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Summary 

Endoplasmic reticulum (ER) release and cell surface export of many G protein-

coupled receptors (GPCRs), are tightly regulated. For GABAB receptors of GABA, the 

major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is 

maintained in the ER by unknown mechanisms in the absence of hetero-dimerization 

with the GB2 subunit. We report that GB1 retention is regulated by a specific 

gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, 

preventing its progression in the biosynthetic pathway. GB1 release occurs upon 

competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that 

of GB1 and GB2, tightly controls cell surface receptor density and controls GABAB 

function in neurons. Experimental perturbation of PRAF2 levels in vivo caused 

marked hyperactivity disorders in mice. These data reveal an unanticipated major 

impact of specific ER gate-keepers on GPCR function and identify PRAF2 as a new 

molecular target with therapeutic potential for psychiatric and neurological diseases 

involving GABAB function.  
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Introduction 

Cellular responses to hormones and neurotransmitters depend on the cell 

surface density of cognate receptors. Surface receptor number can vary considerably 

during adaptive responses to specific physiological constraints and in pathological 

conditions, both because of altered endocytosis 1 and changes in trafficking of 

receptors to the plasma membrane 2. These processes have been intensively 

investigated for heptahelical receptors (also known as G protein-coupled receptors or 

GPCRs), which represent the largest family of plasma membrane receptors. For 

several GPCRs, the largest proportion of receptor molecules is not at the plasma 

membrane of native cells, but instead within internal stores 3-7. Receptors can be 

mobilized from these stores upon external stimuli 4, 8, 9 targeting key components of 

the secretory pathway 10, or after binding to endogenous ligands, which exert a 

chaperoning effect 11. The cell surface delivery of these GPCRs is facilitated by a 

complex network of interactions with specific cellular chaperones or escort proteins 5-

7, 12-15, which allow the egress of receptors from the endoplasmic reticulum (ER) or 

release from the Golgi apparatus. Despite the identification of sequence motifs on 

cargo receptors, which control capture or release from intracellular stores, the 

molecular mechanisms of receptor retention are poorly understood. COP1 coatomer-

dependent retrieval from the cis-Golgi to the ER was proposed in some cases 16, 17, 

whereas retention via specific interaction with a ER resident gate-keeper was only 

reported during early development for Frizzled, a GPCR involved in the Wnt signaling 

pathway 18.   

Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter 

in the vertebrate central nervous system. Its metabotropic GABAB receptor is a 

prototypical paradigm of an intracellularly-retained GPCR with regulated cell-surface 
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export 19. Functional GABAB receptors are hetero-dimers constituted of two receptor 

protomers, referred to as GB1 and GB2 20-22. Two GB1 isoforms (GB1a and GB1b), 

produced as a consequence of a differential promoter usage in the GB1 gene 23, 

differ in their ectodomains by a pair of sushi repeats, which localize GABAB receptors 

to distinct synaptic sites, are. Although containing the GABA binding site in the 

extracellular domain 20, GB1 isoforms fail to reach the cell surface when expressed in 

heterologous systems or overexpressed in neurons 24. Indeed, GB1 contains an 

arginine-based signal in its carboxy-terminal tail, which causes its retention in the ER 

25, 26, and a di-leucine motif, which controls GB1 interaction with a guanine-nucleotide 

exchange factor and its exit from the trans-Golgi network 27. GB2, on the other hand, 

does not bind to any known GABAB ligand 28 but is responsible for G-protein coupling 

29, 30. GB2 does not contain any retention signal and can reach the cell surface in the 

absence of GB1, as a functionally inactive homo-dimer 31. It has been proposed that 

the shielding of the GB1 retention signal via a coiled-coil interaction with the carboxy-

terminal of GB2 allows the hetero-dimer to reach the cell surface 25, but the 

mechanistic aspects underlying GB1 retention have remained elusive. Although 

several proteins have been reported to interact with the coiled-coil domain of GB1 

and to somehow regulate GABAB, none of them plays a direct role in GB1 retention 

in the ER: 14-3-3ζ disrupts GB1-GB2 heterodimers at the cell surface 32; upregulation 

of the transcription factor CHOP in response to ER stress interferes with GB1-GB2 

heterodimerization 33; the ARF1, 3,6 guanine-nucleotide exchange factor msec-7 

controls GABAB exit from the Golgi apparatus 27; the scaffolding protein GISP 

enhances GABAB receptor function by slowing receptor desensitization 34.  

Here we identified PRAF2, a 178 amino acid ER-resident protein 35 comprising 

4 transmembrane domains with cytosolic amino- and carboxy-termini, as an essential 
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gatekeeper regulating GB1 release from the ER. PRAF2 is a member of the 

prenylated rab acceptor family, which includes the two structurally related proteins 

PRAF1 and PRAF3 36. Golgi-resident PRAF1, was proposed to activate the 

dissociation of prenylated Rab proteins from the GDP dissociation inhibitor GDI, thus 

facilitating the association of prenylated Rabs with target Golgi membranes 37. 

PRAF3, the mammalian analogue of the yeast protein Yip6b, was reported to delay 

ER exit of the Na+-dependent glutamate transporter Excitatory Amino-Acid Carrier 1 

(EAAC1) 38, 39. PRAF2 identified in a yeast two-hybrid screen as an interacting 

partner of the chemokine receptor CCR5 40, was found enriched in human brain 41 

and overexpressed in multiple cancers 36, 42. However, no specific biological function 

has so far been attributed to PRAF2.  

