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ABSTRACT/SUMMARY: 

Apoptotic cell removal or interactions of early stage apoptotic cells with immune cells are associated 

with an immunomodulatory microenvironment that can be harnessed to exert therapeutic effects. 

While the involved immune mechanisms are still being deciphered, apoptotic cell infusion has been 

tested in different experimental models where inflammation is deregulated. This includes: chronic 

and acute inflammatory disorders such as arthritis, contact hypersensitivity, or acute myocardial 

infarction. Apoptotic cell infusion has also been used in transplantation settings to prevent or treat 

acute and chronic rejection, as well as to limit acute graft-versus-host disease associated with 

allogeneic hematopoietic cell transplantation. Here, we review the mechanisms involved in apoptotic 

cell-induced immunomodulation and data obtained in preclinical models of transplantation and 

inflammatory diseases. 
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Drugs and biotherapies are not devoid of side effects and improvements in patient treatment are 

needed. Indeed, biological agents, such as anti-TNF, have significantly improved the treatment of 

inflammatory chronic diseases, such as rheumatoid arthritis (RA). However, 30 to 40% of RA patients 

are considered to be refractory or contraindicated to these agents. In solid organ transplantation 

settings, acute graft rejection is now significantly controlled by immunosuppressive drugs. In 

contrast, the benefits of such immunosuppressive drugs on chronic rejection and overall long-term 

graft survival are still uncertain. Allogeneic hematopoietic cell transplantation is an efficient 

immunotherapy to cure leukemia. However, this approach is associated with major life-threatening 

complications, notably graft-versus-host disease (GvHD) which occurs in 30 to 80% of allografted 

patients. Cell-based therapies are new alternative therapeutic strategies that can be used to limit, or 

even, controlall these pathologies with limited toxic effects.More than ten years ago, we propose to 

use intravenous (iv) early apoptotic cell infusion as an alternative cell-based therapeutic approach in 

allogeneic hematopoietic cell transplantation, initially conceptually [1], and then experimentally [2]. 

In this review, we will introduce immunomodulatory mechanisms associated with early apoptotic 

cells. Then, we will report and discuss data obtained in preclinical experimental models, before 

proposing future perspectives for such therapeutic approach. 

Immunomodulatory properties associated with early apoptotic cells 

 An immunosuppressive/anti-inflammatory microenvironment created by the apoptotic cell 

death 

Apoptosis is a cell death mechanism occurring in different physiological situations, including 

development, or during normal cell turn over with elimination of unwanted or undesirable cells. For 

instance, more than half of the cells are eliminated by apoptosis in the mammalian brain during 

development[3]. More than one hundred billion of neutrophils die daily by apoptosis[3]. Elimination 

of apoptotic neutrophils by macrophages following tissue injury−a process called efferocytosis[4]− is 

critical for the resolution of inflammation,as well as initiation of tissue repair[5]. In all these 

situations, apoptotic cells are quickly removed after apoptosis has been triggered [6]. This 
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elimination takes place before the apoptotic cells become completely dislocated [6], and is estimated 

to occur less than 3 hours after the apoptotic signal initiation [7]. This suggests initially that apoptotic 

cell death is a silent immune mechanism [8, 9]. Apoptotic cells are preferentially uptaken by 

professional phagocytes, such as macrophages [10-16], microglia in the brain [17-20],and/or some 

dendritic cells (DC) subsets [14, 15, 21-23]that move to the sites where cells die in response to 

specific signals, called “find-me” signals[24] (Figure 1). In general, these “find-me” signals correspond 

to the translocation of intracellular structures to the apoptotic-cell surface that engage with 

phagocytes viatheir multiple cognate receptors(Figure 1). Then, professional phagocytes can release 

after apoptotic cell removal immunosuppressive cytokines that neutralize subsequent immune 

responses (Figure 2). Thus, both macrophages [25, 26], microglia[27]andhumanmonocyte-derived DC 

[28]−a model for inflammatoryconventional DC[29]− have been reported to produce interleukin (IL)-

10 after apoptotic cell uptake. Interactions of apoptotic cells with monocytes induce IL-10 secretion 

after lipopolysaccharide (LPS) stimulation [30]. Secretion of TGF-β after apoptotic cell removal by 

macrophages [11, 31],microglia[27] or conventional DC [31]hasalsobeen described. Secretion of 

these anti-inflammatory cytokines can occur spontaneously after apoptotic cell encounter or is 

observed after stimulation with Danger signals mimicked in vitro by TLR ligands (LPS or zymosan, for 

TLR4 and TLR2, respectively) (Table 1). Regulatory factors other than immunosuppressive cytokines, 

such as retinoid acid [32], prostaglandin-E2 (PGE2) [11, 27], enhanced tryptophan catabolism via 

stimulation of indoleamine 2,3-dioxygenase (IDO) enzymatic activity [33, 34],and/or specialized pro-

resolving lipid mediators (e.g., resolvins) [35], are also produced by professional phagocytes 

eliminating apoptotic cells (Figure 2). Thus, immunosuppressive cytokine-independent mechanisms 

induced by apoptotic cells have been also reported[33-38]. For instance, nitric oxide (NO) is 

spontaneously produced by mouse macrophages after interactions with early apoptotic cells[37, 38]. 

This prevents the release of MIP-2, the murine homolog of IL-8, which plays a role in neutrophil 

recruitment[38]. Synthesis of NO after apoptotic cell removal by murine macrophagesinhibitsalso the 

production of the chemokine KC[37]. Moreover, uptake of apoptotic cells by professional phagocytes 
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is associated with a decreased capacity to produce pro-inflammatory cytokines, including:TNF, IL-1β, 

IL-6, IL-8,GM-CSF, IL-12 or IL-23[11, 20, 23, 28, 31, 39-41], or inflammatory factors, such as,reactive 

oxygen species (Figure 2). Again, as observed for anti-inflammatory cytokines, decrease of pro-

inflammatory factor synthesis can occur spontaneously after apoptotic cell interactions in 

pathological situations where pro-inflammatory cytokine production is exacerbated. Prior apoptotic 

cell removal prevents also ex vivopro-inflammatory cytokine secretion by TLR stimulation (Table 1).A 

decrease of pro-inflammatory cytokine secretion after apoptotic cell exposure can be a direct effect 

on pro-inflammatory cytokine genes, independent of IL-10 and TGF-β [39, 41].Thus, the 

immunosuppressive microenvironment created by apoptotic cells themselves[42-44]is transiently 

amplified by professional phagocytes after apoptotic cell removal. 

