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ABSTRACT 

In multicellular organisms cell shape and organization are dictated by cell-cell or cell-

extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton 

enabling cells to sense their mechanical environment. Unfortunately, most of cell biology 

studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a 

hard, homogeneous and unconstrained substrate with non-specific adhesion sites – thus far from 
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physiological and reproducible conditions. Here, we grew cells on three different fibronectin 

patterns with identical overall dimensions but different geometries (׏, T and Y), and investigated 

their topography and mechanics by atomic force microscopy (AFM). The obtained mechanical 

maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-

specific subcellular differences. We found that local Young’s moduli variations are related to the 

cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties 

induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically 

investigate cell mechanics and their variations, and present further evidence for a tight relation 

between cell adhesion and mechanics. 
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Tissue development and maintenance relies on a continuous interplay between each cell and its 

environment, through both biochemical signals and physical cues. Through cell-cell and cell-

extracellular matrix contacts and interactions, cells are able to sense external forces and 

geometrical constraints.1–4 Such signals are fundamental to regulate cellular processes such as 

differentiation, growth, division and even cell death.3,5–7 A quantitative characterization of cell 

mechanics, and elasticity in particular, is thus fundamental to understand how structural and 

functional integrity of cells and tissues are maintained.6,8 The major contribution to cell elasticity 

is provided by the cytoskeleton, and by actin filaments in particular.9,10 Several techniques have 

been developed in the last decades to investigate cell mechanics,11 such as magnetic (MT)12–14 

and optical tweezers (OT),15,16 the optical stretcher (OS),17 magnetic twisting cytometry 

(MTC),12,16,18particle tracking microrheology (PTM),19–22 traction force microscopy (TFM),23,24 

real-time deformability cytometry (RTDC),25 atomic force microscopy (AFM)26,27 and others. 

Despite its low through-put compared to MT, OS, MTC or RTDC, AFM offers high spatial and 

force resolution over a wide range of forces and a controlled contact geometry. Additionally, 

AFM provides simultaneous topographical and mechanical characterization of living cells.28–30 

Unlike MT, MTC or PTM, no probe binding or injection into the sample are needed and 

measurements are thus performed in physiological conditions. Moreover, AFM is suitable for 

both adherent and non-adherent cells.31,32 

Improvements of AFM elasticity measurements, better understanding of contact geometry, as 

well as models accounting for the influence of sample thickness, set the standards in the field of 

cell mechanics.33–40 Although quantification of the elasticity by one single value measured in the 

central region of cells has proven to give useful information, for example in the comparison of 

cancer and normal cells,41–43 local elasticity variations could not be detected in such experiments 
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and important information about the mechanics of subcellular structures was missed.44 Such 

information is provided by AFM mechanical mapping, i.e. acquiring force-distance curves on 

each pixel of the image, thus allowing to identify subcellular regions characterized by specific 

stiffness associated with local structures.29,30,26,45,46 For example, nuclear versus peripheral 

regions, or actin-rich versus actin-poor areas show differences in elasticity of up to four orders of 

magnitude, from tens of Pa to some hundreds of kPa.19,45,47–49 Moreover, local mechanical 

characteristics have been attributed to specific cellular structures as tested by drug 

treatments.10,48,50,51 These may affect some cell areas (i.e. the structures present in these areas), 

but leave others unaltered revealing structural and mechanical heterogeneity. 

A major problem in the quantification of mechanical maps on cells is the lack of reproducible 

morphology in standard culture conditions. In fact, culture dishes represent an infinite, 

homogeneous surface on which cells undergo continuous structural and morphological 

rearrangements and never attain a defined state. The mechanical properties of cells reflect such 

variability, preventing a quantitative description of cell mechanics that takes into account 

subcellular differences in a systematic manner. 