Our data demonstrate that PRAF2 interaction with GB1 controls GABAB 

function at the cell surface of neurons and in vivo. 
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Materials and Methods 

Extensive description of materials and methods can be found in Supplementary 

Material. 

 

Results 

PRAF2 interacts with GB1 in the ER of transfected fibroblasts and primary neurons 

In the search for a potential gatekeeper retaining GB1 in the ER until it 

associates with GB2, we investigated whether the ER-resident PRAFs, PRAF2 and 

PRAF3 might be interacting partners of GB1. Co-immunoprecipitation experiments 

were conducted in HEK-293 cells expressing tagged proteins. GB1-GFP (the GB1b 

isoform were used in transfected fibroblasts throughout this study) was found to co-

immunoprecipitate (co-IP) with V5-PRAF2, whereas almost no co-IP was observed 

with V5-PRAF3 (Figure 1a). V5-PRAF2 interacted with GB1 but not GB2 

(Supplementary Figure S1a). Based on these observations, subsequent studies 

focused on PRAF2. To confirm that the interaction between the receptor and PRAF2 

occurs in the ER, the glycosylation profile of GB1 that co-immunoprecipitated with 

PRAF2 was examined (Supplementary Figure S1b). N-glycans added in the ER are 

sensitive to both Endo H and PNGAse F, whereas subsequent glycosylation in the 

Golgi is resistant to Endo H and sensitive to PNGAse F 43. Following co-IP with 

PRAF2, GB1 was deglycosylated by both enzymes in the presence or absence of co-

expressed GB2. In the presence of GB2 most GB1 underwent N-glycosylation in the 

Golgi, protecting the receptor against Endo H action in the cell lysate (Supplementary 

Figure S1b, upper panel). These data therefore demonstrate that the GB1, which co-

IP with PRAF2 is from the ER and not from post ER compartments. 
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In agreement with previous studies 36, PRAF2 was found to be present in 

many cell lines and abundant in the brain (Figure 1b). Likely due to its highly 

hydrophobic domains, endogenous PRAF2 may form oligomers, which are visible 

after electrophoretic separation at low stringency 40. Accordingly, we detected 

variable combinations of monomeric (≈20kDa) dimeric (≈40kDa) and high molecular 

weight forms, in rat and mouse tissue or cell extracts and in human cell extracts. In 

all cases, immunostained material did correspond to PRAF2, as confirmed by the 

loss of signal following RNA interference (Supplementary Figure S2a).  

Endogenous GB1a/GB1b (Figure 1b) and PRAF2 from adult rat brain extracts 

co-immunoprecipitated (Figure 1c), indicating that both receptor isoforms can be 

found in a molecular complex with PRAF2. The subcellular distribution of these 

proteins was studied in embryonic (E17) rat hippocampal neurons grown in culture. 

Confocal immunofluorescence analysis on permeabilized cells showed marked 

cytoplasmic co-localization of endogenous GB1 and PRAF2 (80.2±5.6%, Figure 1d). 

PRAF2 staining was particularly abundant in the cell body, but also present in 

neurites. GB1 staining (Supplementary Figure S3a for GB1 antibody specificity) 

overlapped with both ER (KDEL receptor) and Golgi (GM130) markers, whereas 

PRAF2 was mainly colocalized with the ER marker (76.7±6.7%, Figure 1d), 

consistent with previous studies 42.  

 

PRAF2 controls GB1 export and regulates GABAB function at the cell surface of 

neurons 

Based on the experiments above, GB1 and PRAF2 likely interact in the ER, 

where GB1 is retained in the absence of hetero-dimerization with GB2. To investigate 

whether PRAF2 could control the exit of GB1 from the ER, hippocampal neurons 
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were transfected with siRNAs to down-modulate PRAF2 expression. One week after 

transfection with specific siRNAs, neurons expressed 10-30% residual PRAF2 

(Figure 2a and Supplementary Figure S2a). To measure the amount of surface 

binding sites, binding studies on intact cells were conducted on the same samples 

using [3H]-CGP54626, a hydrophilic membrane impermeable GABAB antagonist, 

which specifically binds to the GB1 isoform and not to GB2 28 (see also 

Supplementary Figure S3c). An up to three-fold increase of surface GB1 was 

measured in cells with decreased PRAF2 expression compared to controls (Figure 

2a), consistent with the hypothesis that PRAF2 may function as a GB1 gatekeeper in 

the ER. In line with this, expression of exogenous PRAF2 in hippocampal neurons 

following infection with adenoviruses carrying a PRAF2 construct (AAV-

PRAF2+GFP) was associated with a 60% decrease of surface GB1 binding sites 

(Figure 2b). In contrast, and in agreement with their lack of interaction in co-IP 

experiments, exogenous PRAF2 did not modify the amount of cell surface GB2 in 

AAV-PRAF2+GFP-infected cells (Supplementary Figure S1c and Supplementary 

Figure S3b for GB2 antibody specificity). 

We next examined whether the additional surface GB1 detected upon PRAF2 

inhibition was associated with GB2 within a GABAB hetero-dimer or released alone. 