 A possible transfer of the immunomodulatory message to adaptive immune cells by antigen-

presenting cells 

The contact of conventional DC with apoptotic cells blocks their ability to maturate and produce 

inflammatory cytokines, while their homing capacity might bestimulated. Hence, conventional DC 

acquire the expression of CCR7 [45, 46] −that in response to CCL19 and CCL21 gradients− guides DC 

to the draining lymph nodes. In the draining lymph nodes, conventional DC exposed to apoptotic 

cells can interact with naive T cells and deliver a ‘‘tolerogenic’’ signal favoring T cell commitment into 

a regulatory phenotype, such as peripherally-derived Foxp3+ CD4+ regulatory T cells (abbreviated 

pTreg according to a recent nomenclature [please refer to Abbas AK et al., Nat Immunol., 2013]) or 

IL-10-producing Tr1 cells[14, 31, 36, 47, 48]. Macrophages after apoptotic cell removal may also 

possess the ability to migrate to draining lymph nodes [5, 49]. However, this function may be 

restricted to “satiated” macrophages (i.e., stuffed macrophages with apoptotic cells) [50]. Since 

macrophages usually degrade completely engulfed antigens due to their contents in proteolytic 

enzymes [51], no antigen presentation to T cells is considered to occur[52]. However, one may 

imagine that emigrating macrophages release immunosuppressive cytokines in the draining lymph 
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nodes leading to a transient local non-specific immunosuppression which may affect DC/T cell/B cell 

interactions. 

 A focus on the role of professional phagocytes in apoptotic cell-induced immunomodulation 

Macrophages and DC represent both heterogeneous cell subsets with each cell subset dedicates to 

distinct functional properties. Significant improvements have been recently performed on the 

functional characterization and the ontogeny of macrophage [53]and conventional DC subsets[54]. 

Among these new findings[53, 54], some may impact on apoptotic cell removal and its functional 

consequences. Concerning macrophages, characterization of M1/M2 phenotypes, macrophage origin 

(tissue-resident versus blood monocyte-derived macrophages) and macrophage location may 

influence apoptotic cell elimination with some macrophages more dedicated to this job. This 

includes, for instance,the following subsets: IL-10-producing alternatively activated M2 

macrophages[55], orglucocorticoid and M-CSF, or IL-10 and M-CSF-derived 

M2cmacrophages[16].Furthermore, tissue resident macrophages may prevent apoptotic cell removal 

by inflammatory monocyte-derived macrophages in a 12/15-lipoxygenase-dependent manner [56]. 

Marginal zone macrophages of the spleen are specialized in the uptake of blood-borne apoptotic 

leukocytes[12, 13]. In addition, marginal zone macrophages can secrete after apoptotic cell removal 

CCL22 to recruit specifically Treg[57].Recent data describe the relationship between dedicated 

antigen-presenting cell (APC) subsets and the induction of pTreg, one of the main mechanisms 

involved in peripheral tolerance. This is true for macrophage subsets in the lung [58] or the intestine 

[59], as well as for DC subsets both in Human [52, 60] and mouse [61].The recent characterization of 

migratory versus lymphoid-resident conventional DC can be useful in the future to better define the 

role of distinct APC subsets in apoptotic cell-induced tolerance and to target preferentially 

tolerogenic APC. While migratory conventional DC take up antigens from peripheral tissues, 

lymphoid-resident DC capture antigens from the blood or the lymph. Thus, blood-borne apoptotic 

leukocytes are rather eliminated by marginal zone CD8α+ conventional DC [23, 62]. In contrast, 

migratory DC arise in peripheral tissues and then migrate into the lymph nodes. In steady state (i.e., 
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in absence of Danger signals or an ongoing inflammatory response), peripheral tolerance related to 

pTreginduction is rather induced by migratory conventional DC [61, 63] −as observed in the skin [61, 

64], the lung[61], and the gut [65]− than lymphoid-resident CD8+ DC, as initially thought[66].In rats, a 

conventional DC subset dedicated to transport continually apoptotic cell-derived materials to T cell 

areas of the draining lymph nodes (i.e., mesenteric lymph nodes) has been described in the intestine 

[21]. Mouse migratory CD103+ conventional DC acquire apoptotic cell-derived antigens in the lung 

under steady state and present them to T cells in the draining lymph nodes [67].In addition to 

peripheral tolerance, central tolerance to antigens from cells dying in the periphery can also be 

achieved, since peripheral conventional DC [68]as well as PDC [69]can transport antigens from the 

periphery to the thymus and may participate in antigen-reactive thymocytedeletion. Understanding 

the fine mechanism responsible for tolerance to apoptotic cell-derived antigens and more precisely 

the identification of APC subsets can be harnessed to favor or restore tolerance in transplantation 

settings or during inflammatory/autoimmune disorders, respectively. 

 A neglected/an emerging role of non-professional phagocytes? 

In addition to professional phagocytes, non-professional phagocytes (i.e., neighboring cells) can also 

uptake apoptotic cells (Table 2). The process of apoptotic cell removal by amateur phagocytes is 

usually slower [70-72], requires apoptotic cells in a more advanced stages[70] and is limited to 

subcellular fragments (i.e., a smaller “prey”) rather than whole dying cells[71, 73]. Secondary 

necrosis due to delayed or impaired apoptotic cell removal leads to the release of toxic intracellular 

compounds that corresponds to Danger signals, named damage-associated molecular patterns 

(DAMP)[74]. These DAMP activates APC that, in turn, initiate efficient T cell responses through Th1, 

Th2 or Th17 differentiation profile. Moreover, in certain conditions, pro-inflammatory 

chemokines(e.g., IL-8, MCP-1/CCL2 and RANTES/CCL5) are released by these non-professional 

phagocytes[75, 76], leading to inflammatory cell recruitment. On the other hand, in certain tissues 

where professional phagocytes have limited access in steady state (e.g., the retina or the kidney), 

neighbor amateur phagocytes participate efficiently to the quiet elimination (i.e., without 
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inflammation) of apoptotic cells[77, 78].Thus, depending on the cells involved in apoptotic cell 

removal and on the speed/kinetics of this removal, apoptotic cells may block or initiate immune 

responses. One has to evoke the status of another APC that interacts with T cells: plasmacytoid 

dendritic cells (PDC), a particular DC subset that differ from conventional DC(for review [79]). No 

doubt exists that PDC can uptake dying cell materials[80, 81], as almost each cell type seems to be 

able to do it (Table 2).It remains to be determined whether PDC correspond to real professional or 

non-professional phagocytes.Several arguments suggest that PDC are non-professional phagocytes, 

including:i) delayed apoptotic cell elimination[82], ii) subcellular fragment uptake as attested by 

endocytosis of apoptotic cell-derived membrane microparticles or apoptotic bodies[82, 83] but not 

whole apoptotic cells [84, 85], iii) the release of pro-inflammatory cytokines (e.g., IFN-α, IL-6)[83, 86]. 

However, despite limited capacity to uptake apoptotic cells, PDC may play a role in apoptotic cell-

induced immunomodulationby interacting with other immune cells: macrophage and pTreg[84]. 

