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Abstract

The purpose of this paper is to address the question of the existence of auto regressive moving average (ARMA)
models with reduced order for neurodegenerative disorder signals by using Huberian approach. Since gait rhythm
dynamics between Parkinson’s disease (PD) or Huntington’s disease (HD) and healthy control (CO) differ, and
since the stride interval presents great variability, we propose a different ARMA modeling approach based on
a Huberian function to assess parameters. Huberian function as a mixture of L, and L; norms, tuned with a
threshold y from a new curve, is chosen to deal with stride signal disorders. The choice of y is crucial to ensure
a good treatment of NO and allows to reduce the model order. The disorders induce disturbances in the classical
estimation methods and increase of the number of parameters of the ARMA model. Here, the use of the Huberian
function reduces the number of parameters of the estimated models leading to a disease transfer function with low
order for PD and HD. Mathematical approach is discussed and experimental results based on a database containing

16 CO, 15 PD, and 19 HD are presented.

Keywords: Reduced order ARMA model, Gait signal, Huberian function, Tuning function, L | contribution,

Neurodegenerative disease

1. Introduction

This paper introduces a new parametric approach for the estimation problem of the reduced order auto re-
gressive moving average (ROARMA) model of human gait rhythm signal [13]. ARMA system identification is
a well-defined problem in several science and engineering areas such as speech signal processing, adaptive filter-
ing, radar Doppler processing or biomechanics. There exists different methods to deal with the ARMA estimation
problem. Based on the fractional signal processing approach, Chaudhary et al [11] proposes a fractional least mean

square (LMS) algorithm for parameter estimation of Hammerstein nonlinear ARMA system with exogenous noise.
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This algorithm has still been used in other studies [2] [41] [10]. Another approach uses a two-stage fractional LMS
identification algorithm for parameter estimation of controlled ARMA (CARMA) systems [33]. The main idea is
to use fractional LMS identification (FLMSI) and two-stage FLMSI (TS-FLMSI) algorithms for CARMA models
which are decomposed into a system and noise models. Based on robust estimation, Chakhchoukh [9] introduces a
new robust method to estimate the parameters of a Gaussian ARMA model contaminated with outliers [18]. This
method makes use of a median and is termed ratio-of-medians estimator (RME). Among the problems of ARMA
identification, the model order estimation is crucial. Al-Qawasmi et al [4] propose a new technique for model
to estimate order in a general ARMA process based on a rounding approach. Most of the time, these estimation
procedures are performed by the implicit assumption that the processes are Gaussian [34]. However, most real
world signals are non-Gaussian and different methods such as higher order statistics are used [3] [40]. Moreover,
these methods are based on the assumption that the signal does not contain outliers or a low density of outliers
less than 1%. A reference paper in a robust estimation framework uses Huberian function for ARMA models [30].
This work shows that the Huberian-estimates are closely related to those based on a robust filter, but they have two
important advantages: they are consistent and the asymptotic theory is tractable. However, in this analysis, the
residuals are computed so the effect of one outlier is limited to the period where it occurs. Moreover, experimental
results only focus on the Monte Carlo simulations, not real measurements. A recent paper [45] developed a sys-
tematic procedure of statistical inference for the ARMA model with unspecified and heavy-tailed heteroscedastic
noises. The authors compare some estimators such that LSE, Huberian function and generalized Huberian func-
tion with outliers in a simulated ARMA process. In our framework, the measurements are real and contain natural
outliers (NO) due to the neurodegenerative disorders of each disease.

Neurodegenerative disorders have a direct consequence on the human behavior by introducing NO in biomechanic
time-signals. These points are crucial in the study of neurodegenerative diseases and provide information of the
degree of disorder. Here, the Parkinson’s disease (PD) and Huntington disease (HD) are studied through the stride
time-signal (STS) of human gait rhythm, corresponding to the time from initial contact of when one foot to the
subsequent contact of the same foot [21]. Walking is one of the most fundamental and important activities of
human that is strongly related to human health [39]. This is a complex process which we have only recently begun
to understand through the study of the interval data in a complete gait cycle [35] [36]. Gait rhythm can also be
described in terms of swing and stance intervals corresponding to the time of one foot is in the air and the time
of bilateral foot contact, respectively (Fig.A.1). Human locomotion is regulated by the central nervous system
(CNS). In the CNS of the human body, motor neurons are the nerve cells that process sensory information and
control voluntary muscle movement [37]. Serving as a pivotal part of the human motor system, the basal ganglia
process motor impulses originating from the cerebral cortex and the brain stem, and also sends sensory informa-

tion through the projecting loops in the CNS [42]. Basal ganglia dysfunction affects motor function and may lead
2
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to balance impairment or altered gait thythm. PD is a chronic and progressive hypokinetic disorder of the CNS
induced by basal ganglia dysfunction. HD is a progressive neurodegenerative disorder with autosomal dominant
inheritance. Analysis of gait parameters is very useful for a better understanding of the mechanisms of movement
disorders, in particular for neurodegenerative diseases.

Different approaches exist to analyze gait rhythm time-signals, such as the kinematic aspect [29] [24], Gaussian
approach [43] [23], Huberian framework [13], and cyclostationary analysis [28] [44]. Wu and Krishnan [43] de-
veloped a framework through Gaussian statistical analysis applied to PD, amyotrophic lateral sclerosis, and gait
maturation in children. The main drawback of studies based on the Gaussian framework is the not well treatment
of the NO in the time-signal. Indeed, during the 5-min walking period, every time the subjects reached the end of
the hallway, they had to turn around, and finally they continued walking. The time-signal stride recorded during
these walking turns should be treated as NO. The authors replaced these points by the median value of the stride
interval time series, using the three-sigma rule, in order to avoid disturbance of the statistical moments. Unfortu-
nately, these authors neglected relevant information about the time-signal dynamics, since these NO give capital
information during the short phase of the walking turn. These subjects present difficulties to turn and it seems
fundamental to consider these points. Therefore, Gaussian-based estimation cannot be applied.

