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INTRODUCTION

Our perception of cancer has changed dramatically 
during the past 3 decades. For instance, it has been 
appreciated that tumors are not a purely clonal disorder, 
although in some cases they do evolve from a single 
(pre-)malignant cell [1-3]. It is now clear that established 
neoplasms do not consist only of transformed cells, but 
contain an abundant and heterogeneous non-transformed 
component, including stromal, endothelial and immune 
cells [4-6]. We no longer consider the metabolism of 
cancer cells as completely distinct from that of their 
normal counterparts [7-9]. We have shown that the survival 
of transformed cells can critically depend on adaptive 
responses that per se are non-tumorigenic, establishing 
the concept of non-oncogene addiction [10, 11]. We 
discovered mechanisms other than intrinsic apoptosis 
that may be harnessed for therapeutic applications, such 
as several forms of regulated necrosis [12-14]. Finally, 
we obtained evidence indicating that the host immune 
system can recognize (and sometimes react against) (pre-)
malignant cells as they transform, proliferate, evolve and 
respond to therapy, founding the theoretical grounds of 
anticancer immunosurveillance [15-17]. These conceptual 
shifts have profound therapeutic implications, some of 
which have already been translated into clinical realities. 
For instance, several anticancer agents that are now 
approved by the US Food and Drug Administration (FDA) 
and European Medicines Agency (EMA) for use in cancer 
patients inhibit tumor-associated angiogenesis, perhaps the 
best characterized interaction between malignant and non-
malignant components of the tumor microenvironment 
[18, 19].

Over the last decade, great efforts have been 

dedicated to the development of interventions that mediate 
antineoplastic effects by initiating a novel or boosting an 
existing immune response against neoplastic cells (Table 
1) [20-32]. This intense wave of preclinical and clinical 
investigation culminated with the approval of various 
immunotherapeutic interventions for use in humans 
(Table 2). In 2013, the extraordinary clinical success of 
immunotherapy was acknowledged by the Editors of 
Science Magazine with the designation of “Breakthrough 
of the Year” [33]. Nonetheless, we have just begun to 
unravel the therapeutic possibilities offered by anticancer 
immunotherapy. Clinical studies are being initiated at an 
ever accelerating pace to test the safety and efficacy of 
various immunotherapeutic regimens in cancer patients, 
either as standalone interventions or combined with 
other antineoplastic agents [34]. The hopes generated by 
this approach are immense, and several other forms of 
immunotherapy are expected to obtain regulatory approval 
within the next few years (Figure 1). 

Anticancer immunotherapies are generally classified 
as “passive” or “active” based on their ability to (re-)
activate the host immune system against malignant cells 
[35]. From this standpoint, tumor-targeting monoclonal 
antibodies (mAbs) and adoptively transferred T cells 
(among other approaches) are considered passive forms 
of immunotherapy, as they are endowed with intrinsic 
antineoplastic activity [23, 24, 36, 37]. Conversely, 
anticancer vaccines and checkpoint inhibitors exert 
anticancer effects only upon the engagement of the host 
immune system, constituting clear examples of active 
immunotherapy [22, 27, 28, 32, 38]. An alternative 
classification of immunotherapeutic anticancer regimens 
is based on antigen-specificity. Thus, while tumor-
targeting mAbs are widely considered antigen-specific 

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT
During the past decades, anticancer immunotherapy has evolved from a promising 

therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are 
now approved by the US Food and Drug Administration and the European Medicines 
Agency for use in cancer patients, and many others are being investigated as standalone 
therapeutic interventions or combined with conventional treatments in clinical 
studies. Immunotherapies may be subdivided into “passive” and “active” based on 
their ability to engage the host immune system against cancer. Since the anticancer 
activity of most passive immunotherapeutics (including tumor-targeting monoclonal 
antibodies) also relies on the host immune system, this classification does not properly 
reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer 
immunotherapeutics can be classified according to their antigen specificity. While some 
immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), 
others operate in a relatively non-specific manner and boost natural or therapy-elicited 
anticancer immune responses of unknown and often broad specificity. Here, we propose 
a critical, integrated classification of anticancer immunotherapies and discuss the clinical 
relevance of these approaches.
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interventions, immunostimulatory cytokines or checkpoint 
blockers activate anticancer immune responses of 
unknown (and generally broad) specificity [27, 39-42]. 
Herein, we critically revise these classifications while 
discussing the clinical relevance of various forms of 
anticancer immunotherapy.

Passive immunotherapy

Tumor-targeting mAbs

Tumor-targeting mAbs are the best-characterized 
form of anticancer immunotherapy, and perhaps the most 
widely employed in the clinic [43-46]. The expression 
“tumor-targeting” refers to mAbs that (1) specifically 
alter the signaling functions of receptors expressed on 
the surface of malignant cells [47-49]; (2) bind to, and 
hence neutralize, trophic signals produced by malignant 
cells or by stromal components of neoplastic lesions [50, 
51]; (3) selectively recognize cancer cells based on the 
expression of a “tumor-associated antigen” (TAA), i.e., an 
antigen specifically (or at least predominantly) expressed 
by transformed cells but not (or at least less so) by their 
non-malignant counterparts [30, 52]. Tumor-targeting 
mAbs exist in at least 5 functionally distinct variants. 
First, naked mAbs that inhibit signaling pathways required 
for the survival or progression of neoplastic cells, but not 
of their non-malignant counterparts, such as the epidermal 
growth factor receptor (EGFR)-specific mAb cetuximab, 
which is approved by the US FDA for the treatment of 
head and neck cancer (HNC) and colorectal carcinoma 
(CRC) [47, 48, 53]. Second, naked mAbs that activate 
potentially lethal receptors expressed on the surface 

of malignant cells, but not of their non-transformed 
counterparts, such as tigatuzumab (CS-1008), a mAb 
specific for tumor necrosis factor receptor superfamily, 
member 10B, (TNFRSF10B, best known as TRAILR2 
or DR5) that is currently under clinical development [49, 
54]. Third, immune conjugates, i.e., TAA-specific mAbs 
coupled to toxins or radionuclides, such as gemtuzumab 
ozogamicin, an anti-CD33 calicheamicin conjugate 
currently approved for use in acute myeloid leukemia 
patients [55, 56]. Fourth, naked TAA-specific mAbs 
that opsonize cancer cells and hence activate antibody-
dependent cell-mediated cytotoxicity (ADCC) [44, 57-
59], antibody-dependent cellular phagocytosis [60], 
and complement-dependent cytotoxicity [61], such as 
the CD20-specific mAb rituximab, which is currently 
approved for the treatment of chronic lymphocytic 
leukemia (CLL) and non-Hodgkin lymphoma [62, 63]. 
Fifth, so-called “bispecific T-cell engagers” (BiTEs), 
i.e., chimeric proteins consisting of two single-chain 
variable fragments from distinct mAbs, one targeting a 
TAA and one specific for a T-cell surface antigen (e.g., 
blinatumomab, a CD19- and CD3 BiTE recently approved 
for the therapy of Philadelphia chromosome-negative 
precursor B-cell acute lymphoblastic leukemia) [64-69].