By growing cells on adhesive micropatterns, a well-defined and confined environment is 

imposed that drives cells to adopt regular shapes and cytoskeletal organization.4,52–55 Such 

regularity allows us to investigate single cells, but also to average maps acquired on different 

cells, providing information on constant and reproducible cell features. Moreover, specific 

cellular processes such as division or migration could be controlled by defining the cell adhesion 

geometry, mimicking the spatial constraints that a cell is exposed to inside a tissue.53,54,56–58 

Indeed, the combination of patterning techniques with mechanical mapping has provided new 

insights in the identification of local mechanical heterogeneities of cells. Park et al. investigated 
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local cell stiffness in relation to the remodeling rate of the CSK actin density and prestress, and 

provided evidence for a linear correlation between cell stiffness and prestress.59 Other groups 

used AFM mechanical mapping to study cell elasticity dependence on parameters like cell spread 

area, substrate stiffness or actin distributions.60,61 Although important findings have been 

achieved, a systematic method is still lacking which allows identifying preserved mechanical 

features and their precise location within the cell in relation to the adhesion geometry. The aim 

of this work was to show how cell mechanics are determined on a global and local level by the 

adhesive cell environment. This has been achieved through establishing a combined method of 

AFM-based mechanical mapping and averaging of elasticity maps of living cells confined on 

adhesive micro-patterns. This strategy allows a more quantitative and reproducible way of 

probing local mechanics of cells. By computing average elasticity maps of cells plated on three 

different patterns, we identified specific mechanical responses that depend on the adhesion 

geometry, on both global and local scales. Importantly, averaging mechanical maps allows us to 

distinguish local elasticity variations present at repetitive cell locations on each adhesion pattern, 

separating them from non-reproducible variations due to the intrinsic heterogeneity of cells. As a 

proof of concept, we perturbed the acto-myosin cytoskeleton of patterned cells with specific 

drugs and mapped their elasticity. 

Results 

Cell adhesion determines cell elasticity: To investigate how the adhesion geometry influences 

cell global and local elasticity, RPE1 cells were plated on micropatterned glass-bottom culture 

dishes. The three micropatterns, ׏, T and Y (Figure 1A), impose similar overall cell shapes, but 

provide different adhesion geometries. As a consequence, adhesion structures formed by the cells 

differ and the actin cytoskeleton is in turn reorganized in a pattern-dependent manner 
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(Figure 1B). Thick actin fibers and curved membrane borders are formed at concave pattern 

edges, as occur on the T- and Y-shaped patterns. On fully adhesive edges (׏ and top side of T) 

thinner fibers and straight membrane borders are formed. 

AFM was operated in peak force quantitative nanomechanical mapping (PF-QNM) mode 

using cantilevers with nominal spring constant of ~ 0.1 N/m featuring a conical tip of 15 μm in 

height and half open angle of 11º. Single cell topography and elasticity maps were acquired of 

RPE1 cells plated on ׏-, T-, and Y-shaped fibronectin micropatterns (referred to as ׏-, T- or Y-

cells, n=16, 14, 18 respectively). Figure 1C reports cell topography images and vertical cross 

sections of single ׏‐,	T‐	 and	Y‐	 cells.	 The	 latter	 appear slightly shorter ሺ~37	µmሻ along the 

vertical axis compared to T- and ׏‐cells	ሺ~40	µmሻ,	as	expected	because	of	 the	concavity	of	

the	top	border. 

Two different strategies were applied for the characterization of the mechanics of 

micropatterned cells. On the one hand, we computed average maps (Figure 2A and B), which 

were obtained by calculating the mean value of each pixel after aligning single elasticity and 

topographical maps. Such average maps highlighted local elasticity features resulting from 

specific and reproducible responses of cells to a given adhesion pattern, and not due to single 

cells’ differences. On the other hand, we evaluated mechanical heterogeneity within each pattern 

group by calculating average elasticity histograms and coefficient of variation (CV) maps 

(Figure 3). These take into account both cell-to-cell and single cell intracellular heterogeneities. 

From average elasticity maps, histograms were plotted to evaluate average elasticity distributions 

(Figure 2C). Cells plated on a ׏ were overall softer (median at 32 kPa, 4.52 log (Pa)) than cells 

plated on T (34 kPa, 4.54 log (Pa)) while cells plated on Y were the stiffest (41 kPa, 4.61 log 
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(Pa)) (the observed differences of the three distributions were statistically significant according 

to Mann-Whitney U-test at 0.05% confidence level. Figure SI1 shows overlapped distributions 

and box plots). Other than presenting different median values, two regions could be identified in 

the histograms, which were not superposed in the three cases. In particular, the histogram of the 

average ׏ presented a unique region in the interval 25 – 32 kPa (4.4 -4.5 log (Pa)) and average Y 

histogram showed a characteristic region between 40 and 63 kPa (4.6 and 4.8 kPa). The average 

T histogram did not show unique features and compared to the ׏ and the Y, as expected because 

of its ‘mixed’ adhesion geometry (i.e. it includes both adherent and non-adherent borders). A 

superposition of the three distributions and a boxplot are reported in Figure SI1. On a local 

scale, average maps revealed patterned-specific mechanical features, as well as common features 

shared by the three cell groups. In the three cases high elasticity values (40 to 100 kPa) were 

found at the cell corners – i.e. where anchoring structures are located - and in the nuclear region. 