Since GABAB coupling to G proteins exclusively depends on the GB2 subunit, 

agonist-promoted functional outputs depend on the formation of GABAB hetero-

dimers 44. Patch-clamp experiments were therefore conducted to measure the 

inhibitory effect of the GABAB agonist baclofen on the spontaneous electric activity of 

hippocampal neurons in culture (Figure 2c-f, Supplementary Figure S2 and Table 

S1). The basal spontaneous electrical activity was comparable in untreated neurons, 

neurons treated with the various siRNAs or infected with AAV-PRAF2+GFP (Figure 
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2c). Baclofen caused a dose-dependent inhibition of the spontaneous electrical 

activity of neurons (Figure 2e), the effect being reversed by pre-incubation with the 

GABAB antagonist CGP54626 (Figure 2d). Both PRAF2-specific siRNAs led to a 

leftward shift of the inhibition curve compared to untreated cells or cells receiving 

scrambled siRNA (Figure 2e), indicating that the inhibition of the spontaneous activity 

in PRAF2-depleted neurons was much more efficient at lower concentrations of 

baclofen, as a consequence of an increased number of surface GABAB hetero-

dimers. Conversely, virus-induced overexpression of PRAF2 impaired the effect of 

baclofen, indicating a decreased number of surface GABAB hetero-dimers (Figure 

2f). Thus, the PRAF2-dependent regulation of GB1 cell surface delivery controls the 

density of functional GABAB hetero-dimers, directly impacting on the inhibitory 

threshold of GABA signaling. 

 

Competition between GB2 and PRAF2 determines the release of GB1 from the ER 

The molecular mechanism of GB1 regulation by PRAF2 was investigated in a 

reconstituted cell model. The cell surface export of GB1 was measured by FACS 

analysis in transfected HEK-293 cells (see Supplementary Experimental 

Procedures). In the absence of co-expressed GB2, minor or no amounts of 

exogenous GB1 are detectable at the surface of transfected cells, depending on the 

cell type and on the experimental method 25, 26. Accordingly, in the absence of GB2, 

extracellular GB1 only represented 5 to 10% of the maximal signal measured upon 

GB1 and GB2 co-expression in transfected HEK-293 cells (Figure 3a). By increasing 

the amounts of exogenous PRAF2 in cells expressing constant amounts of GB1 and 

GB2, a progressive decrease of surface GB1 was observed (Figure 3a). These data 

suggest that the actual amount of GB1 reaching the cell surface is controlled by GB2 
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and PRAF2, these proteins exerting opposite effects on forward trafficking. In 

contrast, PRAF2 was unable to modulate the cell surface targeting of endogenous 

GB2 in neurons (Supplementary Figure S1c) or exogenous GB2 expressed alone in 

HEK-293 cells (Supplementary Figure S1d), consistent with the observation that GB2 

does not interact with PRAF2 (Supplementary Figure S1a).  

Immunofluorescence experiments were then conducted to examine how the 

subcellular distribution of GB1 is modulated in HEK-293 cells by the co-expression of 

GB2 and PRAF2 (Supplementary Figure S5). When expressed alone, GB1-GFP was 

largely intracellular, co-localizing with the ER marker BIP (92.9±1.3%, panels a,f). In 

the presence of co-expressed GB2-HA, a substantial proportion of GB1-GFP was 

translocated to the plasma membrane area where it co-localized with GB2-HA 

(95.4±0.9%, panels b,c,g); if PRAF2-V5 was overexpressed together with GB2-HA, 

GB1-GFP mostly recovered its original intracellular distribution (80.8±2.6% 

colocalization with BIP, panels d,h) and appeared less localized with GB2-HA 

(53.4±3.2%, panel e). Most co-localized PRAF2-V5/GB1-GFP signal also co-

localized with the anti-BIP signal (98.1±0.5%, panel d).  

These data indicate that the relative stoichiometry of GB1, GB2 and PRAF2 

determines the actual amount of surface GABAB heterodimer, GB2 and PRAF2 

competing for GB1 association. The capacity of GB2 to displace the GB1-PRAF2 

interaction was assessed by co-IP experiments in the presence of increasing 

concentrations of GB2: for a constant concentration of PRAF2, increasing GB2 

expression progressively reduced the amount of GB1 recovered in complex with 

PRAF2 (Figure 3b). Bioluminescence Resonance Energy Transfer (BRET) 

experiments, permit monitoring of the proximity of protein partners in intact cells 45, 46. 

PRAF 2 cDNA was fused with the coding region of Renilla luciferase (Rluc), the 
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BRET donor, and the GB1 coding region was fused upstream to that of the yellow 

variant (YFP) of the green fluorescent protein (GFP), the BRET acceptor. Saturation 

BRET experiments 46 were then conducted by transfecting constant amounts of 

donor plasmid and increasing amounts of acceptor plasmid. Hyperbolic curves 

indicative of specific GB1-PRAF2 proximity (Figure 3c) were obtained in the absence 

or presence of increasing amounts of HA-tagged GB2. However, BRET50 values, 

which reflect the propensity of the investigated proteins to be in close proximity, were 

increased in the presence of HA-GB2, consistent with a model of competitive 

inhibition of GB1-PRAF2 interaction by GB2. Accordingly, the capacity of GB2 to 

displace the GB1-PRAF2 interaction was correlated with increased expression of 

GB1 at the cell surface (Figure 3d).  

The RSR motif present in the C-terminus of GB1 participates in its ER 

retention 25, as shown by the enhanced cell surface expression of the GB1-ASA 

mutant (alanine substitution of the arginine residues of the RSR motif) even in the 

absence of GB2 25-27. We hypothesized that this RSR motif could participate in the 

interaction of GB1 with PRAF2. The amount of GB1-ASA co-immunoprecipitated with 

PRAF2 was decreased compared to wt GB1 (Figure 3e), confirming the above 

hypothesis, but also indicating that the interface between these proteins may involve 

other motifs. A di-leucine motif upstream of the RXR motif also participates in the 

control of cell surface export of GB1, the GB1-AA-ASA mutant (alanine substitution of 

both RXR and di-leucine motifs), being better exported to the cell surface than wt 

GB1 or the single GB1-ASA mutant in the absence of GB2 25. We compared the 

interaction of GB1, GB1-ASA GB1-AA and GB1-AA-ASA with PRAF2 in co-IP 

experiments (Figure 3e) and found that the di-leucine motif participates in the 

association with PRAF2. The substitution of both LL and RXR motifs abolished the 



 12

interaction of GB1 and PRAF2. It was proposed that the LL motif might participate in 

the interaction of GB1 with a guanine-nucleotide exchange factor in the trans-Golgi 

network 27. Our data indicate that the di-leucine motif may also contribute to GB1 

retention in the ER. 