The therapeutic activity of opsonizing mAbs 
and BiTEs clearly relies on the host immune system, 
implying that these molecules should be considered 
active immunotherapeutics. Conversely, tumor-targeting 
mAbs of the first two classes are endowed with intrinsic 
antineoplastic activity, and have been considered for a 
long time as passive forms of immunotherapy. However, 
growing evidence indicates that the actual antineoplastic 
potential of these molecules does not simply reflect 
their direct tumor-inhibitory activity, but also involves 
(at least to some degree) the activation of an anticancer 
immune response. For instance, cetuximab does not only 
inhibit EGFR signaling [53], but also promotes ADCC 
[70], and mediates immunostimulatory effects [71, 72]. 
Similarly, bevacizumab, a vascular endothelial growth 
factor A (VEGFA)-neutralizing mAb approved for the 
treatment of glioblastoma multiforme, CRC, as well as 
cervical carcinoma, renal cell carcinoma (RCC) and lung 
carcinoma, not only exerts anti-angiogenic effects [50, 73], 
but also boosts tumor infiltration by B and T lymphocytes, 
[74, 75], while inhibiting CD4+CD25+FOXP3+ regulatory 
T cells (Tregs) [76]. Moreover, polymorphisms in the 
genes coding for the receptors mainly responsible for 
ADCC, i.e., Fc fragment of IgG, low affinity IIa, receptor 
(FCGR2A, also known as CD32) and FCGR3A (also 
known as CD16a), have been shown to influence the 
response of cancer patients to most tumor-targeting 
mAbs [77]. Thus, it is possible (although not formally 
demonstrated) that tumor-targeting mAbs operate as active 
immunotherapeutics. Irrespective of this possibility, 18 
distinct tumor-targeting mAbs are currently approved by 
the US FDA for use in cancer patients (source http://www.

Table 1: Currently available anticancer 
immunotherapies.
Paradigm Licensed*

Tumor-targeting mAbs YES
Adoptive cell transfer NO
Oncolytic viruses YES
DC-based interventions YES
DNA-based vaccines NO
Peptide-based vaccines YES
Immunostimulatory cytokines YES
Immunomodulatory mAbs YES
Inhibitors of immunosuppressive 
metabolism NO

PRR agonists YES
ICD inducers YES
Others YES

Abbreviations. ICD, immunogenic cell death; DC, 
dendritic cell; mAb, monoclonal antibody; PRR, pattern 
recognition receptor. *in one of its forms for use in cancer 
patients, by the US Food and Drug Administration or 
equivalent regulatory agency worldwide.
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fda.gov) [45, 46], demonstrating the extraordinary success 
of this immunotherapeutic paradigm.
Adoptive cell transfer

The term “adoptive cell transfer” (ACT) refers to a 
particular variant of cell-based anticancer immunotherapy 
that generally involves: (1) the collection of circulating 
or tumor-infiltrating lymphocytes; (2) their selection/
modification/expansion/activation ex vivo; and (3) 
their (re-)administration to patients, most often after 
lymphodepleting pre-conditioning and in combination 
with immunostimulatory agents [23, 24, 78-80]. 
Other anticancer (immune)therapies involving the (re)
infusion of living cells, such as hematopoietic stem cell 
transplantation (HSCT), conceptually differ from ACT. 
ACT involves the (re-)introduction of a cell population 
enriched in potentially tumor-reactive immune effectors 
[23, 24, 81]. HSCT is employed as a means to reconstitute 

a healthy, allogeneic (and hence potentially tumor-
reactive) immune system in patients with hematological 
malignancies previously subjected to myelo- and 
lymphoablating treatments (which aim at eradicating 
the majority of neoplastic cells) [82]. Dendritic cell 
(DC)-based interventions should also be conceptually 
differentiated from ACT for two reasons. First, (re-)
infused DCs are not endowed with intrinsic anticancer 
activity, but act as anticancer vaccines to elicit a tumor-
targeting immune response [83, 84]. Second, DCs are 
not administered in the context of lympho/myeloablating 
chemo(radio)therapy [85-87]. 

Several strategies have been devised to improve the 
therapeutic potential of ACT [79, 80, 88]. For instance, 
genetic engineering has been employed to endow 
peripheral blood lymphocytes (PBLs) with features 
such as a unique antigen specificity [89], an increased 
proliferative potential and persistence in vivo [90-93], 

Figure 1: Anticancer immunotherapy. Several anticancer immunotherapeutics have been developed during the last three decades, 
including tumor-targeting and immunomodulatory monoclonal antibodies (mAbs); dendritic cell (DC)-, peptide- and DNA-based anticancer 
vaccines; oncolytic viruses; pattern recognition receptor (PRR) agonists; immunostimulatory cytokines; immunogenic cell death inducers; 
inhibitors of immunosuppressive metabolism; and adoptive cell transfer. 1MT, 1-methyltryptophan; APC, antigen-presenting cell; IDO, 
indoleamine 2,3-dioxigenase; IFN, interferon; IL, interleukin; IMiD, immunomodulatory drug; NLR, NOD-like receptor; TLR, Toll-like 
receptor.
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Table 2: Anticancer immunotherapeutics currently approved by regulatory agencies worldwide.
Paradigm Agent Indication(s) Year* Proposed mechanism of action
Dendritic cell-based 
immunotherapies Sipuleucel-T Prostate carcinoma 2010 Priming of a PAP-specific 

immune response

Immunogenic cell 
death inducers

Bleomycin Multiple hematological 
and solid tumors <1995 DNA-damaging agent

Bortezomib Mantle cell lymphoma 
Multiple myeloma 2003 Proteasomal inhibitor

Cyclophosphamide Multiple hematological 
and solid tumors <1995 Alkylating agent

Doxorubicin Multiple hematological 
and solid tumors <1995 DNA-intercalating agent

Epirubicin Breast carcinoma 1999 DNA-intercalating agent

Mitoxantrone Acute myeloid leukemia
Prostate carcinoma <1995 DNA-intercalating agent

Oxaliplatin Colorectal carcinoma 2002 DNA-damaging agent
Photodynamic 
therapy

Multiple hematological 
and solid tumors 1996 Induction of oxidative stress with 

damage to (intra)cellular membranes

Radiation therapy Multiple hematological 
and solid tumors <1995 DNA-damaging agent and 

oxidative stress inducer

Immunostimulatory 
cytokines

IL-2 Melanoma 
Renal cell carcinoma <1995 Non-specific immunostimulation

IFN-α2a
Chronic myeloid leukemia 
Hairy cell leukemia 
Melanoma

1999 Non-specific immunostimulation

IFN-α2b Multiple hematological 
and solid tumors <1995 Non-specific immunostimulation

Immunomodulatory 
mAbs

Ipilimumab Melanoma 2011 Blockage of CTLA4-dependent 
immunological checkpoints

Nivolumab Melanoma 2014 Blockage of PDCD1-dependent 
immunological checkpoints

Pembrolizumab Melanoma 2014 Blockage of PDCD1-dependent 
immunological checkpoints

Oncolytic viruses Oncorine H101 Head and neck cancer 2005 Selective lysis of malignant cells
Peptide-based 
vaccines Vitespen Renal cell carcinoma 2008 Activation of a tumor-

specific immune response

PRR agonists

Bacillus Calmette-
Guérin

Non-invasive bladder 
transitional cell carcinoma <1995 TLR2/TLR4 agonist

Imiquimod
Actinic keratosis 
Condylomata acuminata 
Superficial basal cell carcinoma