The remaining regions of the cells were soft on ׏-cells, while T- and Y- cells presented 

additional stiff areas. In particular, high elastic moduli were measured at concave cell borders. 

Such stiff regions coincide with thick actin fibers (Figure 1B). T-cells showed higher elasticity 

on the upper periphery and along the vertical axis, while we measured two softer regions on the 

left and right interstices of the T along the concave edges. Y-cells presented only small soft 

regions localized along the three borders but not at their extreme peripheries, with values 

between 25 and 35 kPa. Along cell edges, at corners, in the central region and along the three 

arms of the Y, values span from 40 to 65 kPa. These results suggest a colocalization of stiff 

regions with the fibronectin patterns. To verify such correlation, we separately analyzed the 

elasticity contributions of adherent and non-adherent cell areas (Figure 2D). In the case of T- 

and Y-cells, the elasticity distributions of the cell regions above the patterns and of non-adhering 
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areas are significantly separated. Non-adherent cell areas were generally softer than attached 

ones, except for the very high values found in colocalization with the thick fibers found at 

concave cell edges. ׏-cells presented less separated distributions, with both adherent and non-

adherent regions showing values between 25-40 kPa (4.4 and 4.6 log (Pa)). A tail at higher 

values in the elasticity histogram of the adherent region was observed representing the 

contribution of the cell corners, while high elasticity of the non-adherent portion was attributed 

to the nuclear region. To rule out the hypothesis that these results were biased by the location of 

the nucleus on top of the pattern in T- and Y-cells and in the non-adherent region in ׏-cells, we 

plotted separately the histograms of cell borders, corners and central region (Figure SI2). For all 

regions considered, we observed the same trend as the average distribution, with the ׏-cells 

being the softest and the Y-cells the stiffest. The corners showed quite a large range of elasticity 

values in all three cases, with two main broad peaks, the one at stiffer values being more intense 

in the case of Y-cells. The central region, i.e. the area including the nucleus, showed a similar 

elasticity distribution as the whole-cell, slightly shifted to higher values in the case of ׏-cells, 

and with a tail only at low values. Interestingly, the histogram of the edge regions presented the 

lowest values in all three cases, and a tail in the highest elasticity range (> 4.7 log (Pa), 50 kPa) 

in the case of T- and Y-cells. 

Average elasticity histograms were obtained by averaging the bin values of the elasticity 

histograms of each individual cell map (Figure 3A). As all possible sources of elasticity 

variation, inter- and intracellular, are taken into account, large distributions are observed, 

spanning from a few kPa of softest regions to hundreds of kPa of actin-rich cell areas 

(Figure 3A). A narrower distribution compared to T- and Y- cells was observed for ׏-cells, with 

one single peak at ~ 40 kPa. Two peaks (16 kPa and 79 kPa) were found in the case of T-cells, 
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and three (13, 40 and 250 kPa) in the case of Y-cells. This observation suggests that ׏-cells have 

lower variability than T- and Y-cells. To further investigate the origin of this heterogeneity, 

coefficient of variation (CV) maps were calculated (Figure 3B). In the three cases, all CV values 

were below 0.25 with the highest CV values found at cell peripheries. Thus, average histograms 

and CV maps together provide information about the mechanical and structural cell-cell 

variability of the cells for each micro-pattern shape, as well as about the origin of local 

variations. 

Perturbation of the acto-myosin cytoskeleton by Latrunculin-A: Latrunculin-A disrupts actin 

filaments and causes cell softening.62 We used 1 µM Latrunculin-A to determine which 

subcellular regions are more sensitive to its action. Mechanical mapping of single patterned cells 

before and after drug addition to the imaging medium illustrated dramatic changes of the cell 

mechanics (Figure 4). As expected, cells become softer as a consequence of the disruption of the 

actin skeleton (the experiment was performed on 3 cells per pattern, all reporting cell softening), 

but this change in the elastic properties did not involve the entire cell body. In fact, the 

mechanical properties of the nuclear region, as well as the adhesive regions, remained unaltered. 