 Receptors and soluble factors involved in apoptotic cell removal 

Finally, the capacity to eliminate apoptotic cells and to be a professional or an amateur phagocyte 

may depend on engaged receptors involved in apoptotic cell uptake, as well as the possibility to 

secrete soluble proteins enhancing apoptotic cell removal (e.g., milk fat globule EGF factor 8 protein 

[MFG-E8] called also lactadherin[87], growth arrest-specific 6 [Gas6][88], or defense collagens 

including the complement component C1q, mannose-binding lectin, pulmonary surfactant protein A 

and D or adiponectin[89]). As stated before, apoptotic cell removal implicates cognate receptors on 

phagocytes and specific ligands displayed by apoptotic cells. These ligandsare called either “eat-me” 

signals or apoptotic cell-associated molecular pattern (ACAMP) in reference to pathogen-associated 

molecular pattern (PAMP) expressed by pathogens(Figure 1).Interactions between phagocytes and 

apoptotic cells implicate multiple ligand/receptor pairs. Identification and characterization of these 

receptors and their ligands is an active research field (for review [90]). Whether the preferential 

implication of a particular receptor or of a set of receptors in apoptotic cell removal is associated 

with a particular function of phagocytes remains to be determined.Nevertheless, recognition of 
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phosphatidylserines −expressed early after apoptosis− is associated with anti-inflammatory cytokine 

release[11, 91]. Preventing phosphatidylserine recognition on apoptotic cells shifts the immune 

response from tolerance to immunogenicity[92, 93]. The same observation has been performed with 

the genetic invalidation of the Mer tyrosine kinase (Mertk)[94] –a phagocyte receptor that binds the 

soluble phosphatidylserine ligand, Gas6−,or of MFG-E8 soluble factor [95]–that links 

phosphatidylserines expressed by apoptotic cells to phagocyte αvβ3/5integrins.Moreover, in the 

absence of functional complement protein C1q in mouse models or in patients, failure to remove 

apoptotic cells is associated with lupus-like systemic autoimmune diseases[89]. C1q deficiency is an 

illustrative example for the major role of soluble factors in apoptotic cell-induced 

immunomodulation. Indeed, C1q participates in the classical complement-dependent engulfment of 

apoptotic cells [23, 96, 97], but is also able to bind directly phosphatidylserine residues of these dying 

cells [98] and to stimulate the expression of Mertk and Gas6 that, in turn, increase the capacity of 

macrophages to remove apoptotic cells [99]. Furthermore, C1q affects macrophage polarization 

during apoptotic cell uptake by inhibiting IL-1β secretion [100]. Finally, the classical complement-

dependent elimination of apoptotic cells occurs mainly through IgM opsonisation[89]. This explains 

why IgM may be required for modulation of immune responses by apoptotic cells [36]. A better 

characterization of these receptor/ligand interactions will permit in the future to optimizeapoptotic 

cell-based therapies and maybe to treat autoimmune diseases associated with a defect of apoptotic 

cell removal, such as lupus. 

 Toward the use of the immunomodulatory properties of apoptotic cells in clinical settings 

In conclusion, several factors influence the immune response following apoptotic cell removal 

(Figures 1 and 2). This includes: i) which cell type dies[35], ii) the phagocyte cell type (macrophages 

versus DC versus non-professional phagocytes) which can be linked to the site where the cell dies, iii) 

the settings in which the cell dies (that is associated or not with Danger signals, either DAMP, or 

PAMP),iv) the factors released by phagocytes and apoptotic cells, and v) the cause of cell death. 

Indeed,apoptosis was initially defined morphologically[101],but differentbiochemical pathwaysin 
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response to different apoptotic stimuli lead to diverse apoptotic cell deaths with distinct immune 

consequences (tolerance versus immunogenicity)(for review on molecular definitions of apoptotic 

cell death, please refer to [102]; please also refer to a review dealing with immunogeneic and 

tolerogeneic cell death [103]). In a recent review [104], the5 factors evoked above were called the 5 

Ws of dying cells (for:Who, Where, Why, What and When). This enables to predict the immunological 

outcome of apoptotic cell death.Considering apoptotic cell-based therapy to limit inflammation and 

control undesirable immune responses, the following criteriahave been selected: early apoptotic 

mononuclear cells (i.e., mainly lymphocytes), intravenous infusion to target preferentially splenic 

professional phagocytes(marginal zone DC and/or macrophages that deal each day with billions of 

dying leukocytes), and induction of tolerogenic apoptosis (see next paragraph). 

Preclinical data using early apoptotic cell infusion in experimental models 

As discussed in the first part of this review, apoptotic cells are able to modulate the functions of 

several immune cells, including: macrophages, DC, NK cells, or CD4+ T cells. The functions of these 

cells are deregulated in several inflammatory or autoimmune diseases. This is the case, for instance, 

of deregulated inflammatory cytokinesecretion in sepsis or in RA.Based on their immunomodulatory 

or transient immunosuppressive properties described above, apoptotic cell administration has been 

performed in different experimental models of inflammatory and/or immune disorders (Table 3). 

From these studies, it is possible to better understand how apoptotic cells interact with the immune 

system, but also to proposethe design of future clinical approaches. In this part of the review, we will 

analyze the different preclinical studies (Table 3) to select critical parameters to exert therapeutic 

effects, or in the contrary, to exclude factors that lead to no or opposite effects. Most of the studies 

report the prevention of the disease; that means that, apoptotic cells were infused at the triggering 

of the disease (i.e., at immunization with auto-antigens, or at time of transplantation) or before the 

disease occurred. This is true for: type 1 diabetes in NOD mice[47], experimental autoimmune 

encephalomyelitis (EAE)[12, 62, 105], arthritis[36, 106, 107], fulminant hepatitis[108], contact 

hypersensitivity[109-111], acute and chronic graft rejection[85, 112-114], hematopoietic cell 
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engraftment[2, 14, 84, 115, 116], acute graft-versus-host (GvHD) disease [14]and reduction of 

infarction size after acute myocardial infarction[117, 118]. Thus, it is difficult to transpose this in the 

clinical setting where, in general, the disease is already present when a therapeutic solution has to be 

found. Nevertheless, one may propose that apoptotic cell infusion can be useful in disease 

prevention associated with a high risk of morbidity/mortality, such as GvHD (please refer to a recent 

review on the use of apoptotic cells in allogeneic hematopoietic cell transplantation [119]), a high 

risk of graft rejectionor in prevention of diabetes in the pre-diabetic stage. The use of apoptotic cell 

infusion in the prevention of complications associated with transplantation (i.e., graft rejection or 

GvHD) is conceivable, since, in general, the transplantation process is scheduled, and so, apoptotic 

cell infusion can be performed before or at time of the transplantation, before the complications 

occurs. However, it is difficult to apply to cadaveric solid organ transplantation where the 

transplantation procedure is not predictable. Moreover, apoptotic cell administration has also been 

tested in experimental models to treat ongoing active diseases (as in the “real life”), such as acute 

heart graft rejection[114], chronic GvHD(our unpublished data) or sepsis[91, 120]. This latter 

pathology is interesting, since administration during the disease protects mice from sepsis-induced 

death[91, 120],while infusion 5 days before sepsis worsens mice survival, possibly by decreasing the 

capacity to secrete IFN-γ[121]. Thus, this opens the way to use apoptotic cell administration to cure 

ongoing diseases, such as acute graft rejection or chronic GvHD without specific side effects (e.g., 

auto-antibody production)[122]. 