Here we propose a reduced order ARMA modeling approach based on a Huberian function to assess parameters
and experimental results are performed with STS real measurements of CO, PD and HD. Huberian function is a
mixture of L, and L; norms with a threshold y. The choice of y is crucial to ensure a good treatment of NO and
allows to reduce the model order. A large section in this paper discusses on the choice of y using a new curve.
A relevant choice of y in a new interval range ensures both convergence and consistency of the robust estimator.
Convergence is shown and a new method to assess the variance/covariance matrix of the estimator is proposed.
This paper is organized as follows: Section 2 gives the Huberian mathematical context of the ARMA estimator. Ex-
perimental results based on a database containing 16 CO, 15 PD, and 19 HD are shown in Section 3. Conclusions

and perspectives are drawn in Section 4.

2. Huberian mathematical framework

This section presents the Huberian framework mathematical basis. The choice of the threshold in Huber’s
function is presented and discussed. Asymptotic convergence in law of the robust estimator is shown, consid-
ering the stochastic differentiability approach [31] and the m-dependence context. A new method to assess the

variance/covariance matrix of the estimator is proposed.
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2.1. Huberian function and estimation criterion

Let (S, S, P) be a probability space and {X] k}le a sequence of i.i.d.r.v’s with values in S. Let ©® be a Borel
subset in R? and I" a compact subset of R. Let pf; 1§ X O XTI — R be a symmetric function such that pf (e (6,7)

is measurable for each § € ® and y € I'. The estimator 9{1, is defined by a minimum of the form

Al N
NI ; ol (Xk(f)ﬂ, 7‘/)) = eeier,‘yfer N-! kZ; o (X0, 7)) O
with
H XTZ for|X] <y
py (X) = (2)

2
yIXI-%  for|X] >y

where 7y is a threshold to be determined to improve efficiency, convergence, and stability of 9% [22] [12]. Let us
introduce two index sets in 6 € R defined by v,(6,y) = {k : |ex(0,v)| <y} and v,(0,y) = {k : |ex(6,y)| > v} such
that card [v2(0,y)] + card [vi(6,7)] = N V0 € Dy, y € D,, where D, and D, are compact subsets and M a
model structure. Let M () be a particular model corresponding to the parameter vector value 6. Let us define
6 = [0 y]. Let Wy(6,y) be the estimation criterion of the parameter vector  for a threshold y > 0. We denote
s;(6,y), k=1,...,N the sign function such that s; (6,y) = 1 for & (6,y) > v, s (6,y) = —1 for & (0,y) < —y and
sk (6,y) = 0 for lex (6, y)l <. Let &k (6,y) = yi — Duk=1 (6,%) = vk — go,{ (0,7) 6 be the prediction error where yy, is
the process output, P—1 (6, y) the prediction model and ¢y (6,y) € RY the regressor vector. This criterion contains
a L, part to treat small prediction errors and a L part to deal with NO. Consider a batch of data from the system

ZN = [y1...yn]. Roughly speaking, we have to determine a mapping from the data ZV to the set Dy, x D,
2V — § = [0 5] e Dy x D, 3)

The robust estimation criterion can be written as

2 2

1 £2(6,7) ys53(0.7)
ey =~ y ‘=X lex(@. ) - (4)
N N
kevy(6,y) kevi(0,y)

Let us denote ||X||2 = Z xl.2 and |X] = Z |x;| where X = [xl...xN]T. We define the following rule: x,, ; = xx for all

k € vi(6,y) and x,,x = 0 otherwise. We define the sparse matrix in R" *d over vi(6,) (i = 1,2) respectively given
by
905,-,1 6,y) ©0.y) for k ©.7)
or (0,y) for kevi(0,y
,, (6,y) = s vk (0,y) = (5)
0 otherwise
QDZ;’N (07 7)
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On the other hand, we define ¥,, = [y,.1...,.~]" the process output vector and S ,, = [s,,1...5,,.v]" the sign vector.

The estimation criterion to be minimized is then given by

1 2 1 ¥’ 2
Wy (8, y) = N Y., - @, (0. 7) 6] + ¥ y|¥, - @, 0.7)6] - = (S| (6)

This minimization algorithm is applied to yield a minimum corresponding to a given robust estimator for an
appropriated choice of the threshold y. In the sequel, we show this choice from two joint approaches. The first
one comes from the maximum of the bias by defining a new function with properties to reduce the effect of NO
in prediction errors. A new curve is presented and locates a new investigation interval of y. From this, the second

approach is to seek a local or global minimum of the robust estimation criterion with respect to 6 and .

2.2. ARMA model in Huber’s framework

The process output data are denoted as 6%, k = 1...N corresponding to the STS of human gait rhythm. Figure
A.1 shows an example of the left gait signal from heel toe force sensors underneath the left foot where appear the

different phases. Now assuming that §¢; is generated according to
8ty = Hy (q) ex (7

where Hy (¢) is the noise filter and ¢4, k = 1...N a random variables sequence with zero mean and variances A. The

ARMA model set is parametrized by a d-dimensional real-valued parameter vector 6, i.e.,

C(q,0) o
Alg,0)

6tk = H(q,0) ex = ®)
with A(g,0) = 1 + 2aiq_i, C(@.0) =1+ gciq‘i and 6 = [a)...ay,cy...c,.]”. Moreover, g~ is the lag operator
such that q’létk = (5t;:1, leN. i

In Huber’s framework, the prediction errors depends on 6 and y. We write £ (6,y) = 6t — 6t (6,y) where
8t (0,y) = @7 (6,7)01is the prediction model. The regressor is ¢y (6,y) = [=0f—1... = 6tk—n, k-1 (6,7) ...Eknc (6, "
and ¥ (6, y) is the gradient with respect to 6 of 6t (6,y) given by ¥y (6,7) = @g&k (6,7y), meaning that 4 (6,7)

is obtained by filtering the vector ¢ (6, y) through a stable linear filter.