On the contrary, as the actin cortex was disrupted, non-adherent peripheral regions underwent 

drastic changes. In particular, the thick stress fibers present at concave edges in the case of T- 

and Y-cells were depolymerized, and the cells lost their shape and retracted to the adhesive 

surfaces only (Figure SI3). These morphological changes were accompanied by cell softening 

by a factor of about 10 in the peripheral regions. In detail, non-adhering edges of T- and Y-cells 

(with initial stiffness around 100 kPa) collapsed, and their elasticity contribution shifted from 

100 to 10 kPa, while the peak elasticity corresponding to the nucleus remained constant at 

~40 kPa. ׏-cells showed similar changes in the mechanical properties, with the nuclear region 
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maintaining its characteristic elasticity, while the surrounding regions presented drastic 

softening. Morphological changes were also less pronounced because the adhesion structures 

were present all along the adhesive ׏-pattern. T-cells presented similar behavior to Y-cells at 

concave edges and similar to ׏-cells at the straight edge. 

Perturbation of the acto-myosin cytoskeleton by Blebbistatin: Blebbistatin binds to Myosin II 

and blocks it in a conformation with low affinity for actin, which results in a reduction of 

crosslinking of actin filaments.63 As a consequence, intracellular tension is released, the cell 

retracts and its elastic modulus decreases.10 We treated cells with 20 μM Blebbistatin, and 

monitored the change of the elastic modulus by mechanical mapping before and after drug 

addition (Figure 5). We observed a retraction of non-attached cell borders, and a 5-fold overall 

softening. Again, while the nuclear region maintained its elasticity value, stronger effects were 

found for peripheral regions, with an elasticity decrease of about 10 times. 
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Discussion 

By growing cells on adhesive micropatterns and mapping their mechanical properties by AFM, 

we show that adhesion geometry triggers specific mechanical properties at both local and global 

scales. In particular, by using ׏-, T- and Y-shaped fibronectin micropatterns, which share the 

distance between the extremities but differ in the adhesive geometry, we show that the 

mechanical response of cells varies driven by the localization of their adhesion sites. We 

performed PF-QNM AFM to obtain mechanical maps on single micropatterned cells. It is 

important to note that the thickness of the patterns themselves does not affect the mechanics of 

the cells: as measured with the AFM, the fibronectin layer is only a few nanometers thick 

(Figure SI4). All measurements were performed using a rectangular cantilever with a nominal 

spring constant of 0.1 N/m and a 15 μm high conical tip (Figure SI5). These features combine 

good lateral resolution with well-defined tip geometry. Moreover, using such a very high tip 

reduces the influence of the viscous drag on the measurements. In PF-QNM AFM the average 

indentation velocity at which force curves are acquired (~1200 µm/s) is higher than conventional 

force curves (in the µm/s range). This leads to measured Young’s moduli in the tens-of-kPa 

range, slightly higher than at slower velocity due to the viscoelastic response of living 

cells.45,47,48,64–67 To corroborate this, we performed elasticity measurements at varying velocities 

(Figure SI6), in agreement with previous reports.64,67 Measurements on the central part of ׏-

cells at 5, 25, 50 and 100 μm/s yielded Young’s moduli of 9.6 ± 3.0, 9.7 ± 2.9, 14.7 ± 1.5 and 

16.1 ± 0.5 kPa (geometric mean ± standard deviation), respectively, while the value obtained in 

Peak Force is of 32 ± 1.5 kPa (mean value obtained from the log-scale average). 

Importantly, the mechanical response of cells on a given pattern was reproducible, with local 

variability below 25%, as shown in the CV maps of the average log (E), and average variations 
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below 15% in all three cases (Figure 3B). The medians of the Young’s modulus distributions of 

the average maps (Figure 2) were 32 kPa, 34 kPa and 41 kPa, for ׏-, T- and Y- respectively. 