How clinical trials using apoptotic cells should be designed? In other words, we will now address 

from the experimental data the critical parameters for the future clinical studies, namely: i) the route 

of administration; ii) the number (schedule) of administration; iii) the adequate apoptotic cell typeto 

be used and the apoptotic signal. Most of the studies (91%, 20 out of 22) used the intravenous (iv) 

route of administration (Table 3). Consequently, the spleen and its marginal zone APC (lymphoid 

resident CD8α+ DC[62, 85, 114], B cells [105, 106]or macrophages[12, 14, 84]) are critical for the 

modulation of the immune responses, since the spleen is the main filter for blood-borne apoptotic 
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cells[123]. In contrast, 4 studies reportedapoptotic cell infusion either intra-peritoneally (ip)[106, 

107], intra-tracheally[91]or intra-myocardially[118]. Some studies compared these routes of 

administration and iv route;no difference was observed[106, 118]. These particular routes were 

evaluated, since the diseases were induced through the same routes[91, 107]. Thus, this may 

theoretically present the advantage of targeting the affected organ (e.g., the myocardium[118], the 

lung or the peritoneum[91]) without generating a systemic effect. Apoptotic cell-based therapies can 

be useful to treat systemic diseases, and in this case, the iv route has to be preferred. On the other 

hand, this approach can be used in local diseases by injecting closed to the affected organs/tissues.  

The infused apoptotic cell number and the schedule of infusion are relatively homogeneous among 

the different studies: 105 to 5x107 in mice[2, 12, 14, 36, 47, 62, 84, 85, 91, 105, 106, 108-116, 120, 

121], or 8x106 to 108 in rats[107, 117, 118].In general,only one infusion was performed (86%, 18 out 

of 21). Prevention of type 1 diabetes [47]and arthritis [36, 106]may require repeated infusion.Thus, 

the iv route is interesting in a therapeutic point of view since it is easily available and it is also 

tolerogeneic. The number of infused cells is compatible with cytapheresiswhen this will be 

transposed to Human (see below). 

Now, considering the apoptotic cell type, and the apoptotic signal, the analysis of the different 

studies (Table 3) allows us to identify common requirements: i) cells rendered apoptotic are mainly 

leukocytes at early apoptotic stage (including: mouse spleen cells in 13 studies[2, 14, 84, 85, 105, 

109-116], rat PBMC in two studies[117, 118], mouse T cells in two studies[12, 62], human Jurkat T 

cell line in one[91] and rat or mouse thymocytes in 3 studies[36, 106, 107], while mouse neutrophils 

[120]and a mouse beta cell line [47]were used in one study, respectively); ii) tolerogeneic apoptotic 

stimuli used are the following: γ-irradiation in 10 studies [2, 14, 84, 107, 112, 115-118, 121], UVB 

irradiationin 7 [47, 85, 91, 108, 109, 113, 114], Fas-mediated death in 3[2, 12, 62], spontaneous 

apoptosis in culture due to survival factor deprivation in 2[106, 120], and dexamethasone treatment 

in one study[36]. Few studies compared apoptotic stimuli, but when UVB and γ-irradiation or Fas-

mediated apoptosis, UVB-, γ- and X ray-irradiation were compared: no differences were observed[2, 
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84, 113].Thus, in order to develop a therapeutic approach, one may propose to use PBMC collected 

by cytapheresis, expose them to one of the apoptotic signals described above and to control that 

PBMC are at early stage of apoptosis as attested by Annexin-V staining with limitedpropidium iodide 

or 7-AminoActinomycin D (7-AAD) staining. 

Finally, analysis of antigen dependency (i.e., whether apoptotic cells should carry the antigen of 

interest or whether this effect is observed whatever the apoptotic cell origin) is useful to shed light 

on disease mechanisms and to specify how apoptotic cell infusion interferes with the disease, as well 

as in a practical point of view to design the future clinical trials. Thus, experimental models can be 

divided in two concerning antigen dependency (Table 3), with some experimental models requiring 

apoptotic cells bearing the antigen of interest (i.e., either donor or auto-antigens), such as: 

diabetes[47], EAE[12, 62, 105], contact hypersensitivity [109-111]or transplantation[85, 112-114]. In 

contrast, arthritis[36, 106, 107], sepsis[91, 120], fulminant hepatitis [108]and allogeneic 

hematopoietic cell transplantation [2, 14, 84, 115, 116]are controlled independently ofthe apoptotic 

cell origin (Table 3). So, one may speculate that some diseases need tolerance induction against 

pathogenic auto- or allo-antigens while other implicate a non-specific down-regulation of 

inflammation or transient immune suppression (Figure 3). In line with this hypothesis, splenic 

macrophages [14, 120]or liver Kupffer cells [108]have been shown to play a critical role in diseases 

modulated by the anti-inflammatory effects of apoptotic cell infusion, whereas splenic conventional 

DC −that are more critical for antigen presentation to T cells than macrophages [29, 51, 52]− are 

necessary for tolerance to donor allo- or auto-antigens[62, 85, 110, 111, 114]. Some of these studies 

evaluated functionally the role of APC phagocyting infused apoptotic cells by in vivo depletion using 

either clodronate loaded liposomes[14, 84], gadolinium chloride[108, 113]or transgenic mice 

expressing diphtheria toxin receptor under the control of macrophage- or DC-specific 

promoterrendering macrophages or DC sensitive to diphtheria toxin administration [12, 62, 85]. In 

addition, ex vivo functionsof macrophages were also tested after apoptotic cell infusion with reduced 

secretion of pro-inflammatory cytokine secretion, such as TNF[107] (see also Table 1). Schematically, 
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inflammatory diseases controlled by apoptotic cell infusion exhibit −after this infusion− a decrease in 

circulating inflammatory cytokines [107, 120] associated with an increasedproduction of anti-

inflammatory cytokines (i.e., IL-10 [36, 106, 108]and/or TGF-β [91, 107, 108]), a modification of 

macrophage or Kupffer cell function [107, 108, 120](see also Table1), and a decrease of neutrophil 

infiltrates[91, 120]. Neutralization of TGF-β prevents the beneficial effect of apoptotic cell 

infusion[14, 84, 116].This confirms that apoptotic cell infusion controls some inflammatory diseases 

by exerting anti-inflammatory effects. In addition to anti-inflammatory cytokines, pro-angiogeneic 

factors (e.g., VEGF) and metalloproteinases can also be secreted favoring the resolution of 

inflammation [117, 118].One may imagine that down-regulation of inflammation by targeting 

macrophage functions can be sufficient to affect pathogenic T cell or antibody responses, even 

though apoptotic cells do not interact directly with DC/T cell/B cell crosstalk, as attested by down-

regulation of allo- [116]or auto-antibodies[106], orpathogenic Th17 T cells[36]. In contrast, diseases 

treated with antigen-bearing apoptotic cells (i.e., requiring tolerance to allo- or auto-antigens) 

involve splenic lymphoid resident conventional DC[62, 85, 114].These DC dedicated to antigen 

presentation to T cells may then participate in the induction of regulatory immune cells, including: 

Tr1 [36, 47, 106, 111], FoxP3+Treg[14, 47, 105, 112, 114], regulatory CD8+ T cells[109]or regulatory B 

cells (Breg) [36, 106]. Alternatively, tolerance induction by antigen-bearing apoptotic cell 

administration may reflect the inhibition of pathogenic Th1 or Th17 cells [12, 36], anti-donor T cells 

secreting IFN-γ [85, 114], anti-donor allo- [85, 114] or auto-antibodies [47]. Overall, apoptotic cell 

administration is able to control inflammatory disorders by diminishing the pro-inflammatory state 

and to induce or restore tolerance to donor allo-antigens or auto-antigens by inhibiting pathogenic T 

or B cell responses and inducing pro-tolerogenic/regulatory cells (Figure 3). 

