Christophe Corbier 
email: christophe.corbier@univ-st-etienne.fr
  
Mohamed El Badaoui 
  
Hector Manuel 
  
Romero Ugalde 
  
  
  
Huberian Approach for Reduced Order ARMA Modeling of Neurodegenerative Disorder Signal

Keywords: Reduced order ARMA model, Gait signal, Huberian function, Tuning function, L 1 contribution, 10 Neurodegenerative disease

The purpose of this paper is to address the question of the existence of auto regressive moving average (ARMA) models with reduced order for neurodegenerative disorder signals by using Huberian approach. Since gait rhythm dynamics between Parkinson's disease (PD) or Huntington's disease (HD) and healthy control (CO) differ, and since the stride interval presents great variability, we propose a different ARMA modeling approach based on a Huberian function to assess parameters. Huberian function as a mixture of L 2 and L 1 norms, tuned with a threshold γ from a new curve, is chosen to deal with stride signal disorders. The choice of γ is crucial to ensure a good treatment of NO and allows to reduce the model order. The disorders induce disturbances in the classical estimation methods and increase of the number of parameters of the ARMA model. Here, the use of the Huberian function reduces the number of parameters of the estimated models leading to a disease transfer function with low order for PD and HD. Mathematical approach is discussed and experimental results based on a database containing 16 CO, 15 PD, and 19 HD are presented.

Introduction 12

This paper introduces a new parametric approach for the estimation problem of the reduced order auto regressive moving average (ROARMA) model of human gait rhythm signal [START_REF] Corbier | ARMA Modeling and Nonparametric Probability Density Function of Gait Signal Using L 2 -L 1 estimator in Patients with Neuro-Degenerative Disease[END_REF]. ARMA system identification is a well-defined problem in several science and engineering areas such as speech signal processing, adaptive filtering, radar Doppler processing or biomechanics. There exists different methods to deal with the ARMA estimation problem. Based on the fractional signal processing approach, Chaudhary et al [START_REF] Chaudhary | Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms[END_REF] proposes a fractional least mean square (LMS) algorithm for parameter estimation of Hammerstein nonlinear ARMA system with exogenous noise. This algorithm has still been used in other studies [START_REF] Aslam | A new adaptive strategy to improve online secondary path modeling in active noise control system using 398 fractional signal processing approach[END_REF] [41] [START_REF] Chaudhary | Identification of input nonlinear control autoregressive systems using fractional 410 signal processing approach[END_REF]. Another approach uses a two-stage fractional LMS identification algorithm for parameter estimation of controlled ARMA (CARMA) systems [START_REF] Raja | Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA 448 systems[END_REF]. The main idea is to use fractional LMS identification (FLMSI) and two-stage FLMSI (TS-FLMSI) algorithms for CARMA models which are decomposed into a system and noise models. Based on robust estimation, Chakhchoukh [START_REF] Chakhchoukh | A new robust estimation method for ARMA Models[END_REF] introduces a new robust method to estimate the parameters of a Gaussian ARMA model contaminated with outliers [START_REF] Hadi | Detection of outliers[END_REF]. This method makes use of a median and is termed ratio-of-medians estimator (RME). Among the problems of ARMA identification, the model order estimation is crucial. Al-Qawasmi et al [START_REF] Al-Qawasmi | A robust ARX and ARMA model order estimation via pivot-neighbors comparisons[END_REF] propose a new technique for model to estimate order in a general ARMA process based on a rounding approach. Most of the time, these estimation procedures are performed by the implicit assumption that the processes are Gaussian [START_REF] Ran | Self-tuning distributed measurement fusion Kalman estimator for multi-channel ARMA signal[END_REF]. However, most real world signals are non-Gaussian and different methods such as higher order statistics are used [START_REF] Al-Smadi | A least-squares based algorithm for identification of non-gaussian ARMA models[END_REF] [START_REF] Roy | Estimation of regression parameters in the presence of outliers in the response[END_REF]. Moreover, these methods are based on the assumption that the signal does not contain outliers or a low density of outliers less than 1%. A reference paper in a robust estimation framework uses Huberian function for ARMA models [START_REF] Muler | Robust estimation for ARMA models[END_REF].

This work shows that the Huberian-estimates are closely related to those based on a robust filter, but they have two important advantages: they are consistent and the asymptotic theory is tractable. However, in this analysis, the residuals are computed so the effect of one outlier is limited to the period where it occurs. Moreover, experimental results only focus on the Monte Carlo simulations, not real measurements. A recent paper [START_REF] Zhu | LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises[END_REF] developed a systematic procedure of statistical inference for the ARMA model with unspecified and heavy-tailed heteroscedastic noises. The authors compare some estimators such that LSE, Huberian function and generalized Huberian function with outliers in a simulated ARMA process. In our framework, the measurements are real and contain natural outliers (NO) due to the neurodegenerative disorders of each disease.

Neurodegenerative disorders have a direct consequence on the human behavior by introducing NO in biomechanic time-signals. These points are crucial in the study of neurodegenerative diseases and provide information of the degree of disorder. Here, the Parkinson's disease (PD) and Huntington disease (HD) are studied through the stride time-signal (STS) of human gait rhythm, corresponding to the time from initial contact of when one foot to the subsequent contact of the same foot [START_REF] Hausdorff | Gait variability and basal ganglia disorders:stride-to-stride 430 variations of gait cycle timing in Parkinson's disease and Huntington's disease[END_REF]. Walking is one of the most fundamental and important activities of human that is strongly related to human health [START_REF] Scafetta | Understanding the complexity of human gait dynamics[END_REF]. This is a complex process which we have only recently begun to understand through the study of the interval data in a complete gait cycle [START_REF] Ren | Predictive modeling of human walking over a complete gait cycle[END_REF] [START_REF] Roemmich | Gait variability magnitude but not structure is altered in essential tremor[END_REF]. Gait rhythm can also be described in terms of swing and stance intervals corresponding to the time of one foot is in the air and the time of bilateral foot contact, respectively (Fig. A.1). Human locomotion is regulated by the central nervous system (CNS). In the CNS of the human body, motor neurons are the nerve cells that process sensory information and control voluntary muscle movement [START_REF] Ropper | Adams and Victor's principles of neurology. 8th[END_REF]. Serving as a pivotal part of the human motor system, the basal ganglia process motor impulses originating from the cerebral cortex and the brain stem, and also sends sensory information through the projecting loops in the CNS [START_REF] Sian | Parkinson's disease:a major hypokinetic basal ganglia disorder[END_REF]. Basal ganglia dysfunction affects motor function and may lead to balance impairment or altered gait rhythm. PD is a chronic and progressive hypokinetic disorder of the CNS induced by basal ganglia dysfunction. HD is a progressive neurodegenerative disorder with autosomal dominant inheritance. Analysis of gait parameters is very useful for a better understanding of the mechanisms of movement disorders, in particular for neurodegenerative diseases.