Interestingly, previous studies on cells patterned on adhesive disks and squares reported 

increasing Young’s moduli with increased adhesion areas.60,61 This is a direct consequence of the 

cell spreading on larger patterns and in agreement with our measurements of non-patterned 

RPE1 cells, which are free to spread on very large areas and present Young’s moduli 10-times 

higher than our patterned cells (Figure SI7). Our measurements show highest Young’s moduli in 

the case of Y-cells, and lowest in the case of ׏-cells, though the Y-pattern provides an adhesive 

area of ~400 μm2 and the ׏- pattern ~800 μm2. In our experiments the cells have constant size, 

and the adhesion geometry - not variable spreading - is at the origin of the mechanical 

differences. In general, decreasing the peripheral adhesion area leads to a decrease of focal 

adhesions at the cell borders, resulting in the appearance of concave cell edges.68 Such concavity 

is the result of a membrane-cortex-induced inward pulling force that is counterbalanced by thick 

actin fibers, which appeared as high Young’s modulus regions in our mechanical maps. The 

tensegrity model and the prestress hypothesis are in accordance with our observation,18,69–72 as 

they predict a higher overall stiffness of the cells in response to the high tension created by acto-

myosin fibers. Such tension is inversely dependent on the number of available anchoring 

points59,73,74, which is consistent with the stiffness order ׏ < T < Y obtained from our 

measurements. Since elasticity variations of a group of cells are due to intracellular and 

intercellular differences, we investigated heterogeneities by two different approaches. Average 

histograms reported in Figure 3A show the broadest distributions for cells plated on Y-patterns, 

and the narrowest for cells grown on ∇-patterns. Similarly, CV maps (Figure 3B) present higher 

variations both locally and globally for Y-, and lower for	׏-cells. Nevertheless, CVs were small 
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in the three cases. Thus, combining the results of such analysis suggests that the higher 

variability observed for Y and T-cells is mainly due to cell-to-cell mechanical heterogeneity. In 

particular, highest CVs are found at concave borders of T- and Y-cells, which are also the stiffest 

regions and probably where local cytoskeletal organization is more uneven. In agreement with 

these results, a high variability of actin bundle strength, (i.e. variability of the curvature radius) at 

concave cell borders was shown.75 In contrast, peripheral adhesion sites provided by ׏ patterns 

counterbalance acto-myosin tension, and exhibit a more controlled and reproducible structure 

and mechanical response. Namely, it is easier and more reproducible to regulate the prestress if 

the perimeter of the cell is adhering. 

The tensegrity and prestress models apply well also to the results we obtained from the 

Latrunculin-A and Blebbistatin addition experiments. When disrupting actin fibers with 

Latrunculin-A (Figure 4), we measured an overall ~10-fold decrease of the Young’s modulus, 

and a drastic collapse of the cell structure. The most dramatic effect was observed at concave 

borders of Y- and T-cells, where the line tension keeping the cell shape at borders was released, 

thus leaving membrane tension and adhesive forces alone as cell shape determinants. This results 

in the reduction of the area covered by the cell exclusively to the adhesive areas. ׏-cells show 

less dramatic effect on their morphology, i.e. cell edges remain attached to the pattern border, but 

show a softening of comparable magnitude. Similarly, Myosin II inhibition with Blebbistatin 

lead to the release of tension in the acto-myosin fibers (Figure 5), which resulted in a dramatic 

increase of edge concavity in T- and Y- cells, along with a 5-fold decrease of cell elasticity. 

Interestingly, softening induced by both Latrunculin-A and Blebbistatin concerned peripheral 

areas but not as much the nuclear region. These observations suggest that the mechanical 

properties of the nucleus do not dependent on the actin cytoskeleton. Moreover, in non-patterned 
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cells, overall much stiffer than patterned cells, the nucleus presented Young’s moduli close to 

that of patterned cells (Figure SI7). Previous works showed no significant alteration of the 

nuclear shape after actin filament disruption by Cytochalasin D76 corroborating the hypothesis 

that the physical properties of the nucleus are mainly determined by the nuclear lamina.77 These 

results suggest that conventional cell elasticity measurements should be performed on areas near 

but not on the nucleus, especially if a difference is to be probed after drug treatment. They 

further highlight the usefulness of the presented approach to precisely control the cell 

morphology and where the measurements are performed. 