In a practical point of view, preclinical models are useful to determine antigen dependency as 

reported in Table 3. Then, if a disease requires a particular antigen, this antigen needs to be 

expressed by the apoptotic cells, or at least locally present when apoptotic cells are eliminated. This 

leads to select cells from a particular origin (e.g., the donor in the case of transplantation) or to 
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engineer patient PBMC to express a nominal antigen as performed in autoimmune diseases[12, 62]. 

In contrast, if the disease does not need any specific antigen and is treated independently of 

apoptotic cell origin, PBMC can be obtained from healthy volunteers after written informed consent 

and a bank of PBMC can be established. Alternatively, PBMC can be obtained from the 

patienthimself. This later solution is the simplest, even if no lymphopenia, leukemic cells or infections 

are present. 

The cumulative encouraging data obtained in preclinical models allow physicians to initiate clinical 

studies. This is particularly true for the prevention of acute GvHD. Acute GvHD−an inflammatory 

disorder associated with allogeneic hematopoietic cell transplantation−is due to the activation of 

host APC by the conditioning regimen that, stimulates donor allogeneic T cells. These activated 

allogeneic T cells as well as factorsreleased during this process (e.g., TNF) destroy healthy tissues 

from the recipients including: the liver, the gastro-intestinal tract and the skin[124]. In experimental 

models (Table 3), infusion of apoptotic cells at time of transplantation induces TGF-beta and 

increases regulatory T cells that prevent GvHD occurrence [14, 119]. Recently, a phase 1/2a clinical 

study has been registered in the ClinicalTrials.govwebsite (http://clinicaltrials.gov) under the 

number, # NCT00524784, and encouraging data have been presented recently in two meetings[125, 

126]. In this study, ivdonor early apoptotic cell infusion was performed the day before allogeneic 

hematopoietic cell transplantation in order to prevent acute GvHDoccurrence (please see above). 

Thirteen patients have been treated. Cells were obtained from hematopoietic cell donors after 

cytapheresis. The cell number has been transposed from animal models and a “dose escalade” has 

been performed ranging from 35x106/kg to 210x106/kg. No specific toxicities have been associated 

withiv donor early apoptotic cell infusion. Comparison with historical data concerning acute GvHD 

occurrence in the same transplantation center or from the literature seems to show a reduction of 

high grade acute GvHD(grade >II). Interestingly, no severe GvHD was observed in the three patients 

receiving the highest apoptotic cell number [126]. This clinical study opens the way to apoptotic cell-

based therapies in other clinical settings already assessed in experimental models (Table 3). 
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Conclusion 

In conclusion, early apoptotic cell infusion has been reported to treat or prevent experimental 

inflammatory/autoimmune disorders, as well as complications associated with transplantation (Table 

3). A phase 1/2a clinical trial has been performed in 13 patients without specific toxicities and a good 

early outcome [126]. This confirms the feasibility of such cell-based therapy approach in Humans. 

Today, the major questions concern:i) the interactions of such therapy with other treatments 

received by patients,as for instance steroids (that increase apoptotic cell removal by macrophages 

[127, 128]) or methotrexate (that induce macrophage apoptosis [129] and in theory may delay 

apoptotic cell removal),ii) the possible autoimmunity due to delayed or impaired apoptotic cell 

clearance and iii) the potential overall immunosuppression that may alter beneficial immune 

responses against pathogens for instance, or leukemic cells in the settings of hematopoietic cell 

transplantation. We have already studied the interactions of apoptotic cell infusion with 

immunosuppressive drugs routinely used in allogeneic hematopoietic cell transplantation and 

rapamycin (sirolimus) has a synergic effect [115]. This kind of study has to be extended to other 

conventional drugs, such as steroids, or methotrexate for RA. Concerning other side effects 

(autoimmunity or global immunosuppression), careful selection and follow-up of patients may limit 

these effects. As performed for anti-TNF, patients with active or ongoing infections or a past of 

cancer should be excluded. In order to prevent autoimmune disease related to impaired apoptotic 

cell removal, factors known to play a role in this clearance such as C1q have to be analyzed before 

patient enrolment. Finally, instead of infusing apoptotic cells, apoptotic cell death may be induced in 

vivo using different approaches (i.e., CD3 specific antibody [31]) and tolerance can be achieved with 

similar mechanisms (for review [119]). 

Future perspectives 

How the fields described here (i.e., the use of apoptotic cells and the understanding of mechanisms 

involved in apoptotic cell removal) will evolve in the next 5 to 10 years? We speculate that several 

phase 1/2a studies and even phase 2 studies, will be performed in different autoimmune diseases or 
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in the settings of transplantation. Other therapies will be derived from this approach to focus on the 

main mechanism(s) or factor(s) responsible for the therapeutic effects. For instance, apoptotic cell 

secretome (that is the factor released by cells undergoing apoptosis) has been shown to exert similar 

effect on acute myocardial infarction than apoptotic cell infusion [130]. Liposomes expressing 

phosphatidylserines mimicking an “eat-me” signal associated with anti-inflammatory properties [11, 

91] can also be infused in the femoral vein to improve acute myocardial infarction [131].These two 

recent publications [130, 131]confirm that the non-specific anti-inflammatory function of apoptotic 

cell infusion is sufficient to limit acute myocardial infarction. Phosphatidylserine-expressing 

liposomes are not a cell-based product. This has the advantage of being controlled or produced at 

large scale using pharmaceutical procedures and not to be dependent on cell therapy 

regulations.Other perspectives are linked to improvements performed in the understanding of APC 

subsets and on the characterization of receptors and ligands involved in apoptotic cell removal. One 

may imagine that the identification of receptor(s) expressed by tolerogeneic professional phagocytes 

would be preferentially targeted to restore tolerance and cure inflammatory auto- or allo-immune 

diseases. 
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Executive summary: 

Introduction 

 Improvement of existing treatment is needed for severalinflammatory and/or immune-

mediated disorders, including transplantation, acute or chronic inflammatory diseases by 

modulating the deregulated immune response. 

Immunomodulatory properties associated with early apoptotic cells 

 Apoptotic cells themselves, elimination of apoptotic cells by innate immune cells or interactions 

of these cells with apoptotic cells lead to an immunomodulatory microenvironment that may 

favor or restore tolerance. 

 Several factors govern theseimmunomodulatory properties and mechanisms involved in this 

process are currently being deciphered. 

Preclinical data using early apoptotic cell infusion in experimental models 

 Intravenous early apoptotic cell infusion can be used for disease prevention, notably in diseases 

associated with high mortality/morbidity, for instance, acute graft-versus-host disease. 

 Intravenous apoptotic cell infusion can be used for disease treatment, such as, sepsis or acute 

graft rejection. 

 Critical aspectsto consider to achieve a beneficial therapeutic effect include: i) the iv route of 

administration, but local administration (into the myocardium, lung or peritoneum) is also 

possible; ii) one infusion is often sufficient; iii) blood leukocytes is the easiest and major source 

of apoptotic cells; iv) a tolerogenic apoptotic signal inducing early apoptotic cells is required 

(e.g., γ- or UVB-irradiation). 