1997 TLR7 agonist

Mifamurtide Osteosarcoma 2009 NOD2 agonist
Monophosphoryl 
lipid A

Prevention of HPV-associated 
cervical carcinoma 2009 TLR2/TLR4 agonist

Picibanil
Gastric carcinoma
Head and neck cancer
Lung carcinoma
Thyroid carcinoma

<1995 TLR2/TLR4 agonist
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Tumor-targeting 
mAbs

Alemtuzumab Chronic lymphocytic leukemia 2001 Selective recognition/opsonization 
of CD52+ neoplastic cells

Bevacizumab

Colorectal carcinoma
Glioblastoma multiforme 
Cervical carcinoma
Lung carcinoma
Renal cell carcinoma

2004 VEGFA neutralization

Brentuximab 
vedotin

Anaplastic large cell lymphoma
Hodgkin's lymphoma 2011 Selective delivery of MMAE 

to CD30+ neoplastic cells
Blinatumumab Acute lymphoblastic leukemia 2014 CD3- and CD19-specific BiTE

Catumaxomab Malignant ascites in patients
with EPCAM+ cancer 2009 CD3- and EPCAM-specific BiTE

Cetuximab Head and neck cancer
Colorectal carcinoma 2004 Inhibition of EGFR signaling

Denosumab
Breast carcinoma
Prostate carcinoma
Bone giant cell tumors

2011 Inhibition of RANKL signaling

Gemtuzumab 
ozogamicin Acute myeloid leukemia 2000 Selective delivery of calicheamicin 

to CD33+ neoplastic cells
Ibritumomab 
tiuxetan Non-Hodgkin lymphoma 2002 Selective delivery of 90Y or 111In 

to CD20+ neoplastic cells
Panitumumab Colorectal carcinoma 2006 Inhibition of EGFR signaling
Pertuzumab Breast carcinoma 2012 Inhibition of HER2 signaling

Obinutuzumab Chronic lymphocytic leukemia 2013 Selective recognition/opsonization 
of CD20+ neoplastic cells

Ofatumumab Chronic lymphocytic leukemia 2009 Selective recognition/opsonization 
of CD20+ neoplastic cells

Ramucirumab Gastric or gastroesophageal 
junction adenocarcinoma 2014 Inhibition of KDR signaling

Rituximab Chronic lymphocytic leukemia
Non-Hodgkin lymphoma 1997 Selective recognition/opsonization 

of CD20+ neoplastic cells
Siltuximab Multicentric Castleman’s disease 2014 IL-6 neutralization

Tositumomab Non-Hodgkin lymphoma 2003
Selective recognition/opsonization 
of, or selective delivery of 90Y or 
111In to, CD20+ neoplastic cells

Trastuzumab
Breast carcinoma
Gastric or gastroesophageal 
junction adenocarcinoma

1998
Selective recognition/opsonization 
of, or selective delivery of mertansine 
to, HER2+ cancer cells

Others

Lenalidomide
Mantle cell lymphoma
Myelodysplastic syndrome 
Multiple myeloma

2005 IKZF degradation and 
immunomodulation

Pomalidomide Multiple myeloma 2013 IKZF degradation and 
immunomodulation

Thalidomide Multiple myeloma 2006 IKZF degradation and 
immunomodulation

Trabectedin Soft tissue sarcoma
Ovarian carcinoma 2007 Reprogramming of tumor-

associated macrophages

Abbreviations: ACPP, acid phosphatase, prostate; BiTE, Bispecific T-cell engager; CTLA4, cytotoxic T lymphocyte-associated 
protein 4; EGFR, epidermal growth factor receptor; EPCAM, epithelial cell adhesion molecule; HPV, human papillomavirus; 
IL, interleukin; IKZF, IKAROS family zinc finger; KDR, kinase insert domain receptor; mAb, monoclonal antibody; MMAE, 
monomethyl auristatin E; NOD2, nucleotide-binding oligomerization domain containing 2; PDCD1, programmed cell death 1; 
PRR, pattern recognition receptor; RANKL, Receptor activator of NF-κB ligand; TLR, Toll-like receptor; VEGFA, vascular 
endothelial growth factor A. *year of first approval.
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an improved secretory profile [91], an elevated tumor-
infiltrating capacity [94, 95], and superior cytotoxicity 
[96]. The specificity of PBLs can be altered prior to 
(re-)infusion by genetically modifying them to express: 
(1) a TAA-specific T-cell receptor (TCR) [89, 97-99], 
or (2) a so-called “chimeric antigen receptor” (CAR), 
i.e., a transmembrane protein comprising the TAA-
binding domain of an immunoglobulin linked to one or 
more immunostimulatory domains [100-106]. The latter 
approach is advantageous in that it renders T cells capable 
of recognizing (and hence potentially killing) TAA-
expressing cells in an MHC-independent fashion. Several 
clinical trials have already demonstrated the therapeutic 
potential of CAR-expressing T cells, in particular (but not 
only) for patients affected by hematological malignancies 
[102, 107-111]. T cells expressing TAA-specific TCRs 
have also been shown to provide objective benefit to 
cancer patients [89, 97-99]. Conversely, in spite of 
promising preclinical findings [112-117], the adoptive 
transfer of purified natural killer (NK) cells to cancer 
patients has been associated with limited therapeutic 
activity [118-120]. To the best of our knowledge, the 
adoptive transfer of purified B lymphocytes has not yet 
been investigated in the clinic [121], possibly because B 
cells (or at least some subsets thereof) can exert potent 
immunosuppressive effects [122-125]. Of note, no ACT 
protocol is currently approved by the US FDA for use in 
cancer patients (source http://www.fda.gov).

Since (re-)infused T cells are endowed with intrinsic 
antineoplastic activity, ACT is generally considered as a 
passive form of immunotherapy. However, the survival, 
expansion, migration and cytotoxic activity of adoptively 
transferred T cells rely on several cytokines, some of 
which are supplied by the host immune system. Current 
ACT protocols involve indeed the administration of 
exogenous interleukins (ILs), including IL-2, IL-15 or IL-
21 [126-130], but these stimulate a cytokine cascade in the 
host that sustains the survival and activity of adoptively 
transferred cells. Thus, ACT may not represent a bona fide 
paradigm of passive immunotherapy.
Oncolytic viruses

The term “oncolytic viruses” refers to non-
pathogenic viral strains that specifically infect cancer cells, 
triggering their demise [131-133]. Oncolytic viruses must 
be conceptually differentiated from so-called “oncotropic 
viruses”, i.e., viruses that exhibit a preferential tropism for 
malignant cells but no (or very limited) cytotoxic activity 
[134, 135]. The antineoplastic potential of oncolytic 
viruses can be innate and simply originate from the so-
called cytopathic effect, i.e., the lethal overload of cellular 
metabolism resulting from a productive viral infection 
[136, 137]. As an alternative, these viruses can mediate an 
oncolytic activity because of (endogenous or exogenous) 
gene products that are potentially lethal for the host cell, 
irrespective of their capacity to massively replicate and 

cause a cytopathic effect [131, 132]. Of note, genetic 
engineering has been successfully employed to endow 
oncolytic virus with various advantageous traits, including 
sequences coding for (1) enzymes that convert an 
innocuous pro-drug into a cytotoxic agent [138-143]; (2) 
proteins that (at least theoretically) trigger lethal signaling 
cascades in cancer cells only [144-146]; or (3) short-
hairpin RNAs that target factors that are strictly required 
for the survival of transformed, but not normal cells [147, 
148]. Of note, no oncolytic virus has been approved by 
the US FDA for use in cancer patients (source http://
www.fda.gov). Conversely, a recombinant adenovirus 
(H101, commercialized under the name of Oncorine®) 
has been approved by the regulatory authorities of the 
People’s Republic of China for the treatment of HNC (in 
combination with chemotherapy) as early as in November 
2005 [149, 150].