Conclusion 

In this work we perform AFM-based mechanical mapping on cells plated on micropatterns and 

we show that these yield a pattern-specific reproducible mechanical response. A fundamental 

advantage of the proposed method is the possibility of obtaining average elasticity maps. These 

average maps allow us to specifically locate intracellular elasticity differences, which are 

maintained among cells and to identify regions characterized by higher or lower mechanical 

stability. Our data show that cells adapt the mechanical properties of subcellular regions 

according to the adhesion geometry, providing unique information about the relation of cells’ 

mechanical properties to their adhesive environment. Our results showed that adhesive cell 

borders provide mechanical stability and homogeneity within the cell. On the contrary, concave 

cell shapes, due to a lack of peripheral adhesion, induce high tension in the cytoskeleton and 

higher mechanical heterogeneity. Three general rules can thus be formulated: 1) at locations 

where cells adhere to the patterns, high Young’s moduli are to be expected, due to the higher 

concentration of actin structures; 2) in the absence of adhesive borders, the cell is obliged to 

form thick and tensed actin fibers to cover a sufficient spread area. Such fibers result in 
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mechanical maps as very stiff regions. 3) In non-adherent cell areas, no cytoskeletal structure can 

be anchored, thus intracellular tension is low and, consequently, low elasticity values are found 

in these regions. Importantly, our findings suggest that cell stiffness is not always higher, the 

larger the adhesive area. We also showed that perturbation of specific cytoskeletal components 

affects cell mechanics in different ways depending on the local actin structure and adhesive 

geometry, suggesting that tension is concentrated on concave cell borders. This deepens our 

understanding of the role of specific cytoskeletal components, as well as the interdependence of 

intracellular elements, in the maintenance of cell morphological and mechanical integrity. 

Therefore, the combination of micropatterns, AFM mechanical mapping and image averaging 

constitutes a promising approach to investigate the mechanical heterogeneity of individual cells 

and the mechanics of subcellular components. 
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Material and Methods 

Microcontact printing: PDMS stamps were washed in milliQ water and sonicated 15 min in 

pure ethanol, let dry and incubated with 50 μM Fibronectin (Sigma-Aldrich F1141), 5 μM 

Fibrinogen-A488 (green, Invitrogen) in 100 mM NaHCO3 (pH 8.6) for 45 min at room 

temperature. The solution was then aspired and the stamps let dry for 10 sec under the hood, 

placed on glass-bottom culture dishes (GWSt-5040, Willcowells), gently pressed and removed 

after 10 min. Non-printed areas were then passivated by 1h incubation with 1 ml PEG-poly-L-

Lysine (Surface Solutions) 0.1 mg/ml in 10 mM HEPES (pH 7.4). The dishes were then 

repeatedly washed in PBS 78. 

Cell culture: hTERT-RPE1 cells (infinity telomerase-immortalized Retinal Pigment Epithelial 

human cell line) were cultured in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO) 

supplemented with 10% fetal calf serum (FBS, GIBCO). Cells were cultured at 37 °C in a 5% 

CO2 incubator. For plating on the micropatterns, cells where detached with 0.02% EDTA, 

centrifuged, resuspended in warm culture medium and plated on the patterned culture dishes at a 

concentration of 50000 cells/ml. Unattached cells were washed after 15-20 min with equilibrated 

medium.  

Atomic force microscopy: All experiments were conducted using a Bioscope Catalyst (Bruker, 

Santa Barbara, CA, USA) mounted on an inverted optical microscope (Olympus, Japan). Trace 

and retrace images of topography and Young’s modulus were acquired in peak force tapping 

(PFt) mode with a setpoint peak force of 750 pN and an oscillation frequency of 0.5 kHz. 

Rectangular cantilevers with a nominal spring constant of 0.1 N/m and a 15 μm high conical tip 

with 60 nm tip radius and 32° open angle (CSG11, NT-MDT, Moscow, Russia) (Figure SI7) 



 17

were used for all measurements. Cantilever spring constant and sensitivity were calibrated before 

each experiment using the thermal fluctuation method 79,80. Tip height, radius and angle where 

verified by scanning electron microscopy (Figure SI8). For mechanical mapping, typical 

acquisition time was of about 10 min per image, using a scan rate of 0.45 Hz and an image size 

of 256 x 256 pixels (scan size: 55 μm). We report 256 x 256 pixels mechanical maps with 

elasticity values computed by the AFM control software. Young’s moduli were calculated 

according to the elastic contact model for conical indenters (named Sneddon in the software): 