 The analysis of mechanisms involved in these experimental models suggests that iv apoptotic 

cell infusion acts by two distinct mechanisms: i)modification of the inflammatory 

microenvironment by targeting professional phagocytes and ii)induction of “specific” tolerance 

to a given antigen throughregulatory cell commitment in the favorable microenvironment 

shaped by the professional phagocytes. 
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 A phase 1/2a clinical trial performed in the prophylaxis of graft-versus-host disease in 

thirteen patients show no specific side effects at early time point after apoptotic cell 

infusion. [Note added in proof: the study is now published: Mevorach D et al., Biol Blood 

Marrow Transplant. 2014 Jan;20(1):58-65.] 
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Tables 

Table 1. Early apoptotic cells modulate cytokine/factor synthesis by phagocytes 

Nature of the phagocytes Cytokines or factors* modulated after apoptotic cell 
interactions (spontaneously or after cell stimulation**) 

Ref. 

human monocytes ↑ IL-10, ↓ IL-1β, TNF, IL-12 (variable according to incubation 
time before LPS stimulation) (LPS) 

[30] 

human monocyte-derived 
macrophages 

↑ TGF-β, ↑ PGE-2, ↓TxB2, ↓LKTC4 (spontaneously) 
↑ TGF-β, ↓ GM-CSF, IL-1β, IL-8, IL-10, TNF-α (LPS, TLR4 ligand) 
↑ TGF-β, ↓ GM-CSF, IL-10, TNF (zymosan, TLR2 ligand) 

[11] 

human monocyte-derived 
macrophages; human 
macrophage cell line 
RAW264.7; murine 
macrophage cell line J774 

↓ IL-12 p35mRNA, ↓ IL-12 (IFN-γ + LPS). These effects are 
independent of IL-10 and TGF-β. 

[39] 

murine peritoneal 
macrophages; human 
monocytes; human monocyte-
derived macrophages; human 
macrophage cell line RAW264.7 

↑ IL-10 (spontaneously), but difference exists between the 
phagocyte tested 
IL-10 was the sole cytokine studied. 

[25] 

murine peritoneal 
macrophages 

↑ TGF-β in vitro and ex vivo (in vivo exposure) (spontaneously) 
TGF-β was the sole cytokine studied. 

[91] 

murine peritoneal 
macrophages 

↓ TNF ex vivo (spontaneously, in vivo exposure in the setting 
of SCW-induced arthritis, and after in vitro LPS stimulation)  

[107] 

murine bone-marrow derived 
DC or macrophages 

↓ IL-23 (LPS); IL-23 was assessed indirectly by a IL-17-
dependent bioassay 

[40] 

murine bone-marrow derived 
DC or macrophages 

↓ IL-12 but not TNF (LPS). These effects are independent of IL-
10 and TGF-β. 

[41] 

human monocyte-derived 
dendritic cells 

↓ IL-23, ↑ IL-10, no effect on IL-12p70 or on PGE-2 (zymosan) 
no effects (LPS) 

[28] 

murine immature bone 
marrow-derived CD8α

−
 CD11b

+
 

DC 

↓ IL-1α, IL-1β, IL-6, IL-12p35, IL-12p40, TNFmRNA& 
↓ IL-1α, IL-1β, IL-6, TNF; no effect on TGF-β, IL-1Ra, MIF 
(spontaneously) 
↓ IL-1α, IL-1β, IL-6, IL-12p70, TNF, ↑ TGF-β (LPS) 
IL-10 was no tested. 

[23] 

murine spleen DC in vitro ↑ TGF-β (spontaneously) 
in vivo ↑ TGF-β requires both macrophages and immature DC 

[31] 

murine microglial cells ↓ IL-1β associated with apoptotic cells in vivo (other cytokines 
were not tested) 

[20] 

rat microglial cells ↑ TGF-β, HGF (spontaneously) 
↓ NO, PGE-2, TNF, no effect on IL-10 (LPS) 

[27] 

* In a given study, only the cytokines or factors affected by apoptotic cell exposure were mentioned after the 
following symbols: ↑ means increase; ↓ means decrease. However, readers have to consider that if a 
cytokine/factor is mentioned for an experimental condition but not for the other one, it means that this 
cytokine/factor is not affected in this particular condition; **the agent used to stimulate phagocytes is given. 
Abbreviations used:HGF, hepatocyte growth factor; LKTC4, leukotriene C4; TxB2, thromboxane B2; 
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Table 2. ″Non-professional″ phagocytes involved in apoptotic cell removal are potential targets for apoptotic 
cell-based therapies. 

Cells involved in removal Comments  Ref. 

normal astrocytes in vitro; phosphatidylserine-dependent 
for review 

[17] 
[132] 

glioma cells (tumoralastrocytes) in vitro; phosphatidylserine-dependent [17] 

CNS glial cells in Drosophila [133] 

neuronal progenitors in vivo; ELMO1/Rac1-dependent [134] 

neurons for review [132] 

retina cells in vivo; during development [135] 

retinal pigment epithelial cells* in vivo; Mertk-dependent 
Gas6-dependent 
αv/β5 integrin-dependent 
these 3 pathways implicate phosphatidylserines 

[15] 
[136] 
[137] 

 

lens epithelial cells in vitro; apoptotic cell removal is delayed compared with 
professional phagocytes and requires late apoptotic cells 

 
[70] 

kidney parenchymal cells in vivo; during development [77] 

baby hamster kidney cells in vitro; apoptotic cell removal is delayed compared with 
professional phagocytes and requires late apoptotic cells 

 
[70] 

kidney tubular epithelial cells in vivo and in vitro; Kim-1-dependent [78] 

mammary epithelial cells 
 
 
 
cell line HC11 

in vitro and in vivo; CD36-, vitronectin receptor αv/β3-, CD91-
dependent; associated with TGF-β release 
in vivo; MFG-E8-dependent; if altered, local inflammation 
Mertk-dependent; if altered,local inflammation 
VEGF secretion after apoptotic cell uptake 

 
[138] 
[95] 

[139] 
[140] 

lung epithelial cells in vivo;Rac-1-dependent; associated with IL-10 secretion; if 
altered, IL-33 production and local inflammation as well as 
exacerbation of the Th2 response to allergens 

 
 

[141] 

fibroblasts vitronectin receptor αv/β3-, mannose/fucose specific lectin-
dependent 
leads to malignant transformationvia oncogene transfer 

 
[142] 
[143] 

endothelial cells: 
Liver 
HEV 
microvascular HMEC-1 and 
HUVEC 
 
HUVEC 

carbohydrate-specific receptor-dependent; increased removal 
by IL-1β 
in vivo; in vitro 
in vitro; increase of IL-8 and MCP-1/CCL2 mRNA as well as IL-8 
secretion; enhanced binding of leukocytes to 
phagocytingendothelial cells 
MFG-E8-dependent 

 
[73] 

[144] 
 
 

[75] 
[145, 
146] 

peritoneal mesothelial cells limited to subcellular fragments, slow kinetics [71] 

mesenchymal stem cells (MSC) in vivo in macrophage-less mice; slow kinetics 
enhanced MSC osteogenic differentiation; increase of CXCR4 
and CXCR5 expression, IL-8, CCL2 and CCL5 secretion, as well as 
Th17 differentiation (via IL-6) 

[72] 
 
 

[76] 

skeletal myoblasts in vitro; BAI-1-dependent [147] 

tumor cells (gastric carcinoma, 
glioma) 

for a recent review, please see Ref.[148] [17, 
148] 

*according to Ref.[3]: “Retinal pigment epithelial cells phagocytose more material over a lifetime than any other 
cell in the body.” Abbreviations : CNS, central nervous system; HEV, high endothelial venule cells; HUVEC, human 
umbilical vein endothelial cells;Mertk, Mer tyrosine kinase;VEGF, vascular endothelial growth factor. 
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Table 3. Potential therapeutic use of apoptotic cell infusion based on experimental models 

Pathologies Effects, route of administration, cell type and apoptotic stimulus, mechanism(s), models Ref. 