As oncolytic viruses are endowed with intrinsic 
anticancer activity, they are generally viewed as passive 
immunotherapeutics. Moreover, several effectors of 
innate and adaptive immunity limit the efficacy of 
oncolytic therapy because they can neutralize viral 
particles before they reach neoplastic lesions [131, 
132, 151]. This is particularly true for the mononuclear 
phagocytic system of the liver and spleen, which is able 
to sequester large amounts of oncolytic viruses upon 
injection [152, 153]; the complement system, to which 
oncolytic viruses are particularly sensitive [154, 155]; 
and neutralizing antibodies, which can exist in patients 
prior to oncolytic virotherapy owing to their exposure to 
naturally occurring variants of the viral strains commonly 
employed for this purpose [156, 157]. This being said, 
accumulating preclinical and clinical evidence indicates 
that the therapeutic activity of oncolytic viruses stems, for 
the most part, from their ability to elicit tumor-targeting 
immune responses as they promote the release of TAAs in 
an immunostimulatory context. In support of this notion, 
oncolytic viruses engineered to drive the expression of 
co-stimulatory receptors [158-160] or immunostimulatory 
cytokines/chemokines [161-165] reportedly mediate 
superior antineoplastic effects as compared to their 
unmodified counterparts [131, 132]. Thus, conventional 
oncolytic viruses also appear to be active, rather than 
passive, immunotherapeutics.

Active immunotherapy

DC-based immunotherapies

Throughout the past 2 decades, remarkable efforts 
have been invested in the development of anticancer 
immunotherapeutics based on (most often autologous) DCs 
[28, 166, 167]. This intense wave of preclinical and clinical 
investigation reflects the critical position occupied by DCs 
at the interface between innate and adaptive immunity, 
and the ability of some DC subsets to prime robust, 
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therapeutically relevant anticancer immune responses 
[168]. Several forms of DC-based immunotherapy have 
been developed, most of which involve the isolation of 
patient- or donor-derived circulating monocytes and their 
amplification/differentiation ex vivo, invariably in the 
presence of agents that promote DC maturation, such 
as granulocyte macrophage colony-stimulating factor 
(GM-CSF) [28]. This is particularly important because 
immature DCs exert immunosuppressive, rather than 
immunostimulatory, functions [169-171]. Most often, 
autologous DCs are re-infused into cancer patients 
upon exposure to a source of TAAs, including (1) TAA-
derived peptides [172-175]; (2) mRNAs coding for one 
or more specific TAAs [176]; (3) expression vectors 
coding for one or more specific TAAs [177-180]; (4) bulk 
cancer cell lysates (of either autologous or heterologous 
derivation) [181-186]; (5) or bulk cancer cell-derived 
mRNA [187-191]. As an alternative, DCs are allowed to 
fuse ex vivo with inactivated cancer cells, generating so-
called dendritomes [192-197]. The rationale behind all 
these approaches is that DCs become loaded ex vivo with 
TAAs or TAA-coding molecules, hence becoming able to 
prime TAA-targeting immune responses upon reinfusion. 
Additional DC-based anticancer immunotherapies 
include the targeting of specific TAAs to DCs in vivo 
[169, 198-205], the use of DC-derived exosomes 
[206-208], and the (re-)administration of autologous 
or allogeneic DCs amplified, matured and optionally 
genetically modified ex vivo, but not loaded with TAAs 
[209-214]. In the former setting, TAAs are fused to 
mAbs, polypeptides or carbohydrates that selectively 
bind to DCs [169, 198-202, 215, 216], encapsulated 
in DC-targeting immunoliposomes [217, 218], or (3) 
encoded by DC-specific vectors [219-221]. In the latter 
scenarios, DCs or their exosomes are administered as a 
relatively non-specific immunostimulatory intervention 
[209-213]. Interestingly, one cellular product containing 
a significant proportion of (partially immature) DCs is 
currently licensed for use in cancer patients, namely 
sipuleucel-T (also known as Provenge®) (source http://
www.fda.gov). Sipuleucel-T has been approved by the 
US FDA and the EMA for the therapy of asymptomatic 
or minimally symptomatic metastatic castration-refractory 
prostate cancer as early as in 2010 [222-224]. However, 
the manufacturer of sipuleucel-T, Dendreon Co. (Seattle, 
WA, US), filed for bankruptcy in November 2014 (source 
http://dealbook.nytimes.com/2014/11/10/dendreon-maker-
of-prostate-cancer-drug-provenge-files-for-bankruptcy/?_
r=0). This reflects the disadvantageous cost-benefit ratio 
of such a cellular therapy, whose preparation requires a 
relatively elevated quantity of each patient’s peripheral 
blood mononuclear cells [25, 222, 223]. The safety and 
efficacy of many DC-based cellular preparations other 
than are sipuleucel-T are currently being investigated in 
clinical settings, with promising results [225].

Although DCs isolated from cancer patients have 

been shown to exert cytotoxic activity against malignant 
cells [226], DC-based immunotherapies mediate 
antineoplastic effects mainly because they engage the 
host immune system against malignant lesions [227, 228]. 
Thus, all forms of DC-based anticancer interventions 
constitute paradigms of active immunotherapy.
Peptide- and DNA-based anticancer vaccines

DCs and other antigen-presenting cells (APCs) 
are also targeted by peptide- and DNA-based anticancer 
vaccines [83, 84, 229-231]. In the former scenario, 
full-length recombinant TAAs or peptides thereof are 
administered to cancer patients, most often via the 
intramuscular, subcutaneous or intradermal route, together 
with one or more immunostimulatory agents commonly 
known as adjuvants (which potently promote DC 
maturation) [232-237]. The rationale behind this approach 
is that resident DCs (or other APCs) acquire the ability to 
present the TAA-derived epitopes while maturing, hence 
priming a robust TAA-specific immune response [32, 
238, 239]. The mechanisms underlying the priming of 
anticancer immune responses by peptide-based vaccines, 
and hence their efficacy, depend (at least in part) on their 
size [38]. Thus, while short peptides (8-12 amino acids) are 
conceived to directly bind to MHC molecules expressed 
on the surface of APCs, synthetic long peptides (25-30 
residues) must be taken up, processed and presented by 
APCs for eliciting an immune response [38]. Normally, the 
therapeutic activity of synthetic long peptides is superior 
to that of their short counterparts, especially when they 
include epitopes recognized by both cytotoxic and helper 
T cells or when conjugated to efficient adjuvants [38, 240, 
241]. This said, some commonly used immunostimulants 
such as the so-called incomplete Freund’s adjuvant (IFA) 
have recently been shown to limit the efficacy of peptide-
based anticancer vaccination [242], calling for the use of 
alternative immunostimulants. A peculiar type of peptide-
based vaccines is constituted by autologous tumor lysates 
complexed with immunostimulatory chaperones, most 
often members of the heat-shock protein (HSP) family 
[243]. This approach is advantageous in that it does not 
rely on a single TAA but (at least hypothetically) on all 
TAAs that bind to HSPs (including patient-specific neo-
TAAs) [243]. However, generating anticancer vaccines on 
a personalized basis is associated with considerable costs 
[243].