ܨ ൌ
2
ߨ
∙
ܧ ∙ tanߙ
1 െ ଶݒ

∙ δଶ 

(1), where F is the measured force, E the elastic modulus, α the half-opening angle of the tip, δ 

the indentation and v the sample’s Poisson’s ratio, assumed to be 0.5. 30% and 90% of the 

maximum force were set as force fit boundaries. Elasticity map values were corrected for the 

bottom effect (see Image analysis section). To confirm the accuracy of the software in the 

determination of the elasticity values, we acquired mechanical maps at 128 x 128 pixels, 

allowing simultaneous recording of each force curve. Young’s moduli obtained with a custom 

algorithm based on Matlab (Mathworks, Natick, MA), but with the same parameters used by the 

software, were in good agreement with the moduli obtained by the software (Figure SI9). For 

drug time–lapse experiments, the image size was reduced to 128 x 128 pixels, to allow faster 

acquisition times (5-6 min at a scan rate of 0.3-0.35 Hz).  

Elasticity values from mechanical maps were also compared to conventional force-distance 

curves at 1, 5, 10, 20 Hz, with a ramp size of 2.5 µm and a maximum deflection threshold of 

3 nm for 1 and 5 Hz, 10 nm for 10 and 20 Hz (Figure SI6). 
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All measurements were conducted in CO2-indipendent Leibovitz-L15 medium supplied with 

10% FBS. To account for evaporation, medium was regularly replaced. 

Latrunculin-A and Blebbistatin addition: Drugs directed against the actin cytoskeleton 

(Latrunculin-A, Blebbistatin) were used to investigate the contribution to cell elasticity provided 

by actin and myosin II, respectively. Drugs were solubilized in DMSO to a mother solution, then 

diluted to a volume of 500 µl in warm medium, added to the culture dish to obtain the desired 

final concentration (1 µM for Latrunculin-A, 20 µM for Blebbistatin). To avoid concentration 

gradients due to slow diffusion of the drug, the medium was mixed several times after drug 

addition. To exclude non-specific effects due to DMSO toxicity, control experiments with 

DMSO alone were conducted (Figure SI10).  

Image analysis: All images were analyzed using self-written programs in Matlab (The 

MathWorks, Natick, MA). In brief, a black and white mask was obtained for each set of images 

by applying the hysteresis threshold algorithm to the topography image, an edge detection 

method that sets the cell border where neighboring pixels values deviate from the values of the 

flat sample support. Masked topography images were used to rotate all images and align them by 

cross-correlation. The mask was equally applied to the elasticity maps to calculate the individual 

stiffness histograms. The average images were then calculated from the rotated and translated 

images without excluding background pixels and considering both trace and retrace data. An 

average mask was then calculated on the average height image in the same way as for individual 

images and the histograms of the average image calculated. Stiffness maps were corrected for the 

bottom effect according to the model by Chadwick and Gavara 37: 
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 (2), where h was the height at each pixel of the topography image. As previously shown, this 

effect is relevant only for thin regions of the cells, in our case at the cell borders 34,81. Average 

elasticity histograms (Figure 3A) where obtained by first calculating each single cell’s 

histogram, and then averaging the bin heights of all single-histograms, previously normalized on 

the number of pixels. This procedure differs from simply pooling all pixels values from all cells 

in that bin height averaging and normalization allow to represent the data independently of the 

sample size (number of cells) and on single cells’ spread area (number of pixels). The latter is 

negligible in the case of patterned cells, but relevant in the case of non-patterned cells. 

Force curve analysis: Conventional force-distance curves were analyzed using self-written 

programs in Matlab. The contact elastic model for conical indenters was used to determine the 

Young’s modulus (Eq. 1). No bottom-effect correction was applied in this case as measurements 

were performed on the top of the cell, where the deformation/height ratio is small (~10%). The 

values reported in Figure SI6 correspond to the geometric mean of the Young-s moduli obtained 

on four different cells, to allow the comparison with the Young’s modulus of the average log-

scale map in Figure 2B. 

  



 20

 

FIGURES  

 

Figure 1. Example of individual RPE1 cells plated on ∇-, T-, Y-shaped Y fibronectin 

micropatterns (left to right).  

Horizontal scale bar is 10 µm, vertical scale bar in C is 5 µm.  