Different approaches exist to analyze gait rhythm time-signals, such as the kinematic aspect [START_REF] Martin | Predicting human walking gaits with a simple planar model[END_REF] [24], Gaussian approach [START_REF] Wu | Statistical analysis of gait maturation in children using nonparametric probability density function[END_REF] [23], Huberian framework [START_REF] Corbier | ARMA Modeling and Nonparametric Probability Density Function of Gait Signal Using L 2 -L 1 estimator in Patients with Neuro-Degenerative Disease[END_REF], and cyclostationary analysis [START_REF] Maiz | New order cyclostationary analysis and application to the detection and characterization 441 of a runner's fatigue[END_REF] [START_REF] Zacharia | Walking analysis: Empirical relation between kutosis 466 and degree of cyclostationary[END_REF]. Wu and Krishnan [START_REF] Wu | Statistical analysis of gait maturation in children using nonparametric probability density function[END_REF] developed a framework through Gaussian statistical analysis applied to PD, amyotrophic lateral sclerosis, and gait maturation in children. The main drawback of studies based on the Gaussian framework is the not well treatment of the NO in the time-signal. Indeed, during the 5-min walking period, every time the subjects reached the end of the hallway, they had to turn around, and finally they continued walking. The time-signal stride recorded during these walking turns should be treated as NO. The authors replaced these points by the median value of the stride interval time series, using the three-sigma rule, in order to avoid disturbance of the statistical moments. Unfortunately, these authors neglected relevant information about the time-signal dynamics, since these NO give capital information during the short phase of the walking turn. These subjects present difficulties to turn and it seems fundamental to consider these points. Therefore, Gaussian-based estimation cannot be applied.

Here we propose a reduced order ARMA modeling approach based on a Huberian function to assess parameters and experimental results are performed with STS real measurements of CO, PD and HD. Huberian function is a mixture of L 2 and L 1 norms with a threshold γ. The choice of γ is crucial to ensure a good treatment of NO and allows to reduce the model order. A large section in this paper discusses on the choice of γ using a new curve.

A relevant choice of γ in a new interval range ensures both convergence and consistency of the robust estimator.

Convergence is shown and a new method to assess the variance/covariance matrix of the estimator is proposed. This paper is organized as follows: Section 2 gives the Huberian mathematical context of the ARMA estimator. Experimental results based on a database containing 16 CO, 15 PD, and 19 HD are shown in Section 3. Conclusions and perspectives are drawn in Section 4.
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Huberian mathematical framework

76

This section presents the Huberian framework mathematical basis. The choice of the threshold in Huber's function is presented and discussed. Asymptotic convergence in law of the robust estimator is shown, considering the stochastic differentiability approach [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF] and the m-dependence context. A new method to assess the variance/covariance matrix of the estimator is proposed.

Huberian function and estimation criterion

Let (S, S, P) be a probability space and {X k } N k=1 a sequence of i.i.d.r.v's with values in S . Let Θ be a Borel

subset in R d and Γ a compact subset of R. Let ρ H γ : S × Θ × Γ → R be a symmetric function such that ρ H γ (• (θ, γ))
is measurable for each θ ∈ Θ and γ ∈ Γ. The estimator θH N is defined by a minimum of the form

N -1 N k=1 ρ H γ X k ( θH N , γ) = inf θ∈Θ,γ∈Γ N -1 N k=1 ρ H γ (X k (θ, γ)) (1) 
with

ρ H γ (X) =            X 2 2 for |X| ≤ γ γ |X| -γ 2 2 for |X| > γ (2) 
where γ is a threshold to be determined to improve efficiency, convergence, and stability of θH

N [22] [12]. Let us introduce two index sets in θ ∈ R d defined by ν 2 (θ, γ) = {k : |ε k (θ, γ)| ≤ γ} and ν 1 (θ, γ) = {k : |ε k (θ, γ)| > γ} such that card ν 2 (θ, γ) + card ν 1 (θ, γ) = N ∀θ ∈ D M , γ ∈ D γ
, where D M and D γ are compact subsets and M a model structure. Let M (θ) be a particular model corresponding to the parameter vector value θ. Let us define θ = θ γ . Let W N (θ, γ) be the estimation criterion of the parameter vector θ for a threshold γ > 0. We denote

s k (θ, γ) , k = 1, ..., N the sign function such that s k (θ, γ) = 1 for ε k (θ, γ) > γ, s k (θ, γ) = -1 for ε k (θ, γ) < -γ and s k (θ, γ) = 0 for |ε k (θ, γ)| < γ. Let ε k (θ, γ) = y k -ŷk|k-1 (θ, γ) = y k -ϕ T k (θ, γ
) θ be the prediction error where y k is 92 the process output, ŷk|k-1 (θ, γ) the prediction model and ϕ k (θ, γ) ∈ R d the regressor vector. This criterion contains a L 2 part to treat small prediction errors and a L 1 part to deal with NO. Consider a batch of data from the system ZN = y 1 ...y N . Roughly speaking, we have to determine a mapping from the data ZN to the set

D M × D γ ZN -→ θH N = θH N γ ∈ D M × D γ (3) 
The robust estimation criterion can be written as

W N (θ, γ) = 1 N k∈ν 2 (θ,γ) ε 2 k (θ, γ) 2 + γ N k∈ν 1 (θ,γ)       |ε k (θ, γ)| - γs 2 k (θ, γ) 2       (4) Let us denote X 2 = i x 2 i and |X| = i |x i | where X = [x 1 ...x N ] T .
We define the following rule: x ν i ,k = x k for all k ∈ ν i (θ, γ) and x ν i ,k = 0 otherwise. We define the sparse matrix in R N×d over ν i (θ, γ) (i = 1, 2) respectively given by

Φ ν i (θ, γ) =                    ϕ T ν i ,1 (θ, γ) ... ϕ T ν i ,N (θ, γ)                    , ϕ ν i ,k (θ, γ) =            ϕ k (θ, γ) for k ∈ ν i (θ, γ) 0 otherwise (5)
On the other hand, we define Y ν i = y ν i ,1 ...y ν i ,N

T the process output vector and S ν 1 = s ν 1 ,1 ...s ν 1 ,N T the sign vector.

The estimation criterion to be minimized is then given by

W N (θ, γ) = 1 2N Y ν 2 -Φ ν 2 (θ, γ) θ 2 + 1 N γ Y ν 1 -Φ ν 1 (θ, γ) θ - γ 2 2 S ν 1 2 (6) 
This minimization algorithm is applied to yield a minimum corresponding to a given robust estimator for an 102 appropriated choice of the threshold γ. In the sequel, we show this choice from two joint approaches. 

δt k = H 0 (q) e k ( 7 
)
where H 0 (q) is the noise filter and e k , k = 1...N a random variables sequence with zero mean and variances λ. The 111 ARMA model set is parametrized by a d-dimensional real-valued parameter vector θ, i.e., 112 δt k = H (q, θ) e k = C (q, θ) A (q, θ) e k [START_REF] Broersen | The quality of models for ARMA processes[END_REF] with

A (q, θ) = 1 + n A i=1 a i q -i , C (q, θ) = 1 + n C i=1 c i q -i and θ = a 1 ...a n A c 1 ...c n C T . Moreover, q -1 is the lag operator such that q -l δt k = δt k-l , l ∈ N.
In Huber's framework, the prediction errors depends on θ and γ. We write

ε k (θ, γ) = δt k -δt k (θ, γ) where δt k (θ, γ) = ϕ T k (θ, γ) θ is the prediction model. The regressor is ϕ k (θ, γ) = -δt k-1 ... -δt k-n A ε k-1 (θ, γ) ...ε k-n C (θ, γ) T and ψ k (θ, γ) is the gradient with respect to θ of δt k (θ, γ) given by ψ k (θ, γ) = 1 C(q,θ) ϕ k (θ, γ), meaning that ψ k (θ, γ)
is obtained by filtering the vector ϕ k (θ, γ) through a stable linear filter.