 

Increased expression of PRAF2 in ventral tegmental neurons in mice causes major 

hyperactivity  

We next investigated whether perturbing the stoichiometry of GB1, GB2 and 

PRAF2 might affect GABAB-dependent regulations in vivo. GABAB receptor function 

was studied in the ventral tegmental area (VTA), a brain area containing GAGAB-

expressing neurons 47, 48. Activation of the dopaminergic circuits from the VTA to the 

nucleus accumbens produces hyperlocomotor activity 49 and GABAB-mediated 

activation of slow inhibitory currents plays an important role in the control of 

dopaminergic neuron excitability in the VTA 48, 50. Somatodendritic GABAB receptors 

inhibit dopamine release by causing K+-dependent hyperpolarization, which 

decreases burst firing-activity of dopaminergic neurons 48, 51, whereas presynaptic 

GABAB receptors curtail dopamine release by inhibiting Ca2+ influx 52. We predicted 

that the loss of surface GABAB receptors in VTA dopaminergic neurons resulting 

from a local rise in PRAF2 expression and GB1 retention, would contribute to 

increased dopamine release and subsequent enhanced locomotor activity. Bilateral 

stereotaxic injection of the bicistronic adenoviral PRAF2 and GFP delivery system 

(AAV-PRAF2+GFP) into the VTA led to a dramatic dose-dependent increase in basal 

locomotor activity, compared to animals receiving a virus that only expressed GFP 

(AAV-GFP) (Figure 4a). Mouse brains were examined to verify the distribution of 

adenovirus-encoded exogenous PRAF2 and GFP. GFP expression was mostly 
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restricted to the VTA and occurred in both tyrosine-hydroxylase-positive 

(dopaminergic) and negative neurons (Supplementary Figure S6a). Habituation to 

the novel environment had no effect in AAV-PRAF2+GFP-injected mice, whereas 

AAV-GFP-injected animals showed a progressive reduction in locomotor activity 

during the session (over the 60min period) and compared to the first day (Figure 

4a,b). 

To establish the amount of exogenous PRAF2 responsible for these motor 

phenotypes, PRAF2 was quantified in the VTA by immunoblot experiments with anti-

PRAF2 antibodies (Supplementary Figure S6b). A linear correlation was observed 

between PRAF2 concentration and motor activity, the latter being enhanced even for 

less than a two-fold increase in PRAF2 concentration. Interestingly, variations in 

PRAF2 concentration of a comparable or even larger extent are observed in different 

areas of the brain and different cell types (Figure 1b) and during hippocampal neuron 

maturation in culture (Supplementary Figure S6c). Together, these data indicate that 

moderate changes of PRAF2 expression in vivo cause significant phenotypic effects. 

 

Correlation between PRAF2-induced hyperactivity and GABAB function in the VTA 

Although consistent with impaired availability of GABAB sites at the cell 

surface of VTA neurons, the phenotypic effect of AAV-PRAF2+GFP injection might 

also be due to the involvement of other receptors or transporters similarly retained by 

PRAF2 in the ER. To establish a correlation between the observed phenotype and 

GABAB function in the VTA, we used several approaches.  

Single-cell electrophysiological experiments were performed in dopaminergic 

neurons of the VTA expressing exogenous PRAF2, to analyse local response to the 

GABAB agonist baclofen. AAV-PRAF2+GFP-infected dopaminergic VTA neurons 
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displayed a markedly impaired current response to baclofen compared to control 

AAV-GFP-containing neurons, fully consistent with reduced expression of GABAB at 

the cell surface (Figures 4c,d,e).  

Baclofen stimulation of GABAB receptors in vivo inhibits the enhanced 

locomotor activity arising from acute stimulation of VTA neurons by amphetamine 53-

55. Consistently, baclofen pretreatment completely inhibited the acute effect of 

amphetamine in mice bilaterally injected in the VTA with the control virus (Figure 5a). 

In contrast, although amphetamine administration further enhanced locomotor activity 

in mice injected with the AAV-PRAF2+GFP virus, baclofen pretreatment failed to 

abolish this effect, supporting the impairment of GABAB receptor inhibitory activity in 

this context (Figure 5b). Interestingly, the VTA-selective bilateral ablation of GB1, 

achieved by injecting a virus carrying the CRE recombinase (AAV-CRE) in both 

VTAs of GB1-foxed mice (GB1fl/fl), pheno-copied the behavioral effect induced by 

AAV-PRAF2+GFP in WT mice (Figures 5c and Supplementary Figure S7a). The 

motor activity of these mice was enhanced by acute administration of amphetamine, 

but baclofen failed to inhibit the motor effect of amphetamine, similarly to what was 

observed in wt mice injected with AAV-PRAF2+GFP (compare Figures 5b and 5c).  