DNA-based anticancer vaccines rely on TAA-
coding constructs, be them naked or vectored (by viral 
particles, non-pathogenic bacteria or yeast cells) [32, 244-
246]. DNA-based vaccines either become a source of such 
TAA (as it is the case for bacterial and yeast vectors) or 
transform APCs or muscular cells to do so (as it is the 
case for naked constructs and viral vectors) [32, 244-247]. 
Theoretically, and especially in the presence of adequate 
adjuvants, this prompts resident DCs or other APCs to 
prime a TAA-targeting immune response [32, 183, 248, 
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249]. A particularly interesting approach in this context 
is represented by so-called “oncolytic vaccines”, i.e., 
oncolytic viruses genetically altered to code for a TAA 
[250-252]. Promising results have also been obtained 
with DNA-based vaccines administered per os [253-256]. 
In this setting, live-attenuated bacteria expressing a full-
length TAA are taken up by APCs in the intestinal mucosa, 
resulting in the priming of a robust, TAA-specific immune 
response in the so-called “mucosa-associated lymphoid 
tissue” [253-256].

Both peptide- and DNA-based vaccines have been 
associated with clinical activity in patients affected by 
various neoplasms [83, 84, 229-231, 257]. For instance, a 
peptide-based vaccine targeting the human papillomavirus 
type 16 (HPV-16) proteins E6 and E7 have been shown to 
promote complete, long-lasting responses in a significant 
fraction of patients with vulvar intraepithelial neoplasia 
[258]. Along similar lines, the administration of a 
multipeptide vaccine after single-dose cyclophosphamide 
(an immunogenic alkylating agent, see below) has been 
shown to prolong overall survival in a cohort of RCC 
patients [259]. No peptide- or DNA-based anticancer 
vaccine is currently approved by the US FDA and EMA 
for use in humans (sources http://www.fda.gov and 
http://www.ema.europa.eu/ema/). However, vitespen 
(Oncophage®), a heat shock protein 90kDa beta (Grp94), 
member 1 (HSP90B1)-based anticancer vaccine, has been 
approved in Russia for the treatment of RCC patients with 
intermediate risk of recurrence as early as in 2008 [257]. 
Moreover, three DNA-based anticancer vaccines have 
been licensed for veterinary use [260-263], one of which 
relies on a human TAA (i.e., tyrosinase) [263].

Similar to DC-based interventions, both peptide- and 
DNA-based anticancer vaccines mediate antineoplastic 
effects as they (re-)activate the host immune system 
against malignant cells, hence constituting active forms of 
anticancer immunotherapy.
Immunostimulatory cytokines

Taken as a family, cytokines regulate (via autocrine, 
paracrine or endocrine circuits) virtually all biological 
functions [264-267]. It is therefore not surprising that 
various attempts have been made to harness the biological 
potency of specific cytokines to elicit novel or reinvigorate 
pre-existent tumor-targeting immune responses [268-271]. 
The administration of most immunostimulatory cytokines 
to cancer patients as standalone therapeutic interventions, 
however, is generally associated with little, if any, clinical 
activity [272-275]. Thus, immunostimulatory cytokines 
are generally employed as adjuvants for other anticancer 
(immuno)therapeutics, either as recombinant molecules 
or encoded within expression vectors [276-284]. Notable 
exceptions include interferon (IFN)-α2b (also known 
as Intron A®), and IL-2 (also known as aldesleukin and 
Proleukin®), which mediate single agent therapeutic 
activity in patients affected by melanoma, a tumor type 

particularly sensitive to immunotherapy [274, 284]. IFN-
α2b is currently approved by the US FDA and EMA 
for the therapy of hairy cell leukemia (HCL), AIDS-
related Kaposi’s sarcoma, follicular lymphoma, multiple 
myeloma, melanoma, external genital/perianal warts 
(condylomata acuminata) and cervical intraepithelial 
neoplasms (both as a recombinant, unmodified protein, 
and as a pegylated variant), while IL-2 is licensed for 
the treatment of metastatic forms of melanoma and 
RCC. Moreover, IFN-α2a (also known as Roferon-A®) 
is approved for use in subjects with HCL and chronic 
phase, Philadelphia chromosome-positive chronic myeloid 
leukemia, upon minimal pretreatment (within 1 year of 
diagnosis). In Europe, IFN-α2a is also licensed for the 
treatment of melanoma. Of note, GM-CSF (also known 
as molgramostim, sargramostim, Leukomax®, Mielogen® 
or Leukine®) and granulocyte colony-stimulating 
factor (G-CSF, also known as filgrastim, lenograstim or 
Neupogen®) are approved by the US FDA and EMA for 
use in humans, but not as part of anticancer regimens [285-
288]. Nonetheless, GM-CSF has been shown to potentiate 
the clinical activity of several immunotherapeutics, 
including (but not limited to) peptide-based vaccines 
and immunomodulatory mAbs [259, 289]. Recombinant 
tumor necrosis factor α (TNFα) is also licensed by several 
regulatory agencies worldwide (but not by the US FDA), 
for the treatment of limb-threatening soft tissue sarcoma 
and melanoma [290-292]. However, in this setting 
TNFα is not employed as an immunostimulatory agent 
but administered in combination with melphalan (an 
alkylating agent) to increment the local concentration of 
the drug (and hence boost its cytotoxicity), and to promote 
the selective destruction of the tumor vasculature [293].

The antineoplastic activity of immunostimulatory 
cytokines is expected to depend on the host immune 
system, implying that they underlie a bona fide paradigm 
of active immunotherapy. However, the actual mode of 
action of immunostimulatory cytokines has not yet been 
fully explored. Moreover, some of these agents may 
promote a cytokine cascade with unwarranted, potentially 
lethal effects, and hence should be employed with caution.
Immunomodulatory mAbs

At odds with their tumor-targeting counterparts, 
immunomodulatory mAbs operate by interacting with 
(hence altering the function of) soluble or cellular 
components of the immune system [22, 294]. Thus, 
immunomodulatory mAbs are designed to elicit a novel 
or reinstate an existing anticancer immune response [27, 
295, 296]. So far, this has been achieved through four 
general strategies: (1) the inhibition of immunosuppressive 
receptors expressed by activated T lymphocytes, such as 
cytotoxic T lymphocyte-associated protein 4 (CTLA4) 
[297-299] and programmed cell death 1 (PDCD1, best 
known as PD-1) [39, 42, 300, 301], or NK cells, like 
various members of the killer cell immunoglobulin-like 
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receptor (KIR) family [302-304]; (2) the inhibition of 
the principal ligands of these receptors, such as the PD-1 
ligand CD274 (best known as PD-L1 or B7-H1) [300, 
305-307]; (3) the activation of co-stimulatory receptors 
expressed on the surface of immune effector cells [308] 
such as tumor necrosis factor receptor superfamily, 
member 4 (TNFRSF4, best known as OX40) [309-
313], TNFRSF9 (best known as CD137 or 4-1BB) [58, 
314, 315], and TNFRSF18 (best known as GITR) [316-
318]; and (4) the neutralization of immunosuppressive 
factors released in the tumor microenvironment, such as 
transforming growth factor β1 (TGFβ1) [319, 320].