Choice of γ

Location of γ

In the prediction error procedure, there appears an inner feedback loop to compute the pseudolinear prediction to be minimized. The presence of NO in the process output y k induces large values in ε k (θ, γ). A convenient choice of γ improves the robustness by reducing the effects of these large deviations. In the literature, γ is chosen in the 124 interval range [START_REF] Ahn | Long-range correlations in stride intervals may emerge from non-chaotic walking dynamics[END_REF][START_REF] Aslam | A new adaptive strategy to improve online secondary path modeling in active noise control system using 398 fractional signal processing approach[END_REF] for linear models. However, this choice does not ensure convergence, consistency nor stability 125 of θH N . Accordingly, the probability density function (pdf) of ε k (θ, γ) is strongly disturbed and presents heavy tails.

It is shown that Huber's estimators are not always robust and efficient when γ ∈ [START_REF] Ahn | Long-range correlations in stride intervals may emerge from non-chaotic walking dynamics[END_REF][START_REF] Aslam | A new adaptive strategy to improve online secondary path modeling in active noise control system using 398 fractional signal processing approach[END_REF]. In a recent paper [START_REF] Corbier | Extension of the Tuning Constant in the Hubers Function for Robust Modeling of Piezoelectric Systems[END_REF] 127 on piezoelectric-systems, the use of small values of γ in [0.01, 0.5] led to derive relevant output error models. In 128 this work, even though the prediction errors were disturbed by numerous NO, the choice of the small values of γ 129 around 0.05 allowed to obtain interesting results in the frequency interval range for the vibration drilling control.
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In the sequel, we introduce a new curve ensuring a reduction of the bias and we show the choice of γ in low values.

131

In [START_REF] Corbier | Contribution a l'estimation robuste de modeles dynamiques: application a la commande de systemes dynamiques complexes, 414 Arts et Metiers ParisTech[END_REF] (chapter 6, p.130), we studied the quality of the robustness through influence function [START_REF] Hampel | Robust statistics: the approach based on influence function[END_REF] 

F N ∈P Φ N (ω) θH N -θ * = b ω N (k) ≤ κN f ω (γ) |L p | (9) 
where κ N is independent of γ, θ * is the true parameter, P Φ N (ω) is the corrupted distribution model and F N the contaminated Gaussian. An approximation can be written as f ω (γ) ≈ 0.034γ 5 -0.316γ 4 + 1.113γ 3 -1.773γ 2 + 1.088γ -0.002. From a linearization of f ω (γ) in C γ and E γ , in absolute value, the slope in E γ is six times as important as that of the slope in C γ . Accordingly, the sensitivity to reduce the influence of high NO in E γ is six times as important. Therefore, this new curve allows to locate a new investigation interval of γ in low values in 141 order to get low values of f ω (γ) to decrease the effects of NO.

Convergence domain of γ

Consider the differential of W N (θ, γ) with respect to θ and γ given by

dW N (θ, γ) = ∂ θ W N (θ, γ)dθ + ∂ γ W N (θ, γ)dγ (10) 
where ∂ X is the derivative with respect to X. In detail

∂ θ W N (θ, γ) = -1 N k∈ν 2 (θ,γ) ψ k (θ, γ)ε k (θ, γ) - γ N k∈ν 1 (θ,γ) ψ k (θ, γ)s k (θ, γ) (11) 
with

ψ k (θ, γ) = -∂ θ ε k (θ, γ) and ∂ γ W N (θ, γ) = 1 N k∈ν 2 (θ,γ) φ k (θ, γ)ε k (θ, γ) + 1 N k∈ν 1 (θ,γ) |ε k (θ, γ)| -γs 2 k (θ, γ) + γφ k (θ, γ)s k (θ, γ) - γ 2 2 φ * k (θ, γ)s k (θ, γ) (12) 
with

φ k (θ, γ) = ∂ γ ε k (θ, γ) and φ * k (θ, γ) = ∂ γ s k (θ, γ). Let us define Ψ (θ, γ) = dW N (θ,γ) d θ = Ψ (θ, γ) ∂ γ W N (θ, γ) T , where Ψ (θ, γ) ∈ R d+1 and Ψ (θ, γ) = ∂ θ W N (θ, γ) named Ψ-function.
We seek an optimal value of γ such that W N (θ, γ) presents a global minimum with probability one (w.p.1) as

N 149 tends to infinity, denoted W(θ, γ) = lim N→∞ EW N (θ, γ).
This involves that the solution of Ψ θH N , γ = 0 is unique.

However, it may happen that W(θ, γ) does not have a unique global minimum, then we define two compact subsets

D θ c and D γ c such that θH N → D θ c w.p.1 as N → ∞ and γ → D γ c . We then have θH N = θH N γ → D θ c × D γ c w.p.1 as N → ∞ (13) 
If we denote Main properties of the robust estimator related to the covariance matrix and asymptotic normality of

D θγ c = D θ c × D γ c then D θγ c = argmin θ∈D M γ∈D γ W(θ, γ) = θ ∈ D M , γ ∈ D γ W(θ, γ) = min θ ′ ∈D M γ ′ ∈D γ W(θ ′ , γ ′ ) (14) 
√ N θH N -θ *
are given. In the sequel we assume that γ converges to γ * satisfying the conditions of theorem 1. Hence we suppose that the set D θγ c consists only one point θ * = θ * γ * . We shall work with the expression W N (θ, γ * ), θ ∈ D M and the derivatives will be carried out with respect to θ and will be denoted ∂ θ W N (θ, γ * ) and ∂ 2 θθ W N (θ, γ * ) for the first and second derivatives respectively.

ML robust estimator

The robust estimator θH N is a maximum likelihood estimator (MLE) satisfying ρ H γ (X, γ) ∼ -log f H (X, γ) where

f H (X, γ) is the pdf defined by f H (X, γ) =            f L 2 (X, γ) = C (γ) e -X 2 2φ 2 for |X| ≤ γ f L 1 (X, γ) = C (γ) e -γ|X| φ 2 + γ 2 2φ 2
for |X| > γ ( 16)

C (γ) = 1 2(K 1 (γ)+K 2 (γ)) with              K 1 (γ) = e γ 2 2φ 2 φ 2 γ Γ 1, γ 2 φ 2 for |X| > γ K 2 (γ) = φ √ 2 Γ 1 2 -Γ 1 2 , γ 2 2φ 2 for |X| ≤ γ (17) 
Γ (a) and Γ (a, X) are respectively the complete and incomplete Euler's gamma functions. The parameter φ is the 168 standard deviation of f H and we can verify that ∀X ∈ R, f H (X, γ) ≥ 0 and R f H (X, γ) dX = 1, which ensure that f H is a pdf.

Asymptotic covariance matrix of θH N in ARMA model

Since θH

N minimizes W N (θ, γ * ) then ∂ θ W N ( θH N , γ * ) = 0.
Expanding this expression into Taylor's series around

172 θ * gives θH N -θ * = -∂ 2 θθ W(θ * , γ * ) -1 ∂ θ W N (θ * , γ * ) ( 18 
)
where ∂ θ W N (θ * , γ * ) is given by [START_REF] Chaudhary | Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms[END_REF] and

∂ 2 θθ W(θ * , γ * ) = lim N→∞ E∂ 2 θθ W N ( θH N , γ *
) is the symmetric non-negative definite d × d limit Hessian matrix with

∂ 2 θθ W N (θ, γ * ) = -1 N k∈ν 2 (θ,γ * ) ∂ θ ψ T k (θ, γ * )ε k (θ, γ * ) -ψ k (θ, γ * )ψ T k (θ, γ * ) - γ N k∈ν 1 (θ,γ * ) ∂ θ ψ T k (θ, γ * )s k (θ, γ * ) (19) 
See proof in ( [START_REF] Corbier | Contribution a l'estimation robuste de modeles dynamiques: application a la commande de systemes dynamiques complexes, 414 Arts et Metiers ParisTech[END_REF], chap.4 p.63). From [START_REF] Hadi | Detection of outliers[END_REF] and for N sufficiently large, the asymptotic covariance matrix of the 176 robust estimator is given by

cov θH N ∼ ∂ 2 θθ W(θ * , γ * ) -1 Q (θ * , γ * ) ∂ 2 θθ W(θ * , γ * ) -1 N = P (θ * , γ * ) N ( 20 
)
where

Q (θ * , γ * ) = lim N→∞ NE∂ θ W N (θ * , γ * )∂ θ W N (θ * , γ * ) T is named Q-matrix.