2.3. Choice of y

2.3.1. Location of y
In the prediction error procedure, there appears an inner feedback loop to compute the pseudolinear prediction

model Jyi—1 (6,y). The estimated residuals are treated by a parametric adaptive algorithm which includes W x(6, y)

5
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to be minimized. The presence of NO in the process output y; induces large values in g4 (6,7y). A convenient choice
of v improves the robustness by reducing the effects of these large deviations. In the literature, y is chosen in the
interval range [1, 2] for linear models. However, this choice does not ensure convergence, consistency nor stability
of @j’\’,’ . Accordingly, the probability density function (pdf) of &4 (6, y) is strongly disturbed and presents heavy tails.
It is shown that Huber’s estimators are not always robust and efficient when y € [1,2]. In a recent paper [14]
on piezoelectric-systems, the use of small values of y in [0.01, 0.5] led to derive relevant output error models. In
this work, even though the prediction errors were disturbed by numerous NO, the choice of the small values of y
around 0.05 allowed to obtain interesting results in the frequency interval range for the vibration drilling control.
In the sequel, we introduce a new curve ensuring a reduction of the bias and we show the choice of y in low values.
In [12] (chapter 6, p.130), we studied the quality of the robustness through influence function [19] of the robust
estimator. We showed that the upper bound of the bias is proportional to the high NO, denoted L7 and a new
function named funing function, denoted f“ (y). Figure A.2 shows this curve. It appears the classical interval,
denoted C,, where y € [1, 1.5] and a new interval, named extended interval, denoted E ., where y € [0.001, 0.2]. We
showed that

sup |9ﬂ -0
FnePoy (w)

= by () < RV () 127 ©

where «V is independent of y, 6% is the true parameter, Pg, (w) is the corrupted distribution model and Fy the
contaminated Gaussian. An approximation can be written as £ (y) ~ 0.034y° — 0.316y* + 1.113y3 - 1.773y* +
1.088y — 0.002. From a linearization of f (y) in C, and E,, in absolute value, the slope in £, is six times as
important as that of the slope in C,,. Accordingly, the sensitivity to reduce the influence of high NO in £, is six
times as important. Therefore, this new curve allows to locate a new investigation interval of y in low values in

order to get low values of /“ (y) to decrease the effects of NO.

2.3.2. Convergence domain of y

Consider the differential of (6, y) with respect to 6 and y given by
dWn(0,y) = 0eWn(0,7)d0 + 8, Wn(0, y)dy (10)
where Oy is the derivative with respect to X. In detail

-1
N0 = = D OO~ + D U(OYsuE.y) (11)

keva(0,y) kevi(0,y)
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with Yx(6,y) = —0e(0, y) and

1 1 pa
HINOY) = D OO+ D (107 = ¥5i0.7) + Y80, 1)sk(6,7) = S-61(6,)5i(6,7)
N N 2
kevy(6,y) kevi(6,y)
(12)

with ¢(6.) = 0,ex(6,7) and ¢;(6.7) = 9,s¢(6.). Let us define ¥ (60,7) = LU0 = [W(9,y) 9, Wy(0, y)]T,
where ¥ (6, 7) € R and ¥ (6, y) = dgW (6, y) named ¥-function.
We seek an optimal value of y such that Wy(6,y) presents a global minimum with probability one (w.p.1) as N
tends to infinity, denoted (6, y) = ]}]im EWny(6,7y). This involves that the solution of \f’(@fv’ ,)”/) = 0 is unique.
However, it may happen that #(6, y) does not have a unique global minimum, then we define two compact subsets

DY and D) such that #2 — Df w.p.1 as N — oo and 7 — D}. We then have

%)

=161 3| - D' x D! wp.las N = co 13)
N N c
If we denote D(Zy = DY x D! then

DY = argmin W(6,y) = {9 €Dy,yeD, WB,y)= min W(G’,y’)} (14)
0Dy, Veﬂv €Dy y’eZ)V

theorem 1. Consider a uniformly stable, linear model structure M. Assume that the data set Z%° = lim ZV, then

N—oo

sup |WN(9,7) —W(Q,)’)' - 0= g;*iergﬁv‘éﬂ - 9*‘ —0 wp.las N— oo, " =[6" v*] (15)

0Dy yeD,

See proofin ([12], chap.4 p.69). In the case where the condition ¥ (9;’ , 5/) = 0 does not present a unique solution,
there exists a convergence domain of ¥ involving a local minimum of 9;’ such that y — y* and 9;’ — 0" w.p.1 as

N — oo. Using theorem | and inf '5;,’ -0
preDl

— 0 w.p.las N — oo, the consistency of the robust estimator is
proved.

Main properties of the robust estimator related to the covariance matrix and asymptotic normality of VN (@ﬁ - 9*)
are given. In the sequel we assume that § converges to y * satisfying the conditions of theorem 1. Hence we suppose
that the set z)ffy consists only one point * = [6* y*]. We shall work with the expression Wy(6,y*), § € Dy, and
the derivatives will be carried out with respect to 6 and will be denoted 9 ¢Wy (6, y*) and 059 Wy (0, y") for the first

and second derivatives respectively.
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2.4. ML robust estimator

The robust estimator éf\’, is a maximum likelihood estimator (MLE) satisfying pf; (X,y) ~ —logfy (X,y) where
Jfu (X, y) is the pdf defined by

_x2

S (X)) =C)e*  forlXI<y
Ju(X,y) = o, 22 1o

i () =C)e 7 forlX >y

CO) = smmergy Wit
2
K] ()/)ze;?%zl—‘(l,;—z) for|)(|>7

(17

2
K0 =5 [r(3)-T(kz)| forxs<y
I'(a) and T" (a, X) are respectively the complete and incomplete Euler’s gamma functions. The parameter ¢ is the
standard deviation of f; and we can verify that YX € R, fy (X,y) > 0 and fR fu (X,y)dX = 1, which ensure that

frris a pdf.