The first of these approaches, which is commonly 
referred to as “checkpoint blockade”, has been shown to 
induce robust and durable responses in cohorts of patients 
with a variety of solid tumors [39, 300, 321-327]. As it 
stands, no less than three checkpoint-blocking mAbs are 
currently approved by international regulatory agencies for 
use in humans (source http://www.fda.gov): (1) the anti-
CTLA4 mAb ipilimumab (Yervoy™), which was licensed 
by the US FDA for use in individuals with unresectable 
or metastatic melanoma on 2011, March 25th [328-332]; 
the anti-PD-1 mAb pembrolizumab (Keytruda™), which 
received accelerated approval by the US FDA for the 
treatment of advanced or unresectable melanoma patients 
who fail to respond to other therapies on 2014, September 
4th [333-338]; and nivolumab (Opvido™), another PD-1-
targeting mAb licensed by the Japanese Ministry of Health 
and Welfare for use in humans on 2014, July 07th [339]. 
Based on the results of a recently completed Phase III 
clinical trial demonstrating that nivolumab significantly 
improves the progression-free and overall survival of 
patients with BRAFWT melanoma [340], the approval of 
this mAb by the US FDA is expected within the next 
few months. The safety and efficacy of ipilimumab, 
pembrolizumab, nivolumab and other checkpoint-blocking 
mAbs are being demonstrated in a steadily expanding 
panel of oncological indications [45, 46, 341, 342]. Of 
note, some co-stimulatory mAbs including urelumab 
and PF-0582566 (both of which target CD137) are also 
under clinical development, with promising results [46, 
341]. Preclinical data suggest that combining checkpoint 
blockers with co-stimulatory mAb mediates superior 
antineoplastic effects [294, 343, 344]. At least in part, this 
reflects the ability of co-stimulatory mAbs to promote NK 
cell functions [58, 345, 346]. In line with this notion, a few 
clinical trials testing checkpoint blockers in combination 
with urelumab or lirilumab (a KIR-inhibiting mAb) have 
just been initiated (source http://www.clinicaltrials.gov).

Designed to (re-)activate the host immune system 
against malignant cells, immunomodulatory mAbs 
constitute an established and clinically promising 
paradigm of active immunotherapy. Interestingly, despite 
their non-specific mechanism of action, the clinical 
efficacy of immunomodulatory mAbs (and in particular 
checkpoint blockers) may be profoundly influenced by the 

panel of (neo-)TAAs specific to each neoplasm [347].
Inhibitors of immunosuppressive metabolism

Indoleamine 2,3-dioxigenase 1 (IDO1) catalyzes 
the first, rate-limiting step in the so-called “kynurenine 
pathway”, the catabolic cascade that converts 
L-tryptophan (Trp) into L-kynurenine (Kyn) [348]. 
Although this enzyme was initially believed to mediate 
immunostimulatory effects (partly because inflammatory 
cues including IFNγ promote its expression in cells of the 
innate immune system) [349, 350], IDO1 mediates robust 
immunosuppressive effects, in both physiological (e.g., 
tolerance during pregnancy) and pathological (mostly 
oncological) settings [351-356]. IDO1 has been proposed 
to inhibit both innate and adaptive immune responses (1) 
by depleting immune effector cells of Trp, resulting in 
irresponsiveness to immunological challenges [352, 353, 
357-359]; (2) by favoring the accumulation of Kyn and 
some of its derivatives, which exert cytotoxic effects on 
immune effector cells while promoting the differentiation 
of Tregs [360-364]; or (3) through various indirect 
mechanisms mediated by IDO1-expressing DCs [124, 
365-371]. Evidence accumulated during the last decade 
indicates that both 1-methyltryptophan (an inhibitor 
of IDO1 and IDO2) and genetic interventions targeting 
IDO1 mediate antineoplastic effects while eliciting novel 
or reinvigorating existent anticancer immune responses 
[372-375]. No IDO1 inhibitor is currently approved by 
the US FDA for use in humans (source http://www.fda.
gov). However, the results of recent Phase I-II studies 
suggest that 1-methyl-D-tryptophan (an inhibitor of 
the IDO pathway also known as indoximod), other 
pharmacological blockers of IDO1 (such as INCB024360), 
and IDO1-targeting vaccines are well tolerated by cancer 
patients and mediate antineoplastic effects, at least in a 
subset of individuals [376-382].

Extracellular ATP mediates robust 
immunostimulatory functions as it recruits and activates 
APCs via purinergic receptor P2Y, G-protein coupled, 
2 (P2RY2) and purinergic receptor P2X, ligand-gated 
ion channel, 7 (P2RX7), respectively [383-386]. On the 
contrary, the degradation products of ATP (notably AMP 
and adenosine), have a pronounced immunosuppressive 
activity upon binding to adenosine A2a receptor 
(ADORA2A) and ADORA2B [387-389]. Two enzymes 
operates sequentially to degrade extracellular ATP, 
ectonucleoside triphosphate diphosphohydrolase 1 
(ENTPD1, best known as CD39), which converts ATP 
into ADP and AMP [390-392], and 5’-nucleotidase, ecto 
(NT5E, best known as CD73), which transforms AMP into 
adenosine [393, 394]. Some human neoplasms express 
increased amounts of CD39 and/or CD73, reflecting the 
evolutionary advantage conferred to cancer cells by the 
stimulation of adenosine receptors [395, 396]. Efforts have 
therefore been dedicated to the development of agents 
that would limit the extracellular availability of adenosine 
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or inhibit adenosine receptors [392, 397]. Preclinical 
evidence indicates that CD39- or CD79-targeting 
agents (mostly mAbs) mediate antineoplastic effects as 
standalone interventions and improve the efficacy of other 
anticancer agents [397]. The clinical development of these 
agents, however, has not yet been initiated. Conversely, 
ADORA2A antagonists are currently being tested in late-
stage clinical trials, but as a therapeutic option against 
Parkinsonism [397]. It will be interesting to determine the 
safety and efficacy of inhibitors of adenosine generation or 
signaling in cancer patients.

Although it remains unclear whether these agents 
truly operate by altering the microenvironmental 
availability of Trp and Kyn [398], the antineoplastic 
effects of IDO inhibitors critically rely on the host immune 
system, implying that this constitutes an instance of active 
anticancer immunotherapy [399]. This also applies to 
strategies aimed at limiting the extracellular availability 
of adenosine.
PRR agonists

Pattern recognition receptors (PRRs) are 
evolutionarily conserved proteins involved in the 
recognition of danger signals [400, 401]. PRRs include 
(but are not limited to) Toll-like receptors (TLRs) [402, 
403] and nucleotide-binding oligomerization domain 
containing (NOD)-like receptors (NLRs) [404, 405]. 
TLRs are transmembrane enzymatically-inactive 
proteins expressed by most APCs, including monocytes, 
macrophages and DCs, as well as by some types of 
epithelial cells [402, 403]. NLRs are expressed by a 
variety of cell types, including various components of the 
innate and adaptive immune system [404, 405]. Taken 
together, PRRs sense a wide panel of danger signals, 
including exogenous “microbe-associated molecular 
patterns” (MAMPs) like bacterial lipopolysaccharide 
(LPS) or muramyl dipeptide (MDP), and endogenous 
“damage-associated molecular patterns” (DAMPs), like 
the non-histone nuclear protein high-mobility group box 
1 (HMGB1) and mitochondrial DNA [406-410]. The 
activation of various PRRs ignites a signal transduction 
cascade with potent pro-inflammatory outcomes, including 
the activation of NF-κB [411-413], and the secretion of 
immunostimulatory cytokines, like type I IFNs and TNFα 
[413-415]. Moreover, PRR signaling favors the maturation 
of DCs as well as the activation of macrophages and 
NK cells [416]. Besides being critical for the response 
of the host to viral and bacterial challenges [402, 403], 
some PRRs play a key role in the (re)activation of 
anticancer immune responses by chemo-, radio- and 
immunotherapeutic interventions [15, 413, 417-422].