Remark

For the user, having processed N data points and determined θH N and γ * , we may use

cov θH N = ∂ 2 θθ W N ( θH N , γ * ) -1 Q θH N , γ * ∂ 2 θθ W N ( θH N , γ * ) -1 N (21) 8 
as an estimate of P(θ * ,γ * ) N .

ARMA models involve a pseudolinear prediction model in δt k (θ, γ). On the other hand [START_REF] Hampel | Robust statistics: the approach based on influence function[END_REF] is not equal to zero. The main drawback is the infinite sum of Taylor's expansion of ψ k (θ, γ * ) and ∂ θ ψ T k (θ, γ * ), increasing the computational cost of the estimated covariance matrix [START_REF] Hausdorff | Gait variability and basal ganglia disorders:stride-to-stride 430 variations of gait cycle timing in Parkinson's disease and Huntington's disease[END_REF].

ψ k (θ, γ) = 1 C(q,θ) ϕ k (θ, γ) meaning that the matrix ∂ θ ψ T k (θ, γ * ) in
ψ k θH N , γ * = ∞ m=0 A N m ϕ k-m ( θH N , γ * ), A N m ≤ 1 ( 22 
)
with

A N m ≈ -2 F (n C /2) k=1 μk ρ m-1 k cos Ω m k ,
where 

Ω m k = θk + (m -1) φk if n C is an even number and Ω m k = lπ, l = {m, m -1, 1, 0} if n C is an odd number. F (n) is
Φ e jω , θ = 1 - 1 C e jω , θ = c 1 e jω(n C -1) + ... + c n C e jωn C + c 1 e jω(n C -1) + ... + c n C ( 23 
)
We show that A N m decrease like ξ 2 (m) = β 1 m 2 + β 2 m 4 for m ≥ 1 where β 1 , β 2 are determined with well chosen values of m. We define the large order L to limit the development of ( 22) by the condition ξ 2 (L) = τ where τ is a threshold corresponding to 1% of max A N m . The large order is then given by

L = F           1 2τ        β N 1 2 + 4β N 2 τ + β N 1                  (24) 
Moreover we show that sup 

k ψ k θH N , γ * -ψ L k θH N , γ * ≤ C (L)
ψ L k θH N , γ * = L m=0 A N m ϕ k-m ( θH N , γ * ) ( 25 
)
Analogous approach can be made for ∂ θ ψ T k ( θH N , γ * ). Indeed, its limited Taylor's development has the same large 196 order L and we show that sup

k ∂ θ ψ k ( θH N , γ * ) T -∂ θ ψ L k ( θH N , γ * ) T ∞ ≤ C L 2 .
We then get

∂ θ ψ L k ( θH N , γ * ) T = C k θH N , γ * + C T k θH N , γ * (26) 
where the matrix

C k θH N , γ * ∈ R d×d is C k θH N , γ * =                                                  O n A ×d -------------- - L m=0 L l=0 A N m A N l ϕ T k-1-m-l ( θH N , γ * ) ... ... - L m=0 L l=0 A N m A N l ϕ T k-n C -m-l ( θH N , γ * )                                                  (27) 
In the following section, proof of the asymptotic convergence in law of √ N θH Nθ * is considered. This requires the stochastic differentiability and m-dependence approaches. to the signal models of ε k (θ * , γ * ) and ψ k (θ * , γ * ).

Signal models

Assume Z∞ = lim N→∞ ZN the data set and consider Ω j (θ * , γ * ) j∈ν 1 (θ * ,γ * ) , φ j (θ * , γ * ) j∈ν 1 (θ * ,γ * ) the NO in ε k (θ * , γ * ) and ψ k (θ * , γ * ) respectively. We can write

ε k (θ * , γ * ) = m≥0 β k,m (θ * , γ * ) e k-m k∈ν 2 (θ * ,γ * ) + j Ω j (θ * , γ * ) δ k, j k∈ν 1 (θ * ,γ * ) ( 28 
)
ψ k (θ * , γ * ) = m≥0 α k,m (θ * , γ * ) e k-m k∈ν 2 (θ * ,γ * ) + j φ j (θ * , γ * ) δ k, j k∈ν 1 (θ * ,γ * ) (29) 
for some filters

α k,m (θ * , γ * ) , β k,m (θ * , γ * ) = f k,m (θ * , γ * )
Here δ t, j is the Kronecker function and H1:

1. {e k } is a sequence of independent rv's with zero mean values and bounded moments of order 4 + δ, for δ > 0. 

Stochastic differentiability

In the literature, the standard asymptotic normality results for MLE requires that (4) be twice continuously 217 differentiable, which is not the case here by the presence of the sign function. There exists, however, asymptotic 218 normality results for non-smooth functions and we will hereafter use the one proposed by Newey and McFadden 219 [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF] and Andrews [START_REF] Andrews | Large sample estimation and hypothesis testing[END_REF]. The basic insight of their approaches is that the smoothness condition of (4), W N (θ, γ) can be replaced by a smoothness of its limit, which in the standard maximum likelihood case corresponds to the EΨ k (θ, γ) is often differentiable in θ, even though Ψ k (θ, γ) is not.

221 expectation -Eln f H (ε k (θ, γ)) = W(θ, γ),

m-dependence

Let us consider m a non-negative interger, then a sequence

X v of random variables is m-dependent if X 1 , X 2 , ..., X s is independent of X k , X k+1 , ... provided k -s > m [32] [38].
Here, this approach is applied since the terms in , then S N is asymptotically normal distributed with zero mean and covariance matrix Q = lim N→∞ ES N S T N . See [START_REF] Orey | A central limit theorem for m-dependent random variables[END_REF] and [START_REF] Rosen | On a central limit theorem for sums of dependent random variables[END_REF].

Lemma 2

Let S N = Z m,N + X m,N , m, N = 1, 2, ... such that

• EX 2 m,N ≤ C m , lim m→∞ C m = 0. • P Z m,N ≤ z = F m,N (z).
Then lim

m→∞ lim N→∞ P Z m,N ≤ z = F(z).
See [START_REF] Diananda | Some probability limit theorems with statistical applications[END_REF] and [START_REF] Anderson | On asymptotic distributions of estimated parameters of stochastic difference equation[END_REF].

To prove the asymptotic normality of 

√ N θH N -θ * ,
√ N θH N -θ * d → N (0, P (θ * , γ * )) ( 32 
)
where P (θ * , γ * ) is the asymptotic covariance matrix given by [START_REF] Hausdorff | Gait variability and basal ganglia disorders:stride-to-stride 430 variations of gait cycle timing in Parkinson's disease and Huntington's disease[END_REF].