2.5. Asymptotic covariance matrix of 9,’3 in ARMA model
Since 9113 minimizes Wy(6,y*) then dy WN(% ,v") = 0. Expanding this expression into Taylor’s series around
6" gives

Y -1
o —g = [659W(9*,y*)] deWn (0", 7") (18)

where dgWy(6°, ") is given by (11) and 82, W(6",y*) = Al]im E0%,Wy (0!, y") is the symmetric non-negative definite

d X d limit Hessian matrix with

-1
Gl @) = = o (0w 0.7 )e0.y) ~un(@.yWIO.)) = Y IO )suy)  (19)

kev>(0.y*) kevy(0.y%)

See proof in ([12], chap.4 p.63). From (18) and for N sufficiently large, the asymptotic covariance matrix of the

robust estimator is given by

[W(G’% 7*)]71 0@ v*>[WV(9*, y*)]’l Py

o) ~ 20
cov by N N (20)
where Q (6%, y") = Al]im NEOgWn(0*, y)0gWn(07,7)T is named Q-matrix.
Remark
For the user, having processed N data points and determined 9;’ and y*, we may use
. -1 s . -1
a2 @yn] T 0 (8. y) |02, @iy
cov (9113 ) = N (21)



181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

as an estimate of %.

ARMA models involve a pseudolinear prediction model in ¢ (6,y). On the other hand v (6,y) = @“’k @,y)
meaning that the matrix 691,0[(9, v*)in (19) is not equal to zero. The main drawback is the infinite sum of Taylor’s
expansion of ¥ (6, y*) and ﬁgxp,f(e, v"), increasing the computational cost of the estimated covariance matrix (21).

Here, we show the main results of our method to limit Taylor’s expansion with a large order. For more details see

([12], chap.5 p.74) . After straightforward calculations, we have
v (0,77) = D Ao @y, A <1 (22)
m=0

Fnc/2) ~
with 4Y ~ -2 1;1 R cos (Q,’f), where Q' = 6; + (m — 1) & if nc is an even number and Q' = I, | =

{m,m—1,1,0} if nc is an odd number. ¥ (n) is the nearest integer less than or equal to n. The coefficients
[k, pr, Ok, @i are given by the nc-poles {ﬂ'k}Zi] = pre/®, where py < 1 for k = 1..nc and k — th residue

Res (d); 7Tk) = fixe’® of the transfer function

1 cre/re=l '+ ¢,

C(e/v,0)  eivnc 4 ¢jef@ne=D 4 4 Cne

D (e/,0) =1 (23)
We show that AY decrease like & (m) = % + % for m > 1 where g1, 8, are determined with well chosen values of

m. We define the large order L to limit the development of (22) by the condition &, (£) = 7 where 7 is a threshold

corresponding to 1% of max (A%) The large order is then given by

L=7F

J 2_17 [ (BY) +4p)r +/311V]} (24)

Moreover we show that sip ”zpk (éj’\;’ , 7*) _ ,pf (é]’\’/’ , ),*) < é meaning that the bias decreases like ﬁ, ensuring a
good convergence of /. The limited expression of ¢/, (9;’ , y*) is then yielded by
L
w0 Y) = D e m(@7") (25)
m=0

Analogous approach can be made for agl,[/]{ (9]13, v"). Indeed, its limited Taylor’s development has the same large

order £ and we show that sup ||c')91//k(9]f1,, yH - c')gt//,f(@ﬂ, )/*)T”‘>o < % We then get
k

awE @Y = Ce (B ") + Cf (8.") (26)



1e  where the matrix Cy (9;’ ,y*) e R is

L £ .
3 - z,lo IE)AZA;VQDZ—l_m_Z(QH»V*)
Ck (ng 7*) = m=0[= (27)

L £ .

- Z Z A%A;v%?—nc—m—l(gl{*?’*)
m=0 /=0

190 In the following section, proof of the asymptotic convergence in law of W(@Z _ 9*) is considered. This requires

20  the stochastic differentiability and m-dependence approaches.

=1

w01 2.6. Asymptotic convergence in law

202 For the asymptotic convergence in law of VN (9;’ - 0*), let us consider the following technical points related

s to the signal models of &4(6", y*) and Y (67, v*).

2

S

204 2.6.1. Signal models

F0o . 1; 7N : (OF A% (0% A : %
205 Assume Z% = ]\1/5130 Z" the data set and consider (Q (0", y ))jevl((-)*,y*)’ (¢ JACa% )) the NO in g(6%, v")

Jjevi(*,y*)

206 and Y (6%, v") respectively. We can write

=3
>

0 7) =D Brn (07 ) ewm+ D Q07,7 bk, (28)
m=0 J
kevy(6*,y*) kevi(0°,y%)
207
0"y = D e (0,7 ek + Y 6, (0",7") 6, 29)
m=0 J
kevy(0%,y*) kevi(07,y%)

208 for some filters

{ak,m (9*7 7*) »Bk,m (9*7 7*)} = fkm (9*7 7*)

20 Here ¢, is the Kronecker function and

20 HI:

211 1. {ez} is a sequence of independent rv’s with zero mean values and bounded moments of order 4 + 6, for § > 0.
212 2. The family of filters fi, (6, y"), k = 1,2,... is uniformly stable for all &, 6%, y* with fi,, (6",y") < um and

213 Z My < 0.

m=0

10
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= O and

3. Natural outliers Q;(6",y") and ¢; (6", ") are bounded for all 6*, y* and j, sup le @,y
Joy
= ¢.

sup |, (6", 7")
J05

2.6.2. Stochastic differentiability

In the literature, the standard asymptotic normality results for MLE requires that (4) be twice continuously
differentiable, which is not the case here by the presence of the sign function. There exists, however, asymptotic
normality results for non-smooth functions and we will hereafter use the one proposed by Newey and McFadden
[31] and Andrews [6]. The basic insight of their approaches is that the smoothness condition of (4), W x(6,7)
can be replaced by a smoothness of its limit, which in the standard maximum likelihood case corresponds to the
expectation —Eln fy (g (6,y)) = W(0,7), with the requirement that certain remainder terms are small. Hence,
the standard differentiability assumption is replaced by a stochastic differentiability condition, which can then be
used to show that the MLE 95\,1 is asymptotically normal. Recall that the derivative w.r.to 6 of pf is Wr (6,y). If
this function is differentiable in 6, one can establish the asymptotic normality of 9% by expanding VN (@ﬁ - 9*)
about 6" using element by element mean value expansions. This is the standard way of establishing asymptotic
normality of the estimator. In a variety of applications, however, W (6,7) is not differentiable in 6, or not even
continuous, due to the appearance of a sign function. In such a case, one can still establish asymptotic normality
of the estimator provided E¥; (6, ) is differentiable in #. Since the expectation operator is a smoothing operator,

EY, (6,7) is often differentiable in 6, even though ¥y (6, %) is not.