Thus, PRR agonists have spurred interest not 
only as adjuvants for conventional vaccines [423, 
424], but also as immunotherapeutic interventions that 
may mediate antineoplastic effects per se or boost the 
therapeutic activity of other anticancer agents [34, 48, 

425]. Three TLR agonists are approved by the US FDA 
for use in cancer patients: (1) the bacillus Calmette-
Guérin (BCG), an attenuated variant of Mycobacterium 
bovis that presumably operates as a mixed TLR2/
TLR4 agonist, which is currently used as a standalone 
immunotherapeutic  agent in subjects with non-invasive 
transitional cell carcinoma of the bladder [426]; (2) 
monophosphoryl lipid A (MPL), a TLR2/TLR4-activating 
derivative of Salmonella minnesota LPS currently 
utilized as adjuvant in Cervarix®, a vaccine for the 
prevention of HPV-16 and -18 infection [427]; and (3) 
imiquimod, an imidazoquinoline derivative that triggers 
TLR7 signaling, currently employed for the treatment 
of actinic keratosis, superficial basal cell carcinoma and 
condylomata acuminata [422, 426]. Of note, picibanil 
(a lyophilized preparation of Streptococcus pyogenes 
that operates as a TLR2/TLR4 agonist has been licensed 
for use in cancer patients by the Japanese Ministry of 
Health and Welfare (but not by the US FDA) as early 
as in 1975 [428, 429]; while mifamurtide (a synthetic 
lipophilic glycopeptide that activates NOD2) has been 
approved by the EMA for the treatment of osteosarcoma 
in 2009 [430-432]. Moreover, the safety and efficacy of 
several other PRR agonists are currently being evaluated 
in clinical trials [433-435]. These molecules include 
agatolimod (CpG-7909, PF-3512676, Promune®), an 
unmethylated CpG oligodeoxynucleotide that activates 
TLR9 [436]; polyriboinosinic polyribocytidylic acid 
(polyI:C, Ampligen™, Rintatolimod), a synthetic double-
strand RNA that signals via TLR3 [437]; and Hiltonol™, 
a particular formulation of polyI:C that involves 
carboxymethylcellulose and poly-L-lysine [48, 438].

Some malignant cells express PRRs [439-445], 
implying that PRR agonists may not be completely devoid 
of intrinsic tumor-modulating functions. Nonetheless, a 
large body of preclinical and clinical literature indicates 
that the antineoplastic effects of PRR agonists stem from 
their ability to engage the host immune system. Thus, PRR 
agonists constitute active immunotherapeutics.
Immunogenic cell death inducers

Some conventional chemotherapeutics, often 
employed at metronomic doses [446, 447], as well as 
some forms of radiation therapy, can kill malignant cells 
while stimulating them to release specific DAMPs in 
a spatiotemporally coordinated manner [15, 420, 448]. 
Such DAMPs bind to receptors expressed on the surface 
of APCs (including TLR4), and not only boost their 
ability to engulf particulate material (including TAAs 
and cancer cell debris) but also trigger their maturation/
activation [15, 418, 448, 449]. As a result, APCs acquire 
the ability to elicit a cancer-specific immune response that 
(at least in mice) is associated with the development of 
immunological memory [15, 450]. We have dubbed such 
a functionally atypical form of apoptosis “immunogenic 
cell death” (ICD) [15]. Importantly, ICD inducers exert 
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optimal antineoplastic effects in immunocompetent, but 
not in immunodeficient, mice [15, 451-454]. However, the 
ability of a specific stimulus to trigger ICD can be properly 
assessed only by means of vaccination experiments 
involving immunocompetent mice and syngeneic tumor 
models [15, 455]. As it stands, a few FDA-approved 
therapies have been shown to constitute bona fide ICD 
inducers, including: doxorubicin, mitoxantrone and 
epirubicin (three anthracyclines currently employed 
against various carcinomas) [186, 449], bleomycin (a 
glycopeptide antibiotic endowed with antineoplastic 
properties) [456], oxaliplatin (a platinum derivative 
generally used for the therapy of colorectal carcinoma) 
[453, 457], cyclophosphamide (an alkylating agent 
employed against neoplastic and autoimmune conditions) 
[458-460], specific forms of radiation therapy [419, 461-
466], photodynamic therapy (an intervention that relies 
on the administration of a photosensitizing agent coupled 
to light irradiation) [448, 467, 468], and bortezomib (a 
proteasomal inhibitor used for the treatment of multiple 
myeloma) [469, 470].

These and other (hitherto experimental) ICD 
inducers have been viewed as conventional forms 
of anticancer therapy, exerting antineoplastic effects 
via cytostatic or cytotoxic mechanisms. However, 
accumulating evidence indicates that the full-blown 
therapeutic potential of these molecules relies on the 
host immune system [15, 471]. Thus, we propose to 
classify ICD inducers as a form of active anticancer 
immunotherapy.
Others

Other anticancer immunotherapies are approved by 
regulatory agencies worldwide for use in cancer patients 
or are currently being investigated for safety and efficacy 
in preclinical or clinical settings.

Lenalidomide (Revlimid®, also known as CC-
5013) and pomalidomide (Pomalyst®, also known as CC-
4047) are two derivatives of thalidomide (Thalomid®) 
originally developed in the 1990s to achieve improved 
potency in the absence of significant side effects [472]. 
Thalidomide was indeed marketed as an over-the-
counter sedative, tranquilizer, and antiemetic for morning 
sickness in various countries in the late 1950s, but was 
rapidly withdrawn following a peak of infants born with 
malformation of the limbs [473]. In spite of its pronounced 
teratogenic activity, thalidomide raised renewed interest 
as an inhibitor of TNFα secretion in the 1990s [474], and 
was approved by the US FDA (under a strictly controlled 
distribution program) for the therapy of erythema nodosum 
leprosum (a complication of leprosy etiologically linked 
to TNFα) in 1998 [475]. The combination of thalidomide 
with dexamethasone (a glucocorticoid) rapidly turned 
out to mediate therapeutic effects in patients with 
hematological malignancies, eventually resulting in the 
approval by the US FDA of this regimen for the treatment 