In order to do so, all the following assumptions hold. Suppose W N ( θH

N , γ * ) ≥ sup θ∈D M ,γ * ∈D γ c W N (θ, γ * ) -o p N -1 , θH N prob → θ * , and (i) W(θ, γ * ) is maximized on D M at θ * (ii) θ * is an interior point of D M (iii) W(θ, γ) is twice differentiable at (θ * , γ * ) with nonsingular second derivative ∂ 2 θθ W N (θ, γ) (iv) √ N (E∂ θ W N (θ, γ * )) θH N d → N (0, Q (θ * , γ * )) (v) For any δ N → 0, sup θH N -θ * ≤δ N ,γ * →D γ c RN ( θH N ,γ * ) 1+ √ N θH N -θ * prob → 0 with the remainder RN (θ, γ * ) = √ N W N (θ, γ * ) -W N (θ * , γ * ) -(∂ θ W N (θ, γ * )) θ * (θ -θ * ) -W(θ, γ * ) + W(θ * , γ * ) θ -θ * (33) then √ N θH N -θ * d → N (0, P (θ * , γ * )).
The proof is given in Appendix A. The Huberian approach in E γ leads to relevant results. Indeed, this remains in agreement with the formal point of k = 52, k = 113, k = 190 and k = 247 with high levels corresponding to the turn around during the walking period.

Experimental results

Experimental

292

In this phase, the classical estimators are highly disturbed and achieve sometimes the leverage point [START_REF] Huber | Robust statistics. 2th[END_REF]. We can 293 notice the good behavior of the Huberian reduced order ARMA model during this phase. Equation [START_REF] Ran | Self-tuning distributed measurement fusion Kalman estimator for multi-channel ARMA signal[END_REF] shows the 294 reduced order ARMA model of left PD for γ * = 0.003.

δt k = 0, 712δt k-1 + 0, 022δt k-2 + 0, 018δt k-3 + 0, 181δt k-4 + 0, 060δt k-5 + e k -0, 236e k-1 -0, 065e k-2 + 0.141e k-3 -0, 098e k-4 ( 34 
)
The limited number of ARMA parameters contradicts conclusions in [START_REF] Hausdorff | Is walking a random walk? Evidence for long-range correlations in stride interval of human gait[END_REF] and recently in [START_REF] Ahn | Long-range correlations in stride intervals may emerge from non-chaotic walking dynamics[END_REF]. These studies showed a stride intervals of normal human walking which exhibit long-range temporal correlations. They presented a highly simplified walking model by reproducing the long-range correlations observed in stride intervals without complex peripheral dynamics. Based on fractal approach they showed an important point of view related to the long-range memory effect of human walking. Our new approach shows a short-range memory effect for normal and disease human walking. It remains to investigate this memory effect and try to interpret in physiological terms the correlations with the CNS. 

Conclusion 304

The main purpose of this paper has been to present a reduced order ARMA estimation method based on a robust approach using Huberian function for the neurodegenerative disorder signal modeling. A new approach has been presented to choose the threshold in Huberian function, allowing a best treatment of the natural outliers contained in the signals. The reduced number of parameters is due to a relevant choice of this threshold in a new interval range. Convergence and consistency properties of the robust estimator have been shown including stochastic differentiability and m-dependence approaches. An estimations campaign has been conducted from STS real measurements and it has been shown the relevance to use a Huberian function with DOF to tune its threshold in order to assess a reduced order ARMA model. However, it remains to characterize more appreciably the diseases to differentiate the neurodegenerative disorders. Accordingly, future work will focus on mixed L p estimator [START_REF] Corbier | Mixed L p -estimators Variety for Model Order Reduction in Control Oriented System Identification[END_REF] 313 to reduce the number of parameters providing new indicators and will investigate the memory effect of human walking.

315

Appendix A. Proof of the theorem 2

(i): From Eln f H (ε k (θ, γ * )), we can deduce that θ * = argmax θ∈D M ,γ * ∈D γ c        -1 N N k=1 ρ H γ (ε k (θ, γ * ))        , as N → ∞ (A.1)
which is equivalent to

argmin θ∈D M ,γ * ∈D γ c        1 N N k=1 ρ H γ (ε k (θ, γ * ))        , as N → ∞ (A.2) Since W (θ, γ * ) = E ρ H γ (ε k (θ, γ * )) , then W (θ, γ * ) is maximized on D M at θ * .
(ii): The interior condition is equivalent to the assumption θ * ∈ D θ c where Ďθ c is the interior of D M .

(iii): Using the stochastic differentiability condition,

E∂ 2 ξξ ρ H γ (ε k (θ * , γ * )) = ∂ 2 ξξ W (θ * , γ * ) is invertible as N → ∞.
(iv): Using the mean value theorem, we get

E∂ 2 ξξ W N (ξ, γ * ) θN θH N -θ * = (E∂ θ W N (θ, γ * )) θH N -(E∂ θ W N (θ, γ * )) θ * (A.3) with θH N ≤ θN ≤ θ * . For N → ∞, θN → θ * , (E∂ θ W N (θ, γ)) θ * = 0 and lim N→∞ E∂ 2 ξξ W N (ξ, γ) θN → ∂ 2 θθ W (θ * , γ * ). One has √ N θH N -θ * = ∂ 2 θθ W (θ * , γ * ) -1 √ N (E∂ θ W N (θ, γ * )) θH N (A.4)
The asymptotic normality of √ N θH Nθ * only depends on the asymptotic normality of

√ N (E∂ θ W N (θ, γ * )) θH N . Let us denote ∂ θ W N (θ, γ) = -1 N k∈ν 2 (θ,γ) ψ k (θ, γ)ε k (θ, γ) -γ N k∈ν 1 (θ,γ) ψ k (θ, γ)s k (θ, γ) = 1 N N k=1
Ψk (θ, γ). Therefore, 

- √ N (E∂ θ W N (θ, γ * )) θH N = √ N        1 N N k=1 Ψk θH N , γ * -E Ψk θH N , γ *        - √ N 1 N N k=1 Ψk θH N , γ * that is = 1 √ N N k=1 Ψk θH N , γ * -E Ψk θH N , γ * - 1 √ N N k=1 Ψk θH N , γ * (A.5) Let us denote S N (θ, γ * ) = 1 √ N N k=1 Ψk (θ, γ * ) -E Ψk (θ, γ * ) , then - √ N (E∂ θ W N (θ, γ * )) θH N = S N θH N , γ * -S N (θ * , γ * ) + S N (θ * , γ * ) - 1 √ N N k=1 Ψk θH N , γ * (A.
N→∞ P ∆S θH N , θ * , γ * > α ≤ lim N→∞ P ∆S θH N , θ * , γ * , ρ H γ (ε k ( θH N ), γ * ) -ρ H γ (ε k (θ * ), γ * ) ≤ δ + lim N→∞ P ρ H γ (ε k ( θH N ), γ * ) -ρ H γ (ε k (θ * ), γ * ) > δ (A.7) ≤ lim N→∞ P        sup θ∈D M ,γ * ∈D γ c |S N (θ, , γ * ) -S N (θ * , γ * )| > α        < β (A.8)
where the second inequality uses θH N prob → θ * and the third uses the stochastic equicontinuity. Accordingly, for a 334 given threshold γ * , this shows that for N tends to infinity, we have in law

