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Abstract –In this paper, we propose a system for the 

identification of the system that has produced a Digital 

Radiography (DR) image. It takes advantage of the 

statistical properties of the noise left by any DR systems. 

In particular, a three parameter exponential model of 

the relationship in-between the image intensity and the 

overall noise variance is suggested. Its parameters are 

used as input of a classifier learned in order to 

discriminate different DR systems. Experiments 

conducted on images issued from 5 different DR systems 

show it is possible to identify with good accuracy the 

origin of one DR image.  

Index terms - Image Processing, Modeling, X-Ray 

imaging 

I. INTRODUCTION 

The development of digital medical imaging technology 

(modalities, processing, transmission) makes images act 

an important role in cares. However such ease of 

manipulations induces security issues in terms of data 

confidentiality, authenticity, traceability and so on [1]. In 

this paper, we focus on the particular problem of Digital 

Radiography (DR) image origin identification that is to 

say being able to identify the DR system that issued an 

image. Even though DICOM (medical.nema.org) traces 

image modifications and transmissions by means of 

"indicators" in the image file header, these latter can be 

accidentally or malevolently removed or changed [2]. 

Thus, how can we verify the origin of an image only from 

its pixels’ gray values? 

Many methods have been proposed to solve this problem 

for general public devices. Most of them analyze some 

characteristics that are specific to one chain of image 

acquisition. As example, Color Filter Array interpolation 

[3] or demosaicing [4] leave traces that can be used as 

digital forensics image fingerprints. However, with these 

methods, it is hard to distinguish different devices model 

based on the same algorithm. To overcome this issue, it 

has been suggested to exploit the Photo Response Non-

Uniformity noise generated by CCDs (Charge Coupled 

Device) as camera fingerprint [5] or to combine a two 

parameter noise model with the likelihood ratio test to 

identify the camera that has acquired the image [6].  

In this paper, we extend the approach of [6] to DR 

acquisition systems proposing a more adapted three 

parameters exponential model so as to model the 

relationship that exist in-between the image intensity and 

the variance of the DR image noise. Model parameters are 

then use as input of a classifier learned so as to 

discriminate different DR image systems.  

The rest of this paper is organized as follows. Before 

presenting our system we come back on the modeling of 

the noise inherent to DR images in Section 2. Some 

experimental results are then presented in Section 3 and 

section 4 concludes this paper. 

II. MATERIALS AND METHODS 

II.1. Modeling noise in Digital Radiography Images 

X-Ray Source

Patient

Flat-panel array
 

Figure 1: Digital radiograph system principles - a tight 

beam of X-rays source go through the patient, and then a 

flat-panel array layer converts the X-Rays’ energy into 

electronic charges next read out so as to obtain a digital 

image. 

Based on the strong similarities of DR acquisition 

systems with digital cameras, a generic signal-dependent 

noise observation model [7] can be considered 

( )Y I IV [ � �                (1) 

where Y is the acquired image, I is the real observed 

"scene", ( )IV [� is the noise term which can be further 

decomposed into   

( ) ( )p gI IV [ K K�  �              (2) 

where ( )p IK is a signal-dependent Poisson noise of 

variance varying with the intensity of I and gK is a 

signal-independent Gaussian noise of constant variance. 

Contrarily to general public cameras for which the 

variance of the overall noise can be modelled through a 

linear expression (i.e., 2 ( )I a I bV  � � , with a and b two 

real parameters), a non-linear model has to be considered 

for DR images. The main reason stands on the non-

parallel X-rays’ incidence as shown in Figure 1. Based on 

the Poisson noise nature, the relationship between I and 

the noise variance 2 ( )IV can be modeled as  
2 ( ) exp( )I a b I cV  � � �             (3) 

More clearly, the variance of the noise varies 
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exponentially with the image intensity. As we will see in 

the sequel a, b and c constitute the DR system fingerprint. 

They will be used to discriminate DR systems. 

 
Fig.2 Relationship between the image intensity and noise 

variance of a Canon Orthopantomograph OC200D device 

and its fitting exponential model (a=0.0244, b=17.4839, 

c=-0.0282). 

II.2. DR system identification 

Here are the main steps our system follows: 1) it extracts 

the noise of a DR image Y  by means of wavelet filtering 

[7], obtaining a noise image N which corresponds to the 

high-frequency wavelet coefficients of Y. The original 

"scene" is thus such as I Y N � . 2) in order to reduce 

the noise estimation bias related to the presence of edges, 

those ones are discarded before noise analysis, masking 

them out with the help a binary mask created from N 

through morphology operators. 3) Only unmasked pixels 

of I  and  N  are considered so as to build the relationship 

(3). Due to the fact I  contains real pixels’ values, its 

intensity dynamic is partitioned into regular intervals or 

bins ( )eI k . For one bin ( )eI k , its mean intensity ( )eI k  is 

computed. ( )eI k is then associated to an unbiased 

estimator of the noise variance 
2 ( )kV calculated on the 

pixels of N of same positions than the pixels of I 

belonging to ( )eI k . 4) Then, parameters a, b and c of our 

exponential model are estimated fitting the model by 

means of non-linear least squares (see Figure 2). 5) By 

next these parameters are provided to a SVM based 

classifier for DR system identification. Due to space 

limitation, this part of our system cannot be detailed.  

III. RESULTS 

To assess the above system effectiveness, 280 images 

issued from 5 DR devices were considered. The DR 

model and their corresponding image training and test 

sets’ sizes are listed in Table 1. Performance, herein 

evaluated in terms of classification rates, are given in 

average after 5 tests in Table 2. As seen, our detection 

rate is about 96.37%. whatever the DR system.  

IV. DISCUSSION – CONCLUSION 

No. Model 
Training 

set size 

Test set 

size 

DR1 
Canon Orthopantomograph 

OC200D 
20 46 

DR2 Canon Lorad Selenia 20 24 

DR3 Thales Duet DRF 20 39 

DR4 Thales Flashscan 20 29 

DR5 Apelem PALADIO Versa 20 42 

Table 1: DR system and SVM training and test set sizes.  

DR DR1 DR2 DR3 DR4 DR5 

DR1 95.22 4.78 0 0 0 

DR2 8.33 91.67 0 0 0 

DR3 0 0 96.41 3.59 0 

DR4 0 0 0 100 0 

DR5 0 0 1.43 0 98.57 

Table 2: Classification rates. 

In this paper, we have investigated an approach which 

identifies the source of digital images based on the 

statistical dependence of the image intensity with the 

noise variance. Contrarily to general public camera 

devices, we show that a three-parameter exponential 

model is more adapted for DR images than a linear one. 

Our experimental results indicate high detection 

performance of our method but further experiments have 

to be conducted so as to better establish its accuracy due 

to the fact our image test set is of quite limited size.  
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