We next examined the effect of unilateral injection of AAV-PRAF2+GFP virus 

into the VTA of normal animals or mice displaying global GB1 knock-out 56. GB1-KO 

mice exhibit spontaneous hyperlocomotor activity (Figure 5d,e pre-test). Previous 

studies reported that asymmetric alteration of basal ganglia activity contributes to a 

rotational behavior 57; the unilateral increase of dopaminergic activity in the 

mesolimbic circuit causes contralateral pivoting 58, 59, whereas ipsilateral pivoting is 

usually associated with reduced activity in the same path 60. After unilateral injection 

of AAV-PRAF2+GFP virus into the VTA, leading to a two-fold local increase of 
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PRAF2 (Supplementary Figure S7b,c), normal control littermates of the GB1-KO 

mice showed both a significant increase of their overall locomotor activity (Figure 

5d,e) and a contralateral turning phenotype (Figure 5f, Movie S1a) compared to 

control AAV-GFP-injected mice (Movie S1b), confirming that dopaminergic neurons 

were over-activated in the injected VTA. In contrast, consistent with a functional link 

between the effect of PRAF2 overexpression and impaired GB1 expression, the 

unilateral AAV-PRAF2+GFP injection in the VTA of GB1-KO mice neither increased 

overall activity (Figure 5d,e) nor affected the spontaneous turning phenotype, which 

was equally contralateral or ipsilateral (Figure 5f). Interestingly, the unilateral deletion 

of GB1 in the VTA of GB1fl/fl mice (Supplementary Figure S7a) recapitulated the 

hyperlocomotor activity and the contralateral turning phenotype observed in wt mice 

receiving unilateral injection of AAV-PRAF2+GFP in the VTA (Figure 5d-f). Together, 

these data fully support the hypothesis that the behavioral changes induced by 

modulating the content of PRAF2 in the VTA depend on local GABAB function.  

In conclusion, moderate changes of PRAF2 concentration are sufficient to 

markedly affect cell surface GB1 targeting and, consequently, GABAB function both 

in vitro and in vivo, via GB1 retention in the ER. 
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Discussion  
 

PRAF2 functions as an ER gatekeeper that prevents GB1 from egressing the 

ER until it is competitively displaced by GB2. Thereafter, the GB1-GB2 hetero-dimer 

can progress to the Golgi apparatus and subsequently to the plasma membrane as a 

functional GABAB receptor.  

The identification of PRAF2 as a reticular GB1 tether uncovers a central piece 

of a puzzle initiated by the discovery that GABAB receptors are hetero-dimers of GB1 

and GB2 subunits and that the RXR signal, contained in the carboxy-terminal tail of 

GB1, participates in GB1 ER retention. A simple mechanism of control of receptor 

function also emerges from our data, which does not rely on gene transcription or 

enzymatic protein modification, but rather on the competition between a gatekeeper 

(PRAF2) and GB2 for interaction with GB1. The fact that cell surface GB1 is 

dependent on the relative concentrations of competing proteins with opposite effects 

on its forward trafficking might also explain how functional (although leading to 

atypical outputs) cell surface GB1 is found in some brain areas of GB2-KO mice 61. 

PRAF2 might be less abundant in these particular areas and thus insufficient for 

retaining all GB1 molecules, which could then reach the cell surface as monomers or 

homo-dimers. Alternatively, in the absence of GB2, GB1 could hetero-dimerize with 

another ER-resident GPCR and escape PRAF2 retention. 

The concentration of PRAF2 in brain areas is likely submitted to regulation, as, 

for example, PRAF2 concentration can vary up to 20-fold in embryonic hippocampal 

neurons after a few days in culture. On the other hand, less than twofold changes in 

the VTA are sufficient to promote major motor hyperactivity. The mechanistic role of 

impaired GB1 expression at the surface of VTA neurons in our hyperactive mice was 

substantiated by several experimental lines of evidence: i) the loss of baclofen-
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mediated inhibition of the motor effects caused by amphetamine both in wt mice 

expressing exogenous PRAF2 in the VTA and mice with localized deletion of GB1 in 

the VTA; ii) the absence of specific PRAF2 effect in GB1-KO mice; iii) the impaired 

functional response to baclofen in VTA neurons expressing exogenous PRAF2. It is 

also consistent with the observation that GB1- or GB2-KO mice exhibit enhanced 

hyperlocomotor activity 56, 61-63, and that GABAB antagonists stimulate 64, whereas 

intra-VTA agonists depress basal locomotor activity 65.  

PRAF2 belongs to the short list of specific ER-resident proteins that inhibit the 

forward export of plasma membrane proteins. These include, Rer1p, which 

negatively regulates gamma-secretase complex assembly 66, and Shisa a GPCR-

interacting, ER-resident protein controlling the surface density of Frizzled during 

development 18. Among the other PRAFs, PRAF3, which was reported to somehow 

control the cell surface function of the Excitatory Amino-Acid Carrier 1 38, 39, might 

similarly function as an ER gatekeeper for this protein.  So far, although not 

excluded, there is no experimental evidence that PRAF1 might be a Golgi 

gatekeeper.  

Whereas GABAB is the only GPCR so far with an identified ER gatekeeper, 

experimental data suggest that additional members of this receptor family might be 

controlled by an analogous mechanism. Indeed, either the existence of abundant 

stores in the ER of primary cells, or regulated delivery to the cell surface were 

reported for several other GPCRs 6. In most cases, their association with private 

chaperones or with escort proteins promoted exit from the ER 7, 12, 67, 68. In the 

context of GPCR export in neurons, a depression-like phenotype was observed in 

knockout mice for p11 14 a member of the S100 EF-hand calcium-dependent 

signaling modulators 69, which specifically interacts with serotonin 5-HT1B receptors 
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(5-HT1BRs). Cell surface density and function of 5-HT1BRs were decreased in these 

mice, indicating that p11 is an escort for 5-HT1BRs. Interestingly, adenovirus–

mediated transfer of the gene encoding p11 to the nucleus accumbens rescued the 

depression-related behavioral disorders of p11 knockout mice 70. In light of the data 

reported here, it is plausible that gatekeepers regulate at least some of these GPCRs 

in a similar fashion to GB1.  