L √ N θH N -θ * ∼ N→∞ L (S N (θ * , γ * )) (A.9) with S N (θ * , γ * ) = 1 √ N N k=1 d dθ ρ H γ (ε k (θ, γ * ) -E d dθ ρ H γ (ε k (θ, γ * ) θ * (A.10)
The purpose is to prove that S N (θ * , γ * ) is a normal asymptotic distribution. For this, we show that the terms of 337 S N (θ * , γ * ) are independent. As described above, we use the m-dependence approach to show the asymptotic normal 338 behavior of S N (θ * , γ * ). Let us consider the following short expressions:

ε ν i ,k (θ * , γ * ) = ε * i,k , f t,k (θ * , γ * ) = f * t,k .
We split ε * 2,t and ψ * 2,t into one part that satisfies m-dependence conditions among its terms and one part that is small.
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We then have

ε * 2,t = ε * ,m 2,t + ε * ,m 2,t + ε * 1,t = m k=0 β * t,k e t-k + ∞ k=m+1 β * t,k e t-k + j Ω * j δ K t, j (A.11)
where m is an integer with Ω * j = Ω j (θ * , γ * ) and δ K t, j is the Kronecker's function. Analogously, we have

342 ψ * 2,t = ψ * ,m 2,t + ψ * ,m 2,t + ψ * 1,t = m k=0 α * t,k e t-k + ∞ k=m+1 α * t,k e t-k + j φ * j δ K t, j (A.12)
S N (θ * , γ * ) can be written as

S N (θ * , γ * ) = Z m,N (θ * , γ * ) + X m,N (θ * , γ * ) with Z m,N (θ * , γ * ) = 1 √ N N t=1 d dθ ρ H γ (ε m t (θ, γ * )) -E d dθ ρ H γ (ε m t (θ, γ * )) θ * (A.13) X m,N (θ * , γ * ) = 1 √ N N t=1 d dθ ρ H γ (ε t (θ, γ * )) -ρ H γ (ε m t (θ, γ * )) θ * -E d dθ ρ H γ (ε t (θ, γ * )) -ρ H γ (ε m t (θ, γ * )) θ * (A.14)

Part1:

From (A.13) in Z m,N (θ * , γ * ) and using the Lyapunov's condition, we obtain

E d dθ ρ H γ (ε m t (θ, γ * )) -E d dθ ρ H γ (ε m t (θ, γ * )) δ+2 ≤ 2 δ+1 E d dθ ρ H γ (ε m t (θ, γ * )) δ+2 + E d dθ ρ H γ (ε m t (θ, γ * )) δ+2 (A.15) ≤ 2 δ+2 E d dθ ρ H γ (ε m t (θ, γ * )) δ+2 (A.16) with d dθ ρ H γ (ε m t (θ, γ * )) δ+2 ≤ ( ψ * ,m 2,t ε * ,m 2,t + γ * ψ * ,m 1,t ) δ+2 ≤ 2 δ+1 ( ψ * ,m 2,t δ+2 ε * ,m 2,t δ+2 + (γ * ) δ+2 ψ * ,m 1,t δ+2 ) (A.17)
We deduce

2 δ+2 E d dθ ρ H γ (ε m t (θ, γ * )) δ+2 ≤ 2 2δ+3 E ψ * ,m 2,t δ+2 ε * ,m 2,t δ+2 + 2 2δ+3 (γ * ) δ+2 E ψ * ,m 1,t δ+2 (A.18)
Using Schwarz's inequality

2 δ+2 E d dθ ρ H γ (ε m t (θ, γ * )) δ+2 ≤ 2 2δ+3 E ψ * ,m 2,t 2δ+4 E ε * ,m 2,t (2δ+4) 1 2 
+ 2 2δ+3 (γ * ) δ+2 E ψ * ,m 1,t 2δ+4 1 2 (A.19) 
The first and second terms on the right hand side of (A. [START_REF] Hampel | Robust statistics: the approach based on influence function[END_REF]) are respectively denoted A * and B * .

• For A * : in ν 2 , for all t and θ * , ε * ,m 2,t ≤ γ * . Therefore

E ψ * ,m 2,t 2δ+4 ≤ 2 2δ+3 E |e t-k | 2δ+4        m k=0 µ k        2δ+4 (A.20)
From H1, we have E ψ 

E 1 √ N d dθ ρ H γ (ε m t (θ, γ * )) -E d dθ ρ H γ (ε m t (θ, γ * )) δ+2 θ * ≤ C N 1+ δ 2 (A.21) Then lim N→∞ N t=1 E 1 √ N d dθ ρ H γ (ε m t (θ, γ * )) -E d dθ ρ H γ (ε m t (θ, γ * ))

Part2:

In X m,N (θ * , γ * ), we can write

dρ H γ (ε t (θ, γ * )) dθ - dρ H γ (ε m t (θ, γ * )) dθ = ∂ρ H γ (ε t (θ, γ * )) ∂ε t (θ, γ * ) ∂ε t (θ, γ * ) ∂θ - ∂ρ H γ (ε t (θ, γ * )) ∂ε t (θ, γ * ) ∂ε m t (θ, γ * ) ∂θ + ∂ρ H γ (ε t (θ, γ * )) ∂ε t (θ, γ * ) ∂ε m t (θ, γ * ) ∂θ - ∂ρ H γ (ε m t (θ, γ * )) ∂ε m t (θ, γ * ) ∂ε m t (θ, γ * ) ∂θ (A.23) Therefore dρ H γ (ε t (θ, γ * )) dθ - dρ H γ (ε m t (θ, γ * )) dθ = ∂ρ H γ (ε t (θ, γ * )) ∂ε t (θ, γ * ) ∂ε t (θ, γ * ) ∂θ - ∂ε m t (θ, γ * ) ∂θ +        ∂ρ H γ (ε t (θ, γ * )) ∂ε t (θ, γ * ) - ∂ρ H γ (ε m t (θ, γ * )) ∂ε m t (θ, γ * )        ∂ε m t (θ, γ * ) ∂θ (A.24)
Using mean value theorem, we get

∂ρ H γ (ε t (θ, γ * )) ∂ε t (θ, γ * ) - ∂ρ H γ (ε m t (θ, γ * )) ∂ε m t (θ, γ * ) = ∂ 2 ρ H γ (ξ t (θ, γ * )) ∂ξ t (θ, γ * ) 2 (ε t (θ, γ * ) -ε m t (θ, γ * )) (A.25) Hence dρ H γ (ε t (θ, γ * )) dθ - dρ H γ (ε m t (θ, γ * )) dθ ≤ ∂ρ H γ (ε t (θ, γ * )) ∂ε t (θ, γ * ) ∂ε t (θ, γ * ) ∂θ - ∂ε m t (θ, γ * ) ∂θ + ∂ 2 ρ H γ (ξ t (θ, γ * )) ∂ξ t (θ, γ * ) 2 ε t (θ, γ * ) -ε m t (θ, γ * ) ∂ε m t (θ, γ * ) ∂θ (A.26)
From regularity conditions C1 in (see [START_REF] Ljung | Convergence analysis of parametric identification methods[END_REF]) given by 367

• ∂ρ(ε) ∂ε ≤ C |ε|, θ ∈ D M , all t. • ∂ρ(ε) ∂θ ≤ C |ε| 2 , θ ∈ D M , all t. • ∂ 2 ρ(ε) ∂ε 2 ≤ C.
We then have

dρ H γ (ε t (θ, γ * )) dθ - dρ H γ (ε m t (θ, γ * )) dθ ≤ C |ε t (θ, γ * )| ∂ε t (θ, γ * ) ∂θ - ∂ε m t (θ, γ * ) ∂θ +C ε t (θ, γ * ) -ε m t (θ, γ * ) ∂ε m t (θ, γ * ) ∂θ (A.27)
In detail