Chronic inflammatory autoimmune diseases 

Type I diabetes - Prevention; iv; UVB-induced apoptotic beta cell line, NT1 (10
5
 weekly, 3 weeks); induction of Th2 response, IL-10-producing 

Tr1 cells and FoxP3
+
Treg in the spleen; suppression of anti-beta cell auto-Abs; NOD mice 

- Same effect with UVB-induced apoptotic splenic stroma cells 

 
[47] 

[149] 

Experimental Autoimmune 
Encephalomyelitis (EAE) 

- Prevention; iv; Fas ligand-induced apoptotic T cells (2x10
7
); Ag-specific; implication of splenic marginal zone macrophages; 

diminution of MOG-specific Th1 and Th17 in the spleen; MOG35-55-induced EAE (C57BL/6) 
- Prevention; iv, Fas ligand-induced apoptotic T cells (2x10

7
); Ag-specific; implication of splenic CD8α

+
 CD103

+
 CD207 (langerin)

+
 

conventional DC; MOG35-55-induced EAE (C57BL/6) 
- Prevention; iv but not after sc or ip; apoptotic spleen cells (5x10

7
); Ag-specific; implication of IL-10 producing splenic marginal 

zone PD-L1+ macrophages; long term maintenance by splenic Treg; B cells are not required; MOG35-55-induced EAE (C57BL/6) or 
PLP178-191-induced EAE (SJL) 

 
[12] 

 
[62] 

 
 

[105]* 

Arthritis - Prevention; iv (but same data ip); spontaneous apoptotic thymocytes (2x10
7
 in total, 3 consecutive days); protection mediated 

by IL-10 produced by both B and T cells; reduction of pathogenic anti-collagen II auto-Abs;collagen induced arthritis in DBA/1 
mice but not in a passive antibody transfer model of arthritis in K/BxN mice 
- Prevention; ip with SCW immunization; 15 Gray γ-irradiated thymocytes (2x10

8
); TGF-β increase; decrease of macrophage pro-

inflammatory response (TNF, IFN-γ); increase of blood and draining lymph node Treg; SCW-induced arthritis in Lewis rats 
- After immunization; iv; dexamethasone or etoposide-induced apoptotic thymocytes (3x10

7
, 3 consecutive days); decrease of 

draining lymph node Th17 cells; increase of IL-10 producing splenic marginal zone B cells and of IL-10 producing T cells in the 
draining lymph node; natural IgM-dependent clearance; methylated BSA-induced arthritis in C57BL/6 mice 

 
 

[106] 
 

[107] 
 
 

[36] 

Acute inflammatory diseases 

Sepsis - Resolution of acute inflammation; ip (4x10
7
, day 3) or endotracheal instillation (1.8-2x10

7
, 36-48 h after); UVB-induced 

apoptotic human Jurkat T cell line; phosphatidylserine-induced TGF-β secretion; decrease of immunecell infiltrate; 
thioglycollate-stimulated peritoneum or LPS-stimulated lung 
- Increase of mice survival (day 0, or 1h, 3 h, 6 or 24 h after); iv; spontaneous apoptotic neutrophils (10

7
); reduction of 

circulating inflammatory cytokines (IL-12, TNF, IFN-γ); decrease of neutrophil infiltration in target organs; reduction of serum 
LPS levels; implication of macrophage phagocytosis; LPS-induced endotoxic shock in C57BL/6 mice and cecal ligation and 
puncture sepsis model in C57BL/6 mice 
- Worsen mice survival (day -5); iv; 10 Gy-γ-irradiated spleen cells (5x10

7
); lack of IFN-γ production (which isprotective); cecal 

ligation and puncture sepsis model in C57BL/6 mice 

 
 

[91] 
 
 
 

[120] 
 

[121] 

Fulminant hepatitis - Prevention; iv (day-3 to day-7); UVB-induced apoptotic spleen cells (1.5x10
7
, 2x10

8
 no effect); whatever the origin of apoptotic 

cells; dependent on Kupffer cells and IL-10via membrane bound TGF-β; but not on CD25
+
 cells or CD11c

+
 cells; reduction of NO 

and TNF in vitro; LPS plus D-galactosamine-induced fulminant hepatitis in C57BL/6 or BALB/c mice 

 
 

[108] 

Contact hypersensitivity - Prevention (day -7); iv; 3 Gy γ-induced apoptotic spleen cells (1x10
7
); Ag-specific; Induction of regulatory TRAIL

+
 CD8

+
 T cells 

without activating CD4
+
 T cell help; delayed-type hypersensitivity using 2,4,6 trinitrobenzene sulfonic acid (TNBS) 

 
[109] 
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- Prevention; iv; UVA-irradiated and 8-methoxypsoralen (8-MP)-sensitized spleen cells**This induces apoptosis, but other 
changes specific to UVA and 8-MP may also occur. (5x10

7
); Ag-specific; IL-10 dependent; dependent on CD11c

+
 DC; contact 

hypersensitivityusing dinitrofluorobenzene 

[110, 
111] 

Transplantation 

Cardiac allograft 

Acute rejection - Prevention (day-7 before Tx); iv; UVB- or 1.50 Gyγ-irradiated apoptotic spleen cells (5x10
7
); donor-specific; requirement of 

phagocytosis (host macrophages) and phosphatidylserine recognition; different donor/recipient rat strain combination 
- Treatment (day 7 after Tx); iv; UVB-induced apoptotic spleen cells (10

7
);donor-specific; splenic host CD8α

+
 DC; IntragraftTGF-β 

and IL-10 mRNA; Foxp3
+
Treg present in the graft; suppression of systemic anti-donor allo-antibody response and IFN-γ; 

different donor/recipient mouse strain combination 

 
[113] 

 
 

[114] 

Chronic rejection - Prevention (day-7); iv; UVB-induced apoptotic spleen cells (10
7
); donor-specific; splenic host CD11

high
 DC; suppression of 

systemic anti-donor allo-antibody response and IFN-γ; presentation of donor apoptotic cell-derived allopeptides declines 3 days 
after apoptotic cell infusion; intra-abdominal aortic transplantation (BALB/c into C57BL/6 mice) 

 
 

[85] 

Islet allograft - Prevention (day -7); iv; 35 Gy-γ-irradiated-apoptotic spleen cells (5x10
6
);donor-specific; possible involvement of Treg [112] 

