.16) cm3 in women and 1.67 (1.45) cm3 in men. All variables were measured at baseline.
f The p values for the difference in ORs across strata of education level were computed by including an interaction term between education and the volume
of WMLs in the models.

Table 3 Association of education with baseline maximum walking speed and change in maximum walking speed

Education

Complete-case analysis Multiple imputation analysis

ba 95% CI p p Trend ba,b 95% CI p p Trend

Association with baseline walking speed in m/s

Low Ref. Ref.

Intermediate 0.060 0.040, 0.080 ,0.001 0.058 0.038, 0.078 ,0.001

High 0.145 0.125, 0.165 ,0.001 ,0.001 0.143 0.123, 0.164 ,0.001 ,0.001

Association with change in walking speed in m/s (per 10 y)

Low Ref. Ref.

Intermediate 20.027 20.057, 0.003 0.083 20.001 20.004, 0.002 0.56

High 20.027 20.056, 0.003 0.075 0.085 20.001 20.004, 0.002 0.70 0.70

Abbreviations: CI 5 confidence interval; Ref. 5 reference.
a Regression coefficients (b) and 95% CIs from a linear mixed model adjusted for age at baseline (continuous variable centered at 65 years), sex, and their
2-way interactions with time. Time (in years, divided by 10) and the intercept are included as random effects with an unstructured covariance matrix.
b Twenty datasets generated using Proc MI were pooled and analyzed using Proc MIANALYZE in SAS 9.2.
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The reserve concept is based on the observation of
an inconsistent relationship between the degree of
brain damage and cognitive function. Persons with
high reserve do not show clinical manifestations of
neuropathology to the same extent as persons with
low reserve. This concept has been extended beyond
brain injury through research on the association of
reserve markers, education in particular, with cogni-
tive function. Passive and active reserve models are
generally distinguished, although the demarcation is
not clear-cut.1,25 There is consistent epidemiologic
evidence in favor of a role of reserve in aging, but
its neural substrate remains under investigation.26,27

To our knowledge, the reserve concept has not
been applied to motor function, but there are several
parallels between motor and cognitive function. First,
the education-WS association is similar in strength to
the education-cognition association: the difference in
MMSE scores between the high and low education
groups in our data corresponds to 0.69 SD of the
MMSE distribution, and the corresponding figure
for WS is 0.47. Second, determinants of motor func-
tion are multifactorial. Although there is clearly a
peripheral component (e.g., musculoskeletal, sen-
sory), motor function is also under brain control with
vascular lesions known to affect motor performances.

WMLs, particularly in the periventricular region,
have been associated with worse motor performan-
ces,13,14 and lie on the pathway between cardiovascu-
lar risk and motor function. Our finding that the
WMLs-WS association weakened with increasing
education is comparable to findings for cognition,28

supporting the view that more-educated persons are
able to sustain more brain damage without experienc-
ing adverse outcomes. Provided that enriched envi-
ronments, of which education is a marker, influence
neuronal circuits involved in motor control, we
hypothesize that reserve may contribute to explaining
the association of education with motor function. In
animals, motor stimulation and physical activity are
associated with changes in brain neurochemistry
and physiology that may be relevant for the reserve
theory.26,29 Third, our findings support a passive
reserve hypothesis; studies on cognition show compa-
rable findings as education has a robust cross-sectional
association with cognition but not with cognitive
decline.11,12,30,31

Several studies have shown markers of low SES
(including education) to be associated with poorer phys-
ical functioning assessed using subjective measures.32,33

Few studies used objective measures and most were
cross-sectional.15–17 Longitudinal data based on more
than 2 measures are scarce and showed that education
is associated with motor function in cross-sectional anal-
yses but did not influence change over time (maximum
follow-up, 5 years).19,20

We extend findings on the SES–motor function-
ing association in several ways. We showed that per-
sons with lower education had slower WS and this
association was not modified by sex or age. In addi-
tion, based on 4WS measures over a longer follow-up
(10 years) than previous studies, we found no evi-
dence that education influences WS decline. There
was some indication that participants in the high/
intermediate education groups tended to decline
more than less-educated participants but this trend
completely disappeared when using a more detailed
education definition or taking missing values into
account. This is because those with missing WS
measures during the follow-up were older, heavier,
more disabled, and less physically active (all associated
with low education) and therefore at higher risk of
motor decline.