Clinical implications of impaired GPCR export from internal compartments to 

the cell surface have been documented for several diseases and receptors 71, 72. In 

most cases the mechanism of retention was attributed to receptor mutations. Based 

on our study in mice, a pathological deregulation of gatekeeper content could 

represent an additional mechanism in this context. Consistent with this hypothesis, a 

two-threefold increase of PRAF2 mRNA was reported in human brain tumors 

compared to normal samples 36, 42.  

 In conclusion, we have uncovered a mechanism by which GPCR function can 

be regulated by the competing effects exerted by gatekeepers and escorts on 

receptor trafficking to the cell surface. Although interfering with this process causes 

major pathological effects in mice models, further studies are necessary to 

appreciate whether deregulation of gatekeeper and/or escort expression levels are 

pathogenic in human diseases.  
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Figure legends 

 

Figure 1. Interaction of PRAF2 and GB1.  

(a) HEK-293 cells were transfected with plasmids coding for GB1-GFP and/or 

V5-epitope tagged PRAF2 or PRAF3, as indicated. Immunoprecipitation with a 

monoclonal anti-V5 antibody was performed from 1mg protein of cell lysates. The 

presence of GB1 and PRAFs was revealed with anti-GFP and anti-V5 antibodies, 

respectively. 50 μg of the inputs were analyzed to determine GB1-GFP expression. 

Lower panel: densitometric analysis of GFP immunoreactivity, corresponding to the 

GB1-GFP that was co- immunoprecipitated with PRAF-V5 upon incubation with the 

V5 antibody; AU: arbitrary units; Unpaired t-test **** p<0.0001 (N=3). (b) PRAF2 and 

GB1 expression in human (Hela, LN229, U87, U373, THP-1) and mouse cell lines, 

rat brain, neurons and astrocytes. Immunoblot experiments with Anti-PRAF2 and 

Anti-GB1 antibodies (see Supplementary Figure S3a for monoclonal anti-GB1 

antibody specificity) were conducted on 50μg of total proteins after cell lysis. M: 

monomeric PRAF2; D: dimeric PRAF2; H: high molecular weight forms likely 

corresponding to PRAF2 multimers. PRAF2 is also expressed in HEK-293 cells (not 

shown). (c) Coimmunoprecipitation study of endogenous GB1 and PRAF2 from adult 

rat brains. Experiments were performed on 12mg solubilized brain proteins obtained 

as described in methods. Samples were immunoprecipitated with control IgG or anti-

PRAF2 antibodies, separated by SDS-PAGE and immunoblotted with anti-GB1 or 

anti-PRAF2 antibodies. 50µg input was co-migrated for comparison. (d) Subcellular 

distribution of PRAF2 and GB1 in rat hippocampal neurons in culture. Permeabilized 

cells were stained with anti-PRAF2 and anti-GB1 antibodies and antibodies directed 

against KDEL, to label the ER, or the Golgi marker GM130, then incubated with the 
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appropriate secondary antibodies coupled to green or red fluochromes. Co-

localization (orange in merge panels) was quantified using Image J software. PRAF2 

mostly overlapped with KDEL staining (76.7%±6.7%) and a minor fraction overlapped 

with GM130 staining (8.88±1.1%) in 3 independent experiments; PRAF2 and GB1 

overlap was 80,2±5,6%; GB1 and KDEL overlap was 79.7±2.5%. Scale bar: 10 µm. 

Insets: enlarged areas. 

 

Figure 2. PRAF2 modulation affects cell surface GB1 expression and function 

in neurons. 

(a) Hippocampal neurons in culture for 7 days were transfected with control- 

scrambled or PRAF2-specific siRNAs (Si1 and Si2).  After one week, the efficacy of 

PRAF2 gene silencing was determined by immunoblot experiments on 50µg of total 

cell lysates using anti-PRAF2 antibodies (see Supplementary Figure S2a).  Residual 

PRAF2 after specific siRNA treatment was compared to values in neurons treated 

with control siRNA (yellow boxes, n=12). Determination of GB1 binding sites at the 

surface of siRNA-treated neurons was performed by a radioligand assay, using the 

hydrophilic GB1-specific (see Supplementary Figure S3c) antagonist [3H]CGP54626 

as ligand. One week after transfection, neurons (60-90 x 103 per well) were 

incubated in culture wells with 20 nM [3H]CGP54626 for 20 min at RT, in the absence 

or presence (to determine non-specific binding) of 10 µM unlabeled CGP54626 (see 

methods). The number of binding sites after specific siRNA treatment was compared 

to values in neurons treated with control siRNA (red boxes, n=12). One-way ANOVA 

**p<0.02; ***p<0.001. (b) Expression of exogenous PRAF2 in neurons inhibits the 

cell-surface density of GABAB binding sites. Neurons infected with an adenovirus 

allowing the simultaneous expression of PRAF2 and GFP (AAV-PRAF2+GFP). 