2.6.3. m-dependence

Let us consider m a non-negative interger, then a sequence X, of random variables is m-dependent if X, X>, ..., X
is independent of Xy, X1, ... provided k£ — s > m [32] [38]. Here, this approach is applied since the terms in
0gWn(0,7y) are not independent. The purpose is to split the sum in (11) into one part that satisfies a certain in-
dependence condition (m-dependence) among its terms and one part that is small. With assumptions H1, the
dependence between distant terms will decrease. Thus, let us consider two following lemmas
Lemma 1

N
Consider the sum of doubly indexed 1v’s {x;x} such that Sy = > x;n, where Ex;ny = 0 and {x; , ..., Xs.n},

k=1
{XkNs Xit1.N5 - Xnny} are independent for k — s > m. If
N
. 2
]315}0 supZExk’N < 00 (30)
k=1
and
N 246
Aljim Z E |xk‘N| =0, 6 >0, Lyapunov’s condition (31)
—00 k:l

11
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, then Sy is asymptotically normal distributed with zero mean and covariance matrix Q = ]1vim ESNS ij See [32]
and [38].
Lemma 2

LetSy =Zun+Xpn,m,N=1,2,... such that
2 5 —
o X}y <Gy lim G, =0,
b P(Zm,N < Z) = Fm,N(Z)'

Then lim lim P(Z,y < z) = F(z). See [16] and [5].

m—o00 N—oo
To prove the asymptotic normality of VN (é{’, - 9*), signal models, stochastic differentiability and m-dependence
are required. Let us consider the following theorem
theorem 2. Let &1 (6°,7"),...,ex (8%, y") be iid rv’s from the pdf fir with an unknown parameter 6*, §* € DY with
DY a compactness and D¢ interior of D’. Then the MLE GZ of 6 is asymptotically normal

VN (0 - 0°) 5 N 0.2 0,y (32)

where P (0%, y") is the asymptotic covariance matrix given by (21).

In order to do so, all the following assumptions hold. Suppose Wn(67,v*) >  sup  Wy(6,y*) — 0p (N‘l),
0eDyy eD]

~ rob

o "% o, and

(1) (6, y*) is maximized on D, at 6

(i1) 6" is an interior point of D,

(iii) (0, y) is twice differentiable at (6%, y*) with nonsingular second derivative 659 W\ (6,7)
. d )
(iv) VN (EdgWi(8.7" ) — N (0,0 (€".7"))

Ry(0).")
T+ VN[l ]]

prob . .
— 0 with the remainder

(v) Forany oy — 0, sup
[

W6, y") = Wn(",y") = (9 Wn(6, 7))y (6 — 67) — W(6, ") + W(O", y")

Ry (0,v)= VN
N (0,7) 16— 6|

(33)
then W(@Z - 9*) 4 N (0,P (6,y")). The proofis given in Appendix A.

3. Experimental results

Experimental results are presented over 16 CO, 15 PD, and 19 HD, left and right feet for different estimation
norms. The L, norm corresponds to the LSE (least square estimation), L ; norm to the least sum absolute deviation
(LSAD) and L. norm to the supremum norm given by (9;}’ = mgin max le; (0, v")]). In the Huberian context, a
campaign of estimations is carried out in C, with y* = 1.5 ([22]) and E, with 0.001 < y* < 0.2. For each

estimator, comparisons between CO vs PD and HD for left and right feet are given. Table. A.1 shows the means

12
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of yx, RMSE, FIT (%), L,C(%), L,C(%) and the total number of parameters n = n4 + nc. The RMSE is the

y=p )
y=<y>

root mean square error between process output and prediction model output. The FIT is given by 100 (1 -
where y,  and < y > are the process output, the prediction model output and the mean of the process output,
respectively. L,C and L;C are the L, and L contributions respectively given by L,C = ﬂw These are
indicators of the density of NO in the prediction errors. If L,C = 40% this means that 40% of prediction errors
belong to the interval [—y*,y*] and deal with the L, norm in the Huberian function. Here, the threshold y in £,
was varied among the range [0.001; 0.2] with an incremental step of 0.001 for CO, PD and HD. We focus on the
main results in Table. A.l. First, the Ly, L; and Lo, norms give bad results with large RMSE, low FIT and large
number of parameters between 40 and 70. The lacks of robustness and degree of freedom (DOF) in these norms
lead to an overestimation of the number of parameters n. On the other hand, each FIT presents a low value. In C
for y* = 1.5, the number of parameters is reduced with 25 < n < 32 but not sufficient for a reduced order ARMA
modeling. We can notice a great L, contribution, meaning a too large contribution of the L, norm, very sensitive
to the large NO in the prediction errors.

The Huberian approach in £, leads to relevant results. Indeed, this remains in agreement with the formal point of
view related to the bias and the new curve in section 2.3: low values of y involve reduced bias and improve the FIT
of the reduced order model. In Corbier and Carmona [15] we showed that the Huberian model order denoted d ﬁ
is such that dﬁ < df/} < dfj since the Huberian function has one DOF and can be tuned from y, by improving the
estimation and reducing the number of parameters for pseudolinear models.