∂ε t (θ, γ * ) ∂θ - ∂ε m t (θ, γ * ) ∂θ = ψm t (θ, γ * ) ≤ ∞ k=m+1 α * t,k |e t-k | ≤ ∞ k=m+1 µ k |e t-k | (A.28) and ε t (θ, γ * ) -ε m t (θ, γ * ) = εm t (θ, γ * ) ≤ ∞ k=m+1 β * t,k |e t-k | ≤ ∞ k=m+1 µ k |e t-k | (A.29) Expression (A.27) becomes dρ H γ (ε t (θ, γ * )) dθ - dρ H γ (ε m t (θ, γ * )) dθ ≤ C        ∞ k=m+1 µ k |e t-k |        |ε t (θ, γ * )| + ψ m t (θ, γ * ) (A.30) Moreover |ε t (θ, γ * )| + ψ m t (θ, γ * ) ≤ 2 m k=0 µ k |e t-k | + ∞ k=m+1 µ k |e t-k | (A.31) Therefore dρ H γ (ε t (θ, γ * )) dθ - dρ H γ (ε m t (θ, γ * )) dθ ≤ α t + β t (A.32) with α t = 2C        m k=0 µ k               ∞ k=m+1 µ k |e t-k |        (A.33)
and

β t = C        ∞ k=m+1 µ k |e t-k |        2 (A.34) Therefore X m,N (θ * , γ * ) ≤ 1 √ N N t=1 (α t -Eα t ) X α m,N (θ * ,γ * ) + 1 √ N N t=1 (β t -Eβ t ) X β m,N (θ * ,γ * ) (A.35)
Each term on the right hand side of (A.35) verifies the corollary of the lemma 2B.1 in [START_REF] Ljung | System identification: theory for the user[END_REF](p.57). Hence, as m

→ ∞ 382 E X α m,N (θ * , γ * ) 2 ≤ K        m k=0 µ k               ∞ k=m+1 µ k        → 0 (A.36) E X β m,N (θ * , γ * ) 2 ≤ K        ∞ k=m+1 µ k        2 → 0 (A.37) Hence, Z m,N (θ * , γ * ) ∈ AsN (0, Q m (θ * , γ * )) and S N (θ * , γ * ) ∈ AsN (0, Q (θ * , γ * )) with Q (θ * , γ * ) = lim m→∞ Q m (θ * , γ * ).
Which proves the point (iv) of the Theorem 2.

(v): Expanding W(θ, γ * ) into Taylor series around θ * , we get 

W( θH N , γ * ) = W(θ * , γ * ) + 1 2 θH N -θ * T ∂ 2 θθ W(θ * , γ * ) θH N -θ * + o θH N -θ * 2 (A.

theorem 1 .

 1 Consider a uniformly stable, linear model structure M. Assume that the data set Z∞ = lim N→∞ ZN , then sup θ∈D M γ∈D γ W N (θ, γ) -W(θ, γ) → 0 ⇒ inf θ * ∈D θγ c θH N -θ * → 0 w.p.1 as N → ∞, θ * = θ * γ * (15) See proof in ([12], chap.4 p.69). In the case where the condition Ψ θH N , γ = 0 does not present a unique solution, there exists a convergence domain of γ involving a local minimum of θH N such that γ → γ * and θH N → θ * w.p.1 as N → ∞. Using theorem 1 and inf θ * ∈D θγ c θH N -θ * → 0 w.p.1 as N → ∞, the consistency of the robust estimator is proved.

  the nearest integer less than or equal to n. The coefficients μk , ρ k , θk , φk are given by the n C -poles {π k } n C k=1 = ρ k e j φk , where ρ k < 1 for k = 1...n C and kth residue Res Φ; π k = μk e j θk of the transfer function

200 2 . 6 .

 26 Asymptotic convergence in lawFor the asymptotic convergence in law of √ N θH Nθ * , let us consider the following technical points related 202

211 2 .

 2 The family of filters f k,m (θ * , γ * ), k = 1, 2, ... is uniformly stable for all k, θ * , γ * with f k,m (θ * , γ * ) < µ m and m≥0 µ m < ∞.

3 .

 3 Natural outliers Ω j (θ * , γ * ) and φ j (θ * , γ * ) are bounded for all θ * , γ * and j, sup j,θ * ,γ * Ω j (θ * , γ * ) = Ω and sup j,θ * ,γ * φ j (θ * , γ * ) = φ.

1

 1 233∂ θ W N (θ, γ) are not independent. The purpose is to split the sum in[START_REF] Chaudhary | Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms[END_REF] into one part that satisfies a certain in-234 dependence condition (m-dependence) among its terms and one part that is small. With assumptions H1, the 235 dependence between distant terms will decrease. Thus, let us consider two following lemmas 236LemmaConsider the sum of doubly indexed rv's x k,N such that S N = N k=1 x k,N , where Ex k,N = 0 and x 1,N , ..., x s,N , x k,N , x k+1,N , ..., x n,N are independent for ks > m. ,N 2+δ = 0, δ > 0, Lyapunov ′ s condition[START_REF] Newey | Large sample estimation and hypothesis testing[END_REF] 

  results are presented over 16 CO, 15 PD, and 19 HD, left and right feet for different estimation 262 norms. The L 2 norm corresponds to the LSE (least square estimation), L 1 norm to the least sum absolute deviation (LSAD) and L ∞ norm to the supremum norm given by ( θ∞ N = min θ max t |ε t (θ, γ * )|). In the Huberian context, a campaign of estimations is carried out in C γ with γ * = 1.5 ([22]) and E γ with 0.001 ≤ γ * ≤ 0.2. For each estimator, comparisons between CO vs PD and HD for left and right feet are given. Table. A.1 shows the means 266 of γ * , RMS E, FIT (%), L 2 C(%), L 1 C(%) and the total number of parameters n = n A + n C . The RMSE is the root mean square error between process output and prediction model output. The FIT is given by 100 1 -y-ŷ y-<y> where y, ŷ and < y > are the process output, the prediction model output and the mean of the process output, respectively. L 2 C and L 1 C are the L 2 and L 1 contributions respectively given by L i C = card[ν i ( θH N ,γ * )] N . These are indicators of the density of NO in the prediction errors. If L 2 C = 40% this means that 40% of prediction errors belong to the interval -γ * , γ * and deal with the L 2 norm in the Huberian function. Here, the threshold γ in E γ was varied among the range [0.001; 0.2] with an incremental step of 0.001 for CO, PD and HD. We focus on the main results in Table. A.1. First, the L 2 , L 1 and L ∞ norms give bad results with large RMSE, low FIT and large number of parameters between 40 and 70. The lacks of robustness and degree of freedom (DOF) in these norms lead to an overestimation of the number of parameters n. On the other hand, each FIT presents a low value. In C γ for γ * = 1.5, the number of parameters is reduced with 25 ≤ n ≤ 32 but not sufficient for a reduced order ARMA 277 modeling. We can notice a great L 2 contribution, meaning a too large contribution of the L 2 norm, very sensitive to the large NO in the prediction errors.
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  N , γ * = 0, the third term on the right hand side of (A.6) is o (1). Its first term is o (1) provided {S N (•, γ * ) , N ≥ 1} is stochastically equicontinuous and θH N prob → θ * . This follows because given any α > 0 and β > 0, there exists a δ > 0 such that for ∆S θH N , θ * , γ * = S N ( θH N , γ * ) -S N (θ * , γ * ) lim

  .22) proves (30) and (31) in lemma 1 (section 2.6.3) with Q m (θ * , γ) = lim N→∞ EZ m,N (θ * , γ * )Z T m,N (θ * , γ * ).

