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Abstract – The well-known calculation of Womersley 

for the pulse wave propagation in a deformable artery is 

revisited here, through the inclusion of the magnetic 

force in the Navier-Stokes equations.   
 

Index terms - Biomechanics, Medical physics, Modeling 

 

I. INTRODUCTION 
 

Several biomedical applications require a good 

knowledge of the physics of blood flow and pressure 

pulse propagation in a deformable vessel, in the presence 

of an external static magnetic field: 

- In the case of Magnetic Resonance Imaging (MRI) of 

the heart, the charged particles of the blood get deflected 

by the Lorentz force, thus inducing electrical currents and 

voltages across the vessel wall and in the surrounding 

tissues. These voltages disturb the electrocardiogram 

(ECG) detected at the surface of the thorax, making the 

ECG-based image synchronization inaccurate. Several 

approaches have been proposed to correct the ECG 

signals for these magnetohydrodynamic (MHD) induced 

artifacts [1]. On the contrary, other groups [2], decided to 

try to use the MHD effect measured with ECG as a 

biomarker of cardiac output, since it is sensitive to 

magnetic flux density, flow orientation with respect to the 

magnetic field lines, and velocity of the blood. Frauenrath 

et al. [3] even propose to use the MHD induced voltage 

itself as a tool for cardiac synchronization.  

- Pulse wave velocity (PWV) is known to be an indicator 

of arterial stiffness, and, as a matter of fact, a predictor of 

cardiovascular risk. MRI has been proposed by several 

groups as a noninvasive tool to assess PWV [4].  

- Quite recently, a new direction of research has emerged, 

aiming at harvesting intracorporeal energy to provide 

continuous power to implanted medical devices. The 

advantage would be to avoid costly and tedious 

replacement or recharging of these medical implants. 

Pfenniger et al. [5] propose a prototype that converts the 

expansion and contraction of an artery (due to pulsatile 

blood pressure changes) into electrical energy by 

electromagnetic induction.   

For a Newtonian incompressible fluid, the MHD 

equations are defined by a coupling of Maxwell’s 

electromagnetic equations and Ohm’s law, on the one 

hand, and the Navier-Stokes equations including the 

Lorentz force on the other hand. An optimal modelisation 

of the magnetohydrodynamic flow of blood should 

include the pulsatility of flow, the deformability and 

conductivity of the vessel wall, together with the induced 

electrostatic and electromagnetic fields. This leads to a 

complex mathematical problem and analytical solutions 

may be found only under restrictive hypotheses. To our 

knowledge, the solutions that may be found in the 

literature assume that the vessel is rigid. The present work 

provides a solution including the vessel wall 

deformability by a coupling of fluid equations and 

equations for the motion of the wall, in the case of simple 

sinusoidal flow, non-conducting wall and neglected 

inductions.  

II. THEORY 

 

The calculations are conducted following the method 

proposed by Womersley [6] and by Atabek and Lew [7]. 

The main velocity component of the blood is longitudinal 

(along z). The radial component (which is related to the 

wall deformability) is small, when compared with the 

longitudinal component. The vessel wall is assumed to be 

thin, elastic and isotropic. The analysis is restricted to 

waves whose wavelengths are very large compared with 

the radius of the tube, and it is further assumed that the 

amplitude of the pressure disturbance is sufficiently small 

so that non-linear terms of the inertia of the fluid are 

negligible compared with linear ones. The B0 field is 

transverse to the vessel. The Lorentz force acting on the 

fluid is expressed as j^B0, where j is the electric current 

density, given by σ(u^B0) (σ is the electric conductivity 

of the blood, and u is the fluid velocity field). The 

equations describing the motion of the wall, and the 

boundary conditions between the fluid and the deformable 

wall are the same as in [7]. The solutions of this system of 

equations are searched for the case of the propagation of 

forced pressure waves which are harmonic in t (time) and 

in z. All the variables (pressure, radial and longitudinal 

fluid velocities and wall displacements) take the form  

X(r,t,z)=X*(r)exp[iω(t-(z/c))],  

with i the complex number such that i
2
 = -1, ω the circular 

frequency of the forced oscillations, and c, the velocity 

(complex) of propagation of the oscillations. A frequency 

equation, which is quadratic in the square of the 

propagation velocity, is obtained. Two out of four roots of 

this equation give the velocity of propagation of two 
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distinct outgoing waves. The remaining two roots 

represent incoming waves corresponding to the first two 

waves. One of the waves propagates more slowly 

(“Young mode”) than the other (“Lamb mode”). This last 

type of waves is essentially longitudinal waves through 

the tube wall, modified with the existence of the fluid.  

 

III. RESULTS 

    

The influence of the magnetic field intensity and of the 

amplitude of the pressure perturbation on the two fluid 

velocity components, on the two wall displacement 

components and on the wave celerity is demonstrated (see 

for example Figure1). The magnetic field induces some 

flow reduction and some flattening of the fluid velocity 

profiles. It also induces a reduction of the wave celerity of 

the Young mode. These effects heighten when B0 

increases. However, in the range of the values of B0 used 

in routine MRI (B0 <10 Tesla), they remain quite 

negligible.  

The influence of the wall deformability can also be 

established through the comparison of the present solution 

with the solution of Sud et al. [8], obtained with the same 

hypotheses except that the tube is rigid.  

 

IV. DISCUSSION – CONCLUSION 

 

In spite of the numerous simplifying hypotheses, it seems 

that this solution allows to capture some important 

features of  the physical problem. It is also hoped that 

such analytical solutions may be used to validate the 3D 

computational fluid dynamics codes that may be 

developed by other groups.  
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Figure 1: Propagation and damping of the radial displacement 

of the wall, for the « Young mode » wave celerities, obtained 

for a 10 mmHg pressure perturbation in the vessel. The 

displacements (full scale = 80 microns) are plotted against 

(ωt) (in radians), for different longitudinal positions ( z = 0; z 

= λ/4; z = λ/2; z =3λ/4; z = λ). The influence of the magnetic 

field, B0, is included in the non-dimensional Hartmann 

number, M, defined as: M = RB0 ((σ/η)
1/2

) , where R is the 

“mean” radius of the vessel (1 cm), σ the blood electric 

conductivity (0.5 S/m), and η its dynamic viscosity (4 

mPa.s). M= 1.2 thus corresponds to B0 = 10.7 Teslas, M = 10 

corresponds to B0 = 89.4 T,,... The other data used here were: 

blood density = 1050 kg/m
3
, wall density = 1100 kg/m

3
, 

frequency = 75 b.p.m., Young modulus of the vessel wall = 

10
6
Pa, wall thickness = 2 mm, Poisson coefficient  = 0.5. 
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