First we notice that < " >~ 2 <y > meaning that there are twice more NO in STS-PD and STS-HD
than STS-CO. Indeed, for PD and HD, the estimation requires a low value of y* involving a large value of the L,
contribution close to 70%. For CO, y* ~ 0.19 and L,;C ~ 58%. Table. A.2 shows the parameters and variance
of each parameter for CO and PD left with y* = 0.05 and y* = 0.003 respectively. For the variance/covariance
matrix of these models, the large order £ is equal to 10 ensuring a low computational cost of C (9]’\”,, y*). Table.
A.3 yields the coefficients AY for m = 0..10. Figure. A.4 and A.5 show two ARMA models for left CO (y* = 0.05)
and left PD (y* = 0.003) respectively with a FIT close to 83%. In Figure. A.5 NO clearly appear in index-times
k=52,k=113, k = 190 and k = 247 with high levels corresponding to the turn around during the walking period.
In this phase, the classical estimators are highly disturbed and achieve sometimes the leverage point [22]. We can
notice the good behavior of the Huberian reduced order ARMA model during this phase. Equation (34) shows the
reduced order ARMA model of left PD for y* = 0.003.

oty = 0,7126t;1 + 0,02258t;» + 0,0186¢;_3 + 0, 181134 + 0,0600¢t;_5 + e — 0,236¢e;_1 — 0,065¢;_, + 0.141¢ej_3

—0,098¢)_4 (34)
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The limited number of ARMA parameters contradicts conclusions in [20] and recently in [1]. These studies showed
a stride intervals of normal human walking which exhibit long-range temporal correlations. They presented a
highly simplified walking model by reproducing the long-range correlations observed in stride intervals without
complex peripheral dynamics. Based on fractal approach they showed an important point of view related to the
long-range memory effect of human walking. Our new approach shows a short-range memory effect for normal
and disease human walking. It remains to investigate this memory effect and try to interpret in physiological terms

the correlations with the CNS.

4. Conclusion

The main purpose of this paper has been to present a reduced order ARMA estimation method based on a
robust approach using Huberian function for the neurodegenerative disorder signal modeling. A new approach
has been presented to choose the threshold in Huberian function, allowing a best treatment of the natural outliers
contained in the signals. The reduced number of parameters is due to a relevant choice of this threshold in a
new interval range. Convergence and consistency properties of the robust estimator have been shown including
stochastic differentiability and m-dependence approaches. An estimations campaign has been conducted from STS
real measurements and it has been shown the relevance to use a Huberian function with DOF to tune its threshold in
order to assess a reduced order ARMA model. However, it remains to characterize more appreciably the diseases
to differentiate the neurodegenerative disorders. Accordingly, future work will focus on mixed L , estimator [15]
to reduce the number of parameters providing new indicators and will investigate the memory effect of human

walking.
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Appendix A. Proof of the theorem 2

(i): From Elnfy (g (6,y")), we can deduce that

N
-1
0" = argmax (— Zpg (ex(6, 7*))] ,as N = oo (A.1)
0Dy, y eDY N =1
which is equivalent to
N
1
argmin (— pr (ex(0, y*))] ,as N - o (A.2)
0D,y eDY N =1

Since W (0,y*) = E (pf; (ex(6, y*))), then W (6, y") is maximized on D, at 6*.
(ii): The interior condition is equivalent to the assumption 8* € D! where D is the interior of D ;.
(iii): Using the stochastic differentiability condition, £02 ffpy (er(67,7) = 6§§W(9*, v*) is invertible as N — co.

(iv): Using the mean value theorem, we get
(EGmn &), (0 = 67) = (Ealn(8. v iy = (EDW (0.7 )y (A3)

with 64 < By < 6. For N — co, By — 67, (EdgWx(6,7)), = 0and lim (Ea2. (e, y)) - 82,W (6,7"). One
has

VN (0 ) = (B3 W10"9)) VN Ea ey g (A4)

The asymptotic normality of VN (é{’, - 9*) only depends on the asymptotic normality of VN (EdgW (6, y*))gg.

N v
Let us denote dgWy(6,y) = 7 Z @ nen.7) -5 Z(g )wk(é’, Y)se(0,y) = %kZl Wi (6,7). Therefore,
evi(6,y =

kevy(6.y)

N N
R E O = w{% S [ (@ly) - £, (9;;,7*)]} - VEL ST @)
k=1 k=1
that is
L i (P (08, 77) - B (0. 77)) - L i‘i’k (4. 7) (A.5)
W k=1 vy v W k=1 v
Let us denote S y (0, y*) = L\/_ g} (\i’k 0,y*) — EY; (6, y*)), then
N
— VN (EdWy (0.7 Vg = (Sx (05.7°) = Sn (6".7)) + Sn (0.7 - —Z (%) (A.6)

k=

Since + Z ‘I’k( *) = 0, the third term on the right hand side of (A.6) is o (1). Its first term is o (1) provided

A rob
{Sn(e,7"),N > 1} is stochastically equicontinuous and 6% " 6*. This follows because given any @ > 0 and

15



w1 B> 0, there exists a 6 > 0 such that for AS (é]’\’,’, 9*,7*) = Sn(02,v*) = Sn(6", ")

Tim P (’AS (@%.07.7)

N—co

>a)£

332

Tim P({As (@5, 0.9)|. [l (@) y) - o < 6) + Tim P (||} (1@ v) = o} > )
333 (A7)
< lim P( sup  ISn(B,,y") = SN,y > a] <p (A.8)
N=eo \pep,, yeD!

3

@

. b
+  where the second inequality uses Ofv’ "2’ " and the third uses the stochastic equicontinuity. Accordingly, for a

xs  given threshold y*, this shows that for V tends to infinity, we have in law

@

L(VN (B -6)) ~ LEME Y (A.9)
s with
SNEY) = = i( e, ~ E-pfl(ex(0,7) (A10)
\/N k=1 de 0*

sz The purpose is to prove that S y(6%,y") is a normal asymptotic distribution. For this, we show that the terms of
ws  Sy(0,y")are independent. As described above, we use the m-dependence approach to show the asymptotic normal
w  behavior of S v(67,y"). Let us consider the following short expressions: &y, (6", y") = &/, fix (0",7") = f7;. We
s split &5, and ¢ , into one part that satisfies m-dependence conditions among its terms and one part that is small.

a1 We then have

€ _82t +§;:n+glt_zlgtket kTt Z By e k+ZQ5 (A.11)

k=m+1

sz where m is an integer with Q;‘ =Q;(6",y") and 65 is the Kronecker’s function. Analogously, we have
Uy, =T D U, = Zatke,k+ Z a,ke,k+2¢5 (A.12)
k=m+1

s Sn(0%,y") can be written as S (6%, Y*) = Zun(07,¥") + Xnn (07, y") With

3.