Figure A. 1 :

 1 Figure A.1: Example of gait signals from heel and toe force sensors underneath the left foot. The threshold allows to compute the time-signals δt k such as the stride, swing and stance.

Figure A. 2 :

 2 Figure A.2: Tuning function with two main intervals. The classical interval γ ∈ [1, 1.5] and the extended interval γ ∈ [0.001, 0.2].

Figure A. 4 :

 4 Figure A.3: Gaussian ARMA model of the left STS (red line) vs CO real signal (black line). n A = 45, n C = 25, Fit = 9.5%.

Figure A. 5 :

 5 Figure A.5: Huberian ARMA model of the left STS (red line) vs PD real signal (black line). n A = 5, n C = 4, Fit = 82.8%, γ = 0.003, N = 288.

  of the robust
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estimator. We showed that the upper bound of the bias is proportional to the high NO, denoted L p and a new function named tuning function, denoted f ω (γ). Figure A.2 shows this curve. It appears the classical interval, denoted C γ where γ ∈ [1, 1.5] and a new interval, named extended interval, denoted E γ where γ ∈ [0.001, 0.2]. We showed that sup

  with the requirement that certain remainder terms are small. Hence,

	229

222

the standard differentiability assumption is replaced by a stochastic differentiability condition, which can then be 223 used to show that the MLE θH N is asymptotically normal. Recall that the derivative w.r.to θ of ρ H γ is Ψ k (θ, γ). If this function is differentiable in θ, one can establish the asymptotic normality of θH N by expanding √ N θH Nθ * about θ * using element by element mean value expansions. This is the standard way of establishing asymptotic normality of the estimator. In a variety of applications, however, Ψ k (θ, γ) is not differentiable in θ, or not even continuous, due to the appearance of a sign function. In such a case, one can still establish asymptotic normality 228 of the estimator provided EΨ k (θ, γ) is differentiable in θ. Since the expectation operator is a smoothing operator,

Table A .

 A 1: Means of γ * , RMS E, FIT (%), L 2 C(%), L 1 C(%) and the total number of parameters n = n A + n C over 16 CO 15 PD and 19 HD (left and right feet) for different estimation norms. L 2 is the LSE, L 1 is the LSAD, L ∞ is the supremum norm. C γ is the classical interval in the Huber's context with < γ * >= 1.5. E γ is the extended interval in the Huber's context with low values of γ * .

				CO left						PD left		
	Estimator	γ *	RMS E	FIT	L 2 C L 1 C	n	γ *	RMS E	FIT	L 2 C L 1 C	n
	L 2 L 1 L ∞ Huber in C γ	---1.5	11.2 4.3 4.2 2.4	10 42 25 42	100 0 -95	0 100 41 70 -45 5 25	---1.5	13 5.2 5.3 3.1	9 38 26 31	100 0 -96	0 100 46 70 56 -4 28
	Huber in E γ 0.17	0.09	92	41	59	9	0.09	0.34	78	30	70	9
				CO right						PD right		
	L 2 L 1 L ∞ Huber in C γ	---1.5	10.2 5.3 3.2 2.3	9 44 26 44	100 0 -96	0 100 39 70 -46 4 27	---1.5	13 6.2 5.5 3.3	9 35 28 31	100 0 -96	0 100 46 70 54 -4 30
	Huber in E γ 0.18	0.08	92	43	57	9	0.09	0.29	78	32	68	9
				CO left						HD left		
	L 2 L 1 L ∞ Huber in C γ	---1.5	11.2 4.3 4.2 2.4	10 42 25 42	100 0 -95	0 100 41 70 -45 5 25	---1.5	8 4.1 6.3 3.2	17 36 24 32	100 0 -96	0 100 44 70 54 -4 31
	Huber in E γ 0.17	0.09	92	41	59	9	0.08	0.28	78	29	71	9
				CO right						HD right		
	L 2 L 1 L ∞ Huber in C γ	---1.5	10.2 5.3 3.2 2.3	9 44 26 44	100 0 -96	0 100 39 70 -46 4 27	---1.5	13 6.2 5.1 3.5	9 35 32 29	100 0 -95	0 100 46 70 56 -5 32
	Huber in E γ 0.18	0.08	92	43	57	9	0.07	0.16	87	27	73	9

Table A .

 A 2: Parameters of the CO (γ * = 0.05) and PD (γ * = 0.003) ARMA models and Huberian variance of each parameter λ H .

				CO left		
	i	1	2	3	4	5
	a i	-0, 877 -0, 152	0, 173	-0, 215	0, 073
	c i	-0, 236 -0, 065	0, 141	-0, 098	-
	λ H a i λ H c i	0.0021 0.0012	0.0032 0.0075	0.0015 0.0056	0.0035 0.0074	0.0026 -
				PD left		
	i	1	2	3	4	5
	a i	-0, 712 -0, 022 -0, 018 -0, 181 -0, 060
	c i	-0, 166	0, 119	0, 160	0, 133	-
	λ H a i λ H c i	0.0031 0.0002	0.0022 0.0005	0.0095 0.0066	0.0015 0.0024	0.0086 -

Table A .

 A 3: Coefficients A N m in the covariance matrix of the CO (γ * = 0.05) and PD (γ * = 0.003) ARMA models.

	CO left											
	m	0	1	2	3	4	5	6	7	8	9	10
	A N m	1 0.91 0.86 0.74 0.62 0.45 0.33 0.22 0.19 0.11 0.09
	PD left											
	m	0	1	2	3	4	5	6	7	8	9	10
	A N m	1 0.94 0.81 0.71 0.63 0.51 0.41 0.29 0.18 0.10 0.08

model ŷk|k-1 (θ, γ). The estimated residuals are treated by a parametric adaptive algorithm which includes W N (θ, γ)

Here, we show the main results of our method to limit Taylor's expansion with a large order. For more details see 185 ([12], chap.5 p.74) . After straightforward calculations, we have view related to the bias and the new curve in section 2.3: low values of γ involve reduced bias and improve the FIT 281 of the reduced order model. In Corbier and Carmona [START_REF] Corbier | Mixed L p -estimators Variety for Model Order Reduction in Control Oriented System Identification[END_REF] we showed that the Huberian model order denoted

M since the Huberian function has one DOF and can be tuned from γ, by improving the 283 estimation and reducing the number of parameters for pseudolinear models.

284

First we notice that < γ * control >≈ 2 < γ * disease >, meaning that there are twice more NO in STS-PD and STS-HD than STS-CO. Indeed, for PD and HD, the estimation requires a low value of γ * involving a large value of the L 1 contribution close to 70%. For CO, γ * ≈ 0.19 and L 1 C ≈ 58%. Table . A.2 shows the parameters and variance of each parameter for CO and PD left with γ * = 0.05 and γ * = 0.003 respectively. For the variance/covariance matrix of these models, the large order L is equal to 10 ensuring a low computational cost of C k θH N , γ * . Table .     A.3 yields the coefficients A N m for m = 0..10. Figure . A.4 and A.5 show two ARMA models for left CO (γ * = 0.05) and left PD (γ * = 0.003) respectively with a FIT close to 83%. In Figure . A.5 NO clearly appear in index-times Since ∂ 2 θθ W(θ * , γ * ) is positive definite and nonsingular, there exists C > 0 and a neighborhood of θ * such that

The remainder RN θH N , γ * can be written as