Upper part: transmission and immunofluorescence microscopy images showing 



 31

infected neurons in green; lower part: ligand-binding assay in the same neurons 

performed as in panel (a); Unpaired t-test n=3 *p<0,05. (c) Basal spontaneous 

activity recorded in hippocampal neurons infected with AAVs (as indicated) or 

transfected with siRNAs, before baclofen treatment. (d) The inhibition of 

spontaneous activity caused by 0.2μM baclofen was measured in additional 

untreated neurons in the absence or presence of the GABAB antagonist 

CGP54626 (100 nM), **p<0.01. (e) Dose-response curves of baclofen-induced 

inhibition of spontaneous action potential discharge were established in untreated 

neurons, neurons transfected with control siRNA or with PRAF2-specific siRNAs 1 or 

2. Data were normalized to neurons under basal conditions and analyzed using 

GraphPad Prism software, using the one-site inhibition curve as model. The number 

of recorded neurons for each condition is indicated. Calculated IC50 values were: 

untreated, 7.2x10-7M (95%CI: 3.0x10-7-1.710-6); Si-control, 4.5x10-7M (95%CI: 

1.8x10-7-1.110-6); Si1-PRAF2, 8.0x10-8M (95%CI: 4.8x10-8-1.410-7); Si2-PRAF2, 

1.3x10-7M (95%CI: 8.3x10-8-2.2107). Differences between the various conditions 

were also analyzed for each concentration of baclofen in the Table S1. (f) 

Comparison of the inhibitory effect of 0.2µM baclofen in untreated neurons, Si-control 

or Si(1+2)-PRAF2-treated neurons, and neurons infected with AAV-PRAF2+GFP. 

(**** p<0.0001, untreated versus Si(1+2)-PRAF2; *p<0.05, untreated versus AAV-

PRAF2+GFP; Student T-test). For sample current recordings see Supplementary 

Figure S2b. 

 

Figure 3. Surface GB1 is regulated by PRAF2 and GB2 expression level. 

(a) HEK-293 cells were transiently cotransfected with the indicated constant amount 

of myc-GB1-YFP and HA-GB2 plasmid DNA and increasing concentrations of 
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PRAF2 construct. Surface GB1 in YFP-positive, non-permeabilized cells was 

quantified by FACS analysis using the 9E10 anti-Myc monoclonal primary antibody 

and a secondary anti-mouse Cy5-conjugated antibody (Supplementary Figure S4). 

Cell surface GB1 expression is shown by the histograms: bars indicate SEM from 

three experiments in duplicate. The amount of the indicated proteins is shown by the 

immunoblots below the histograms. (b-d) GB2 competes with PRAF2 for GB1 

interaction. (b) Competition between PRAF2 and GB2 for interaction with GB1 in co-

IP experiments. HEK-293 cells were transfected with the indicated plasmids. 

Immunoprecipitation with a monoclonal anti-V5 antibody was performed from 1mg 

protein of cell lysates. The presence of GB1, GB2 and PRAFs was revealed with 

anti-GFP, anti-HA and anti-V5 antibodies, respectively. 50 μg of the inputs were 

analyzed by immunoblot to determine the expression level of the proteins. Lower 

histograms: densitometric analysis of GFP immunoreactivity, corresponding to the 

GB1-GFP that was co-immunoprecipitated with PRAF-V5 in the presence of 

increasing amounts of GB2. *p<0.01 ***p<0.001, one-way ANOVA (n=3). (c) BRET 

saturation experiments of PRAF2-Rluc donor with GB1-YFP acceptor were 

conducted in the absence or presence of two different amounts of unlabeled GB2 

(50ng or 250ng plasmid DNA). Calculated BRET50 values were: 1.4±0.3 (GB2=0) 

4.9±1.1 (GB2=50) and 12.4±2.5 (GB2=250); n=22 to 66 independent transfections 

per plot (significant difference between GB2=0 and GB2=250 (p<0.01), and between 

GB2=50 and GB2=250 (p<0.05), one-way ANOVA). (d) HEK-293 cells were co-

transfected with the constant amounts of myc-GB1-YFP and PRAF2-V5 plasmids 

and increasing concentrations of HA-GB2 plasmid. Cell surface export of GB1 was 

examined by FACS on non-permeabilized cells, as described in panel a. (e) 

Involvement of the GB1 RXR and LL motifs in the interaction with PRAF2. Co-
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immunoprecipitation experiments conducted as in Figure 1a comparing the 

association of GB1-GFP, GB1-ASA-GFP, GB1-AA-GFP and GB1-AA/ASA-GFP with 

PRAF2-V5; bottom: quantitation of immunoprecipitated material. Tub: tubulin loading 

control; ***p<0.0001 ****p<0.00001, one way Anova, from 4 independent 

experiments. 

 

Figure 4. Locomotor activity and baclofen-evoked GABAB currents in mice 

expressing exogenous PRAF2 in the VTA 

(a) Locomotor activity and habituation to a novel environment of mice receiving 

bilateral injection in the VTA of AAV-GFP (open symbols) or AAV-PRAF2+GFP (filled 

symbols) after 1 (Day 1), 2 (Day 2) or 3 (Day 3) days of habituation. Locomotor 

activity was measured in a circular corridor with four infrared beams placed every 

90°. Counts corresponding to consecutive interruption of two adjacent beams (i.e., 

mice moving through one-quarter of the corridor) were incremented every 5 min. The 

effects of 200 or 500 nL of injected virus are shown (n=16 in each group). For open 

symbols, error bars are smaller than the size of the symbols. See Supplementary 

Figures S6-7 for quantitative analysis of PRAF2 expression in the VTA. (b) 