x

1
Zm,N(Q* 5 7*) =
N

Mz

d
( Py (1'(0,7") - E—py (&' 6,y ))) (A.13)

t=1

344

Nd d
2. 7 0.y = P 0. )|, E— o)) ey ~ e 0.y, (A14)

Xm,N(Q*s 7*) =
p de

2l-

16



s Partl:

us  From (A.13)in Z, n(6",y*) and using the Lyapunov’s condition, we obtain

d d o+2 ] d 5+2 542
Bl giereyn-egpteron| < 2e(|[gorerey] < B|gaereyy ) @
347
d i 5+2
< 2°VE ’Epy (E"(6,7") (A.16)
s with
*,m *,m *7”02 *m52 * *’”62
ol (e <(wrllexy |+ v e < 221 Qusr ™ e + ) 2wy (A.17)
us  We deduce
2§+2E —p (8 < 226+3E l,[/;:;n 0+2 ;rtn 0+2 226+3(,y )6+2E l//T m|0+2 (Alg)
0 Using Schwarz’s inequality
2044 25+4)\2 2544
26+2E a (8 226+3( l//;m + ;rzn (26+ )) n 226+3(,y*)6+2( l//’{m + ) (A.19)
st The first and second terms on the right hand side of (A.19) are respectively denoted 4 * and B*.
352 e For A*: in v,, for all ¢ and 6*, SZTl < v*. Therefore
m 25+4
wm|2044 52543 26+4 '
Elys7|" <22V E el Z#k (A.20)
k=0
*,1M 26+4 s« * *
353 From H1, we have E 2 <Crand 4" < C".
as4 e For B*: from H1 we get sup |‘91 | =Qand E vy ;” *** are bounded. Accordingly, B* < C*.
16"y
355
0+2
s Inserting (L\/_) , we finally obtain for all y*
1 d y . 0+2 C
E’«/_N [%py (&§16y ) ~ B0,y S (A21)
sz Then
N 0+2
1 |d d C
li E|— | —=pl (e} 0, E— 6, < lim — -0 A22
Nljg@ﬁ '\W[dgpy(e?( ¥)) - py(S( 7))} —NTloNg_) (A.22)
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1

s Expression (A.22) proves (30) and (31) in lemma 1 (section 2.6.3) with O ,, (6%, y) = ]\lgrgo EZ NGO v)Z T1 FEL Y.
0 Part2:

w0 In X, n(0%, "), we can write

dpy/(e0,7")  dp)/(&"(0.7") _ 9py/(e0,7") dei(60.y") 9Py (8i60:7") de'(6,7")

do de T 9sl6,y) o6 de(0,y*) 90
361 " 1%
Ipy (e0,77) de(0,y")  Ipy (&1'(6:¥")) de'(6, ") (A23)
06, v*) 00 g6, v*) 00 '
sz Therefore
dpi/(e0.y")  dpl/((0.y")  9p)(0.7") (deb.y)  0eB.y)
do do T 9ed6,v") o6 90
363
py (A6, 7")) ~ 9py/(£7'(6,7) ) 0e2(0,7") (A24)
del(0,7") e (6,v") 09 '
a4 Using mean value theorem, we get
il (e6,v7) (e 6. 7)  Ppll(EN6,¥)) . .
= T o (a(0.97) - £]'(0.)) (A.25)
dei(6, ") CACHY) 0E(8, ")
s Hence
dpy) (e/6, ")) ~ dpy/(£](0,7)| 905/ (0, 7)) | |06, 7") CACED)
do de 0g/(6,y*) 00 06
366 > B
07py (£46,7)) o0, y*)
— e 6, v") = £"(0, y)| | ——L2 A.26
ARG [0, 77) = &0,y | =55 (A.26)
s7  From regularity conditions C1 in (see [25]) given by
- e H% < Clsl, 6 € Dy, all 1.
w o [Z2] <Cle,6€ Dy,all
370 ° % <C.
371
sz We then have
dp}/ (£6.7") _ dp}/(e(6.7) < Cls6.7") de0.y")  0el(0.y")
a6 do = SRy a6 a6
ST (2%
+C'8t(9’7 )—&(0.7") 20 (A.27)
s In detail
9e0,y) 0OV (o > =
i B A3 sk:le || el sk:leuk leil (A.28)
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375

376

377

378

379

380

381

382

383

384

385

3

3

6

and

|e@. ) = 0.y = |2, < > Blled < D melers (A.29)
k=m+1 k=m+1
Expression (A.27) becomes
H * oo
Py (6.7 03/ (&7'(6, 7)) . oy
— ——|=<cC k;rlﬂﬂet—d (I, 7)1+ w0, 7)]) (A30)
Moreover
&0, 7))+ Ju7 (@, <2Zuk|e, d+ Z e lers] (A31)
k=m+1
Therefore
dpi/(e0,y")  dp)/ (&0, 7")
Y = Y ;9 <o+ B (A.32)
with
@ -2C(Z ]( > wler k|] (A.33)
k=m+1
and
o 2
= C[ D, |et_k|] (A34)
k=m+1
Therefore
I 1 &
Xun(O,y)< — > (@, —Ea)+ —= ) (B:—EB)) (A.35)
N \/ﬁ ; t t '\/N ; t t
Xon(@ ) X0 0y

Each term on the right hand side of (A.35) verifies the corollary of the lemma 2B.1 in [27](p.57). Hence, as m — oo

E (X,‘Z,N(H",y"))2 <K [Z /lk]( Z ,Uk) -0 (A.36)
k=0

k=m+1

00

2
E(X (6"7) < K( D ,uk) 50 (A37)

k=m+1
Hence, Z,, v (6%, ") € AN (0, O, (6%, y")) and Sy (6, y*) € AsN (0, Q (6%, y")) with Q (6", y*) = lim Q,, (6%, y").
Which proves the point (iv) of the Theorem 2.