Hematopoietic cell transplantation 

Hematopoietic engraftment - Prevention (day 0, the day of Tx); iv; 40 Gyγ-irradiated, UVB- or FasmAb-induced apoptotic spleen cells (5x10
6
); whatever the 

origin of apoptotic cells (donor, recipient, third party or xenogeneic [human]); different donor/recipient mouse strain 
combination 
- This graft facilitating effect is TGF-β-dependent 
- This effect implicates host splenic macrophages –but not conventional DC; increase ofTreg in the spleen 
- This effect implicates also donor bone marrow-derived PDC that induces Treg commitmentvia TGF-β; same effect with X ray-
irradiated apoptotic spleen cells 

 
 

[2] 
[116] 
[14] 

 
[84] 

Acute GvHD - Prevention (day 0); iv; 40 Gy γ-irradiated donor apoptotic spleen cells (5x10
6
); involvement of CD25

+
 cells [14] 

Chronic GvHD - Treatment (week 6 after Tx); iv; X-ray-irradiated apoptotic spleen cells (5x10
6
); DBA2 into B6D2F1 model *** 

Allo-Ab after graft rejection - Prevention (day 0); iv; 40 Gyγ-irradiated apoptotic spleen cells (5x10
6
); whatever the origin of apoptotic cells; TGF-β-

dependent; same model as in [2, 14] 
 

[116] 

Acute myocardial infarction - Prevention (onset of ischemia); iv; 45 Gy γ-irradiated apoptotic PBMC (8x10
6
); Attenuation of infarcted size and improvement 

of functional parameters assessed by echography; increased homing of endothelial progenitors; increase of IL-8, VEGF and 
MMP9 mRNA in vitro; ligation the left anterior descending artery in rat 
- The same effect is observed after intramyocardial injection; increase of CD68

+
 cell infiltrate 

 
 

[117] 
[118] 

*The target antigen is coupled with syngeneic splenocytes using ethylene carbodiimide (ECDI). ECDI induces splenocyte apoptosis. ** This induces apoptosis but other 
changes specific to ECDI may also occur; ***our unpublished data. Abbreviations: Abs, antibodies; Ag, antigen;GvHD, graft-versus host disease;ip, intraperitoneal; iv, 
intravenous infusion; LPS, lipopolyssacharide; MOG35-55, myelin oligodendrocyte glycoprotein peptide;NO, nitric oxide; OVA, ovalbumine peptide; PBMC, peripheral blood 
mononuclear cells; PLP, proteolipid protein;sc, subcutaneous; SCW, streptococcal cell wall; Tx, transplantation; UV, ultraviolet; This table was updated and adapted from Ref. 
[119, 150]. 
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Figure legends: 

Figure 1. Signals involved in apoptotic cell removal. Different signals orchestrate apoptotic cell 

removal by neighbor cells (amateur phagocytes, see Table 1) or professional phagocytes, such as 

macrophages or conventional DC (cDC). These signals include: (1) the loss of ‘‘do not eat-me’’ signals; 

(2) the secretion of ‘‘find-me’’ signals that can be counterbalanced by ‘‘keep out’’ signals[151]; (3) 

the acquisition of ‘‘eat-me’’ signals. Soluble factors can participate to acceleratedelimination of 

apoptotic cells. Adapted from Ref. [150]. Abbreviations used:BAI-1, brain angiogenesis inhibitor-

1;CRP, C reactive protein; CRT, calreticulin; C1q, complement component C1q; Gas6, Growth Arrest-

specific 6; KIM-1, kidney injury molecule-1 (also known as TIM-1); MBL, mannose-binding lectin; 

Mertk, Mer tyrosine kinase; MFG-E8, milk fat globule EGF 8 protein called also lactadherin; PS, 

phosphatidylserines; SP-A, pulmonary surfactant A; SP-D, pulmonary surfactant D; TSP1, 

thrombospondin-1. 

 

Figure 2.Immunomodulatory microenvironment created by apoptotic cells.During the apoptotic 

process, apoptotic cells can produce spontaneously anti-inflammatory factors, such as IL-10[44] or 

TGF-β[43], or be a source of CCR5 chemokine receptor that neutralizes its ligands, CCL3/MIP-1α or 

CCL5/RANTES and subsequently blocks immune cell migration[42]. Apoptotic cells interact with 

several innate immune cellsor antigen-presenting cells (APC), including: monocytes, macrophages 

(MΦ), microglia in the brain, conventional dendritic cells (cDC), NK cells or B cells. Uptake of 

apoptotic cells or only the interaction with apoptotic cells lead to modulation of several factors in 

innate cells or APC. These factors are mentioned in boxes linked to each APC or innate cell subset. 

Adapted from Ref. [152]. Some of these factors are produced spontaneously after apoptotic cell 

encounter or increased or diminished after a subsequent stimulation by TLR ligands in the context of 

inflammation (see Table 1). *Concerning NO synthesis, differences existbetween human and muse 

macrophages [153] and maybe also between in vivo and in vitro conditions[154]. Abbreviations used: 

AhR, aryl hydrocarbon receptor; GM-CSF, granulocyte and macrophage colony stimulating factor; 
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HGF, hepatocyte growth factor; IL, interleukin; IL-1RA, interleukin-1 receptor antagonist; iNOS, 

inducible nitric oxide synthase; LT4C, leukotriene C4; NGF, nerve growth factor; NO, nitric oxide; 

NOS2, nitric oxide synthase-2; PAF, platelet-activating factor; PGE-2, prostaglandin-E2, RvE, resolvin 

E; TXA2, thromboxane A2; VEGF, vascular endothelial growth factor A.↓, decrease; ↑, increase; see 

also text. 

 

Figure 3.Anti-inflammatory effects versus tolerance induction after early apoptotic cell infusion. 

Apoptotic cell-induced immunosuppression is transient (limited to the time course of apoptotic cell 

removal and the persistence of immunosuppressive cytokines: mainly IL-10 and TGF-β, see also 

Figure 2), localized to the site where the cells are dying and/or being eliminated (i.e., the spleen after 

iv infusion), and non-specific (i.e., all the cells sensitive to immunosuppressive cytokines at the site of 

apoptotic cell removal are affected). Experimental models of pathological disorders have been shown 

to respond to this anti-inflammatory effect, including arthritis, sepsis, fulminant hepatitis, allogeneic 

hematopoietic cell engraftment,or acute myocardial infarction (see text). In contrast, apoptotic cell-

induced tolerance is related to antigen (Ag)-specific regulatory cell induction. This antigen-specific 

tolerance may persist (according to the life span of the induced pTreg) and may not be restricted to 

the site of apoptotic cell clearance (depending on the migratory properties of the generated pTreg). 

Experimental models of pathological diseases, such as: type 1 diabetes, EAE, contact hypersensitivity, 

prevention or treatment of acute graft rejection, prevention of chronic graft rejection or of acute 

GvHD (aGvHD) have been shown to require infusion of apoptotic cells bearing specific auto- or donor 

allo-antigen(s). After iv infusion, splenic macrophages are rather involved in anti-inflammatory effect 

of apoptotic cells, whereas splenic lymphoid resident conventional DC are implicated in tolerance 

induction. 