Education has a major influence on physical and
mental health and the education-WS association
was partially explained by a number of covariates,15,16

among which anthropometric measures, cognition,
parental education, and general health had an impor-
tant role. The association of education with BMI and
height is well documented; both have a strong
“mechanical” impact on WS. Cognitive and motor
function are known to be associated but effect sizes

Figure 1 Predicted trajectories of mean maximum walking speed (m/s) over the
follow-up by education, sex, and median age at baseline

In sex-stratified analyses, the graph represents the mean decline in walking speed in individ-
uals aged 65 years at baseline. In analyses stratified by age, the graph represents mean
decline in walking speed in women (blue line5 high; red line5 intermediate; black line5 low).
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are modest at best. A recent review reported standard-
ized b regression coefficients comprised between 0.05
and 0.1534; the authors concluded that the observed
associations were not sufficiently strong or consistent
to provide conclusive evidence for common causes.34

Cognition appears not to have a major role in the
education-WS association: in our study, MMSE ex-
plained 15% of the association; using alternative tests
(Isaac Test, Benton Visual Retention Test, Trail
Making Test) yielded similar conclusions (data not
shown). Finally, because childhood and adult SES
are independently associated with slower WS in old
age,35 parental education was used as a surrogate for
childhood SES and attenuated the education-WS
association by approximately 12%.

This study’s main strengths include repeated WS
measures over 10 years in a large sample of commu-
nity-dwelling elderly persons. In addition, we used a
highly reproducible WS measure that is not affected
by ceiling effects. Nonresponse over the follow-up
represents its main limitation. We dealt with missing
values by using multiple imputation and including

data on surrogates of motor function, and found re-
sults similar to those from the main analysis. We did
not include a standardized assessment of peripheral
neuropathy, but we took important risk/protective
factors (alcohol, diabetes, diet) of peripheral neurop-
athy into account.

In conclusion, more-educated persons were less
susceptible to the effect of WMLs on motor function
and higher education was associated with better
motor performances but not with slower decline.
We hypothesize that the concept of reserve extends
to motor function and show evidence for the concept
of passive reserve.
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Table 4 Association of education with baseline maximum walking speed: The role of covariatesa

Education level

Intermediate High

Model Low bb 95% CI PR, %c bb 95% CI PR, %c p Trend

A 5 adjusted for baseline age and sex Ref. 0.058 0.037, 0.079 — 0.147 0.127, 0.168 — ,0.0001

B 5 model A 1 height and BMI Ref. 0.049 0.029, 0.070 215.5 0.127 0.107, 0.148 213.6 ,0.0001

C 5 model A 1 health behaviorsd Ref. 0.058 0.037, 0.079 0.0 0.146 0.125, 0.167 20.7 ,0.0001

D 5 model A 1 cardiovascular risk factorse Ref. 0.057 0.036, 0.078 21.7 0.140 0.119, 0.161 24.8 ,0.0001

E 5 model A 1 cognitionf Ref. 0.048 0.027, 0.069 217.2 0.129 0.108, 0.151 212.2 ,0.0001

F 5 model A 1 depressive symptomsg Ref. 0.057 0.037, 0.078 21.7 0.147 0.127, 0.168 0.0 ,0.0001

G 5 model A 1 chronic diseasesh Ref. 0.052 0.031, 0.072 210.3 0.135 0.115, 0.156 28.2 ,0.0001

H 5 model A 1 psychosocial factorsi Ref. 0.059 0.038, 0.080 1.7 0.139 0.118, 0.160 25.4 ,0.0001

I 5 model A 1 parental education levelj Ref. 0.051 0.030, 0.072 212.1 0.128 0.105, 0.151 212.9 ,0.0001

J 5 model A 1 general healthk Ref. 0.054 0.034, 0.074 26.9 0.126 0.106, 0.146 214.3 ,0.0001

K 5 fully adjustedj Ref. 0.037 0.017, 0.058 236.2 0.081 0.057, 0.105 244.9 ,0.0001

Abbreviations: BMI 5 body mass index; CI 5 confidence interval; PR 5 percentage reduction; Ref. 5 reference.
a Analyses are based on 3,709 subjects with baseline walking speed and education data available.
bRegression coefficients (b) and 95% CIs were computed using linear regression with baseline walking speed as the dependent variable. They represent
the difference in baseline walking speed associated with the corresponding group of education level compared with the reference group (low education). All
regression coefficients b are significant at the p , 0.001 level.
c PR in the regression coefficient for models B–K.
dSmoking, alcohol consumption, diet, and physical activity.
e Hypertension, diabetes, hypercholesterolemia, and homocysteine level.
f Assessed through the Mini-Mental State Examination.
gAssessed through the Center for Epidemiologic Studies Depression Scale.
hHistory of coronary or peripheral artery disease; self-report of dyspnea for minor efforts, daily activities, or at rest; regular use of nonsteroidal anti-
inflammatory drugs for joint pain; psychotropic drug use.
iMarital status, feeling of loneliness, and engagement in social activities.
j Father’s and mother’s education level was missing for some participants (table 1) and we included an indicator variable to retain them in the analyses.
Analyses excluding subjects without information for parental education level yielded identical results.
k Assessed through a question on self-rated health and the number of contacts with a general practitioner per year.
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