(v): Expanding W(6, y*) into Taylor series around 6*, we get

W)= W 7+ 5 (- 0) By (0 -0) o |6 -0

2) (A38)
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388
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390

391

392

393

394

395

396

397

398

399

400

401

402

Since 659 W6, y*) is positive definite and nonsingular, there exists C > 0 and a neighborhood of #* such that

1/a v — A A N
S -0) Gme .y (@ -0)+ 0( o — g 2) <cl - e|f (A.39)
we obtain W(@ﬁ,y*) <weL,y)+C Hé{’, — ¢||". Moreover
N x ok * 1 NH * * * * T NH ok N || D NH * 1
W@} y) =@y ) vo (55| = WOy = W@y )+ (0 EY),, (05 = 0 )+ (|57 - 0| R (8. 7")+o| 5
(A.40)

Therefore

W@ y") = (0 y") < C |8 = | + [|oeWwié, v)

o0 -0

) ) 1 1
[ [ )o(ﬁ)m(ﬁ) (A.41)

+

(1+\/J_\’

Since ||0: Wy (€, 7")

9*—>OasN—>oo,then

. . 1\, 1
Wi (0. v") — Wa (0", 7") < WM = 6*|]* + o —=] 61 - 6 — A42
N, ¥ = W8, 77) < (C+ o(1)) |0 +o(m)llN +o(N) (A42)
The remainder Ry (@Z y*) can be written as
Ry (03.y7) < VN |6 - 7| (K + o(1)) (A.43)

then b
Ry (0. 7") 3 VN (|04 - 67| (K + o(1))
L VNP T 1+ VN | e

(A.44)

prob
— 0 then

Since \/N”@f\’, A

RN 9H’7* rob
P (—NH) =0 (A.45)
[|67-6|| <oy —0r | 1 + \/NHQN s

which prove the point (v) and finally the theorem 2.
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Figure A.1: Example of gait signals from heel and toe force sensors underneath the left foot. The threshold allows to compute the time-signals
oty such as the stride, swing and stance.
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Figure A.2: Tuning function with two main intervals. The classical interval y € [1, 1.5] and the extended interval y € [0.001,0.2].
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Table A.1: Means of yx, RMSE, FIT(%), L,C(%), L1C(%) and the total number of parameters n = ny + nc over 16 CO 15 PD and 19 HD
(left and right feet) for different estimation norms. /5 is the LSE, L is the LSAD, L is the supremum norm. C, is the classical interval in the
Huber’s context with < y* >= 1.5. E) is the extended interval in the Huber’s context with low values of yx.

CO left PD left
Estimator ik RMSE FIT L,C | LiC | n Y RMSE FIT L,C | LiC | n
L, - 11.2 10 100 0 70 - 13 9 100 0 70
L - 4.3 42 0 100 | 41 - 52 38 0 100 | 46
Le - 4.2 25 - - 45 - 5.3 26 - - 56
HuberinC, | 1.5 2.4 42 95 5 25 1.5 3.1 31 96 4 28
Huber in £, | 0.17 0.09 92 41 59 9 0.09 0.34 78 30 70 9
CO right PD right
L, - 10.2 9 100 0 70 - 13 9 100 0 70
L - 53 44 0 100 | 39 - 6.2 35 0 100 | 46
L, - 32 26 - - 46 - 5.5 28 - - 54
HuberinC, | 1.5 2.3 44 96 4 27 1.5 33 31 96 4 30
Huber in £, | 0.18 0.08 92 43 57 9 0.09 0.29 78 32 68 9
CO left HD left
L, - 11.2 10 100 0 70 - 8 17 100 0 70
L - 4.3 42 0 100 | 41 - 4.1 36 0 100 | 44
Lo - 4.2 25 - - 45 - 6.3 24 - - 54
HuberinC, | 1.5 24 42 95 5 25 1.5 3.2 32 96 4 31
Huber in £, | 0.17 0.09 92 41 59 9 0.08 0.28 78 29 71 9
CO right HD right
L, - 10.2 9 100 0 70 - 13 9 100 0 70
L - 53 44 0 100 | 39 - 6.2 35 0 100 | 46
Lo - 32 26 - - 46 - 5.1 32 - - 56
HuberinC, | 1.5 2.3 44 96 4 27 1.5 3.5 29 95 5 32
Huberin £, | 0.18 0.08 92 43 57 9 0.07 0.16 87 27 73 9
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Table A.2: Parameters of the CO (y* = 0.05) and PD (y* = 0.003) ARMA models and Huberian variance of each parameter 7.
CO left
i 1 2 3 4 5
a; | —0,877 | -0,152 0,173 -0,215 0,073
¢ | —0,236 | -0,065 0,141 —0,098 -
A7 10.0021 0.0032 0.0015 0.0035 0.0026
A7 10.0012 0.0075 0.0056 0.0074 -
PD left
i 1 2 3 4 5
a | -0,712 | -0,022 | -0,018 | 0,181 | —0,060
¢ | —0,166 0,119 0,160 0,133 -
A7 10.0031 0.0022 0.0095 0.0015 0.0086
A7 10.0002 0.0005 0.0066 0.0024 -
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Table A.3: Coefficients 42 in the covariance matrix of the CO (y* = 0.05) and PD (y* = 0.003) ARMA models.
CO left

m 0 1 2 3 4 5 6 7 8 9 10
AN 1091|086 | 074 | 062 | 045 | 033 | 022 ] 0.19| 0.11 | 0.09
PD left
m 0 1 2 3 4 5 6 7 8 9 10
AN 11094 | 081|071 063 051 041 ] 029 | 0.18 | 0.10 | 0.08
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Figure A.3: Gaussian ARMA model of the left STS (red line) vs CO real signal (black line). ny = 45, nc = 25, Fit = 9.5%.
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Figure A.4: Huberian ARMA model of the left STS (red line) vs CO real signal (black line). iy = 5, n¢ = 4, Fit = 82.7%,y = 0.05, N = 253.
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Figure A.5: Huberian ARMA model of the left STS (red line) vs PD real signal (black line). ny = 5, nc = 4, Fit = 82.8%, y = 0.003, N = 288.
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