A. Fibronectin-fibrinogen-GFP ∇-, T- and Y-shaped micropatterns. 

B. Fluorescence microscopy image of individual actin-labeled (mCherry-lifeAct) RPE1 cells 

plated on the micropatterns shown in A. In the three cases, actin-rich regions are visible at the 

vertices. Thick actin stress fibers are present at the concave, non-adhering borders of T- and Y-

shape micropatterns, while thinner structures are visible along the straight, adhering borders of 

 .micropatterned cells-׏

C. AFM topography images of the same individual RPE1 cells showed in B and, at the bottom, 

cross-section along the vertical axis (dotted line) The cell plated on the Y-pattern is slightly 

shorter (~37 µm) than those on the ׏- and T-patterns (~40 µm), as expected because of the 
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concavity of its top border. Interestingly, the Y-cell is higher (~5 µm) than the ׏-cell (~ 4.5), 

suggesting that cell volume is independent from the pattern shape.  
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Figure 2. Average Young’s moduli of RPE1 cells.  

A. Average topography of RPE1 cells plated respectively on a ∇ (n=16), T (n=14), Y (n=18)-

shaped fibronectin micropatterns. Scale bar is 10 μm. 

B. Average stiffness maps in log (Pa) of RPE1 cells plated respectively on a ∇ (n=16), T (n=14), 

Y (n=18)-shaped fibronectin micropatterns. Maps were obtained by aligning and averaging 

pixel-by-pixel single-cell maps obtained in Peak Force mode. The color scale corresponds to the 

values of the histograms shown in b (black= 4.2 log (Pa), yellow= 5 log (Pa)).  

C. Histograms of the average maps shown in a.  

D. Histograms of the average of the whole average stiffness map (black line), cell area adherent 

to the fibronectin pattern (purple line), and non-adherent cell area (yellow line). 

Scale bar = 10 μm. 

 

Figure 3. Evaluation of elasticity heterogeneity within cells plated on ׏‐ (n=16), T- (n=14), 

Y- (n=18) shaped fibronectin micropatterns. 
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A. Averaged elasticity histograms calculated by averaging the bin values of each single-cell 

elasticity histogram. Error bars correspond to the standard error of the mean.  The distributions 

show that cells plated on a ∇ present the lowest variability, while the ones plated on a Y the 

highest. B. Coefficient of variation maps of log (E) maps shown in Fig. 2 of RPE1 cells plated on 

∇ (n=16), T (n=14), Y (n=18)-shaped fibronectin micropatterns. Coefficient of variation (CV) 

maps were calculated by dividing the standard deviation of each pixel by its corresponding 

average value. The medians of CV maps were 0.10, 0.13, and 0.15 for ∇ -, T - and Y-cells 

respectively.  

Figure 4. Effect of Latrunculin-A on the Young’s modulus of RPE1 cells plated on ∇ -, T - 

and Y micropatterns. 

A, D, G. Elasticity maps of single cells plated, respectively, on a ∇-, T- and Y- shaped 

micropatterns before Latrunculin A addition.  

B, E, H. Elasticity maps of the same cells ~20 minutes after drug addition. 

C, F, I. Elasticity distribution of the same cells before (color-coded histogram) and after drug 

addition (blue line). In the three cases, the cells show a 10-fold Young’s modulus decrease, 
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which involves mostly peripheral regions of the cells. On the contrary, the nuclear area seems 

less affected by actin disruption. 

 

Figure 5. Effect of Blebbistatin (-) on the Young’s modulus of RPE1 cells plated on ∇ -, T - 

and Y micropatterns. 

A, D, G. Elasticity maps of single cells plated, respectively, on a ∇-, T- and Y- shaped 

micropatterns before Blebbistatin addition.  

B, E, H. Elasticity maps of the same cells ~40 min after drug addition. 

C, F, I. Elasticity distribution of the same cells before (color-coded histogram) and after drug 

addition (blue line). Cells show a 5 to 10-fold decrease of the Young’s modulus. Such decrease is 

observed in the peripheral regions, but not on the nucleus, which appears to maintain its elastic 

properties after the disruption of acto-myosin fibers, similarly to what observe after Latrunculin 

A injection. 

ASSOCIATED CONTENT 

Supporting Information Available: Elasticity repartition of cell areas (histograms), 

Topography images showing effect of Latrunculin-A addition on patterned cells morphology, 
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AFM-optical microscope setup, examples of force-distance curves extracted from maps on 

patterned cells, plot showing the dependence of the Young’s modulus on the measurement 

frequency, AFM topography images of the fibronectin patterns, elasticity of non-patterned RPE1 

cells (maps and average histogram), time-lapse control experiment with DMSO, SEM image of 

an NT-MDT CSG11 AFM probe. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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