Habituation had no effect in AAV-PRAF2+GFP-injected mice (lower panels), whereas 

AAV-GFP-injected mice (upper panels), showed reduced locomotor activity at days 2 

and 3 (D2 and D3) compared to the first day (D1). Data were analyzed using two-way 

ANOVA (means±SEM) ****P<0.0001 Df(1). (c-e) Overexpression of PRAF2 in the 

VTA reduces baclofen-evoked GABAB currents. (c) Visualization of the injection area 

of AAV-PRAF2-GFP or control AAV-GFP (left panel) and of transfected neurons 

(middle panel). Three weeks after injection, GFP-positive VTA neurons were patch-

clamped under visual guidance (right panel) to assess baclofen-induced currents. 
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Scale bar, 20 µm (d). Left panel: example of traces of VTA GFP-positive neurons 

exhibiting h-current (left scale bars 200 ms and 100 pA) in response to bath-

application of baclofen (15 µM) with an outward current, which was blocked by the 

GABABR-antagonist CGP52432 (5 µM) (right scale bars 2min and 50 pA). (e) Peak 

maximal current in putative VTA dopamine neurons infected with either control AAV-

GFP (black column), or AAV-PRAF2+GFP (red column). A significant decrease in the 

maximal baclofen-induced current was observed in neurons expressing exogenous 

PRAF2 (Control: 220.65±57.24 pA, n=8; AAV-PRAF2+GFP: 74.78±30.38 pA, n=10; 

t(16)=2.383, *p<0.05). The baclofen-induced current was typically partly 

desensitized, reaching a steady state current (I steady). Compared to control 

neurons, VTA dopamine neurons expressing exogenous PRAF2 displayed reduced 

steady state currents (Control: 156.63±43.32 pA, n=8; AAV-PRA2+GFP: 

59.59±19.64 pA, n=10; t(16)=2.189, p<0.05), and also exhibited less desensitization 

(I max – I steady) currents (Control: 64.03±19.38 pA, n=8; AAV-PRAF2+GFP: 

15.19±12.23 pA, n=10; t(16)=2.217, p<0.05). 

 

Figure 5. Behavioral changes induced by modulating the content of PRAF2 in 

the VTA depend on local GABAB function. 

(a-c) Overexpression of PRAF2 in the VTA reduces baclofen dependent behavioral 

effects. The effect of baclofen (4mg/kg, i.p.) on amphetamine-induced locomotor 

activity was examined in wt mice (a, b) injected bilaterally with 200nL of AAV-GFP (a) 

or AAV-PRAF2+GFP (b) (n=8 in each group) or GB1fl/fl mice injected bilaterally with 

200nL of AAV-CRE-GFP (c) (n=6). Animals received saline (open symbols) or 

baclofen (filled symbols) 30min before amphetamine (3mg/kg, i.p. squares) or saline 

(circles) administration. Locomotor activity was then recorded for 2h. Data (means ± 
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SEM, n = 6-8 per group) were analyzed by two-way ANOVA with treatment as main 

factor (F(5,31)=6,083 P=0,0005), revealing the following significant interactions: 

AAV-PRAF2+GFP saline+AMPH vs. AAV-GFP baclo+AMPH (p<0.001); AAV-

PRAF2+GFP baclo+AMPH vs. AAV-GFP baclo+AMPH (p<0.001); AAV-GFP 

saline+AMPH vs. AAV-GFP baclo+AMPH (p<0.01). AAV-GFP baclo+AMPH vs. AAV-

CRE saline+AMPH (P<0.001); AAV-GFP baclo+AMPH vs. AAV-CRE baclo+AMPH 

(p<0.001). No interaction was found for: AAV-PRAF2+GFP saline+AMPH vs. AAV-

PRAF2+GFP baclo+AMPH; AAV-PRAF2+GFP saline+AMPH vs. AAV-GFP 

saline+AMPH; AAV-PRAF2+GFP baclo+AMPH vs. AAV-GFP saline+AMPH; AAV-

CRE saline+AMPH vs. AAV-CRE baclo+AMPH; AAV-GFP saline+AMPH vs. AAV-

CRE baclo+AMPH; AAV-GFP saline+AMPH vs. AAV-CRE saline+AMPH. Arrows 

indicate amphetamine/saline injection. (d-f) Loss of PRAF2-dependent behavioral 

effects in GB1-KO mice. The locomotor effect of AAV-PRAF2+GFP unilateral 

injection in the VTA of GB1-KO mice and control littermates (WT) was compared with 

that of AAV-CRE-GFP injection in the VTA of GB1fl/fl mice. Spontaneous locomotor 

activity of each mouse was measured two weeks before (Pre-test) or after (Test) 

unilateral injection of AAV-PRAF2+GFP or AAV-CRE-GFP in the VTA. In WT mice, 

PRAF2 induced a significant homogeneous enhancement of motor activity (video-

tracking in (d), quantification in (e) one-way ANOVA p=0,001; n=10). In GB1-KO 

mice Pre-test locomotor activity was enhanced on average, comparatively to WT 

animals, one-way ANOVA p=0,0365 (with marked variations between individuals), 

but was not enhanced by exogenous PRAF2 expression in the VTA, one-way 

ANOVA p=0,371; n=10. In GB1fl/fl mice CRE induced a significant enhancement of 

motor activity comparable to that caused by PRAF2 in wt mice, one-way ANOVA p= 

0,001. (f) Number and direction of turns recorded for WT and GB1-KO mice after 
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AAV-PRAF2+GFP injection in the VTA and for GB1fl/fl mice after AAV-CRE-GFP 

injection in the VTA. n.s: non significant.  
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