of newly diagnosed multiple myeloma [476]. Alongside, 
lenalidomide (which retains some degree of teratogenicity) 
was licensed for use in patients with multiple myeloma 
(also in combination with dexamethasone) and low or 
intermediate-1 risk myelodysplastic syndromes that harbor 
5q cytogenetic abnormalities (as a standalone intervention) 
[477-480]. Conversely, pomalidomide (which is devoid of 
teratogenic activity) has been approved for use in multiple 
myeloma patients only in 2013, when the approval of 
lenalidomide has been extended to mantle cell lymphoma 
(MCL) [481-483]. Although the effects of thalidomide, 
lenalidomide and pomalidomide, which are collectively 
referred to as “immunomodulatory drugs” (IMiDs), 
on the immune system have been characterized with 
increasing precision throughout the past two decades 
[484], the underlying molecular mechanisms remained 
obscure [485]. Recent findings indicate that the therapeutic 
activity of IMiDs depend, at least in part, on their ability 
to bind the E3 ubiquitin ligase cereblon (CRBN) and 
hence boost the proteasomal degradation of the B cell-
specific transcription factors IKAROS family zinc finger 
1 (IKZF1) and IKZF3 [486, 487]. Of note, CRBN, which 
is also involved in the teratogenic effects of thalidomide 
and lenalidomide [488], regulates the abundance of 
interferon regulatory factor 4, perhaps accounting for the 
immunomodulatory functions of IMiDs [489]. Although 
endowed with intrinsic antineoplastic activity, IMiDs 
should be considered active immunotherapeutics.

As they progress and respond to treatment, 
neoplastic lesions are infiltrated by a significant amount 
of lymphoid and myeloid cells, including CD8+ T 
lymphocytes, Tregs, tumor-associated macrophages 
(TAMs) and immunosuppressive B-cell populations 
[122-124, 490, 491]. Robust tumor infiltration by CD8+ 
T lymphocytes is generally associated with a good 
prognosis, especially when the intratumoral levels of 
Tregs are limited [124, 492]. Along similar lines, high 
intratumoral levels of TAMs with a “classically-activated” 
M1 phenotype (which exert tumoricidal functions, 
stimulate NK cells and secrete TH1-polarizing cytokines) 
generally correlate with improved disease outcome [491, 
493]. The contrary holds true when the myeloid tumor 
infiltrate contains high levels of “alternatively-activated” 
M2 TAMs or specific B-cell subsets, which can secrete 
not only immunosuppressive cytokines like IL-10 and 
TGFβ1, but also angiogenic mediators such as VEGFA 
and enzymes that remodel the extracellular matrix [491, 
493]. These observations prompted the development of 
immunotherapeutic regimens based on the depletion/
inhibition of Tregs or B lymphocytes, as well as on the 
conversion of M2 TAMs to their M1 counterparts.

Denileukin diftitox (also known as Ontak®) is 
a recombinant variant of IL-2 fused to the diphtheria 
toxin [494]. Owing to its selective cytotoxicity for cells 
expressing IL-2 receptor α (IL2RA, best known as 
CD25), denileukin diftitox has been approved by the US 
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FDA and EMA for the treatment of CD25+ cutaneous 
T-cell lymphoma in the early 2000s [494]. More recently, 
denileukin diftitox has been tested for its ability to 
improve the efficacy of various immunotherapies by 
efficiently depleting Tregs (which also express CD25) 
in patients affected by various neoplasms [495-497]. 
In some (but not all) these clinical settings, denileukin 
diftitox enhanced the efficacy of immunotherapy as it 
provoked a sizeable Treg depletion [496, 497]. However, 
denileukin diftitox has recently been ascribed with a 
number of immunosuppressive effects [498, 499]. This 
may explain why in some cases denileukin diftitox had no 
clinical activity [495], and casts doubts on the possibility 
to use such Treg-depleting agent as a routine anticancer 
immunotherapeutic. This said, several conventional 
antineoplastic agents commonly used in the clinic appear 
to deplete or inhibit Treg, which presumably contributes 
to their therapeutic activity (see below) [420, 421]. 
Along similar lines, at least part of the clinical activity 
of ibrutinib (PCI-32765), a small molecule inhibitor of 
bruton tyrosine kinase (BTK) recently approved by the US 
FDA for use in patients with MCL and CLL [500-502], 
may stem from its ability to target tumor-infiltrating B 
lymphocytes or myeloid cells [503]. A clinical trial testing 
this possibility in pancreatic cancer patients will soon be 
initiated (LC, personal communication).

Several immunotherapeutic agents exert 
antineoplastic effects by altering the relative proportion 
between M2 and M1 TAMs in favor of the latter [491]. 
These include: (1) tasquinimod, a second-generation 
orally active quinoline-3-carboxamide analog initially 
developed as an antiangiogenic agent [504, 505]; 
trabectedin (Yondelis®), a marine antineoplastic agent 
currently approved in Europe, Russia and South Korea 
for the treatment of soft tissue sarcoma and ovarian 
carcinoma [506, 507]; (3) inhibitors of chemokine (C-C 
motif) ligand 2/chemokine (C-C motif) receptor 2 (CCL2/
CCR2) signaling [508]; (3) mAbs specific for chemokine 
(C-X-C motif) receptor 4 (CXCR4) [509]; and (4) small 
molecule inhibitors and mAbs that suppress colony 
stimulating factor 1/colony stimulating factor 1 receptor 
(CSF1/CSFR1) signaling [510-512]. With the single 
exception of trabectedin (which was not developed as 
an immunotherapeutic agent), none of these strategies is 
currently approved by the US FDA or EMA for use in 
humans (sources http://www.fda.gov and http://www.
ema.europa.eu/ema/). However, several Phase II-III 
clinical trials are currently ongoing to establish the safety 
and efficacy of these active immunotherapeutic agents in 
patients with various solid tumors (source http://www.
clinicaltrials.gov).

Additional, hitherto experimental 
immunotherapeutic regimens act by stimulating the 
host immune system to mount a novel (or unleash an 
existing) immune response against malignant cells. These 
include: (1) strategies for the depletion of circulating 

myeloid-derived suppressor cells (MDSCs), a blood-
borne population of immature, immunosuppressive 
myeloid cells that generally accumulate in the course of 
tumor progression [513-516]; (2) mAbs that block CD47, 
one of the major antiphagocytic receptor expressed by 
malignant cells [517-519]; and (3) vaccines relying 
on the administration of cancer cell lines expressing 
immunostimulatory molecules (e.g., GM-CSF) upon 
inactivation or lysis [520].

CONCLUDING REMARKS

During the past three decades, immunotherapy 
has become a clinical reality [35, 78, 521], and 
an ever-increasing number of cancer patients are 
expected to receive, at some stage of their disease, 
an immunotherapeutic intervention [522, 523]. The 
observations presented above suggest that various 
immunotherapies previously classified as passive, 
including several (if not all) tumor-targeting mAbs, ACT 
and oncolytic viruses, may de facto constitute active forms 
of immunotherapy. Moreover, accumulating preclinical 
and clinical evidence indicates that therapeutically 
relevant anticancer immune responses invariably exhibit 
some degree of epitope spreading, i.e., they eventually 
target several TAAs even when they were initially directed 
against a single one [524, 525]. This is not surprising 
considering that malignant cells exhibit a high degree 
of genetic/genomic instability and hence are relatively 
prone to generate so-called “antigen loss variants” 
that would render TAA-specific immunotherapies 
completely ineffective with time [526-528]. Thus, even 
if immunotherapies that truly generate an anticancer 
response with a unique antigen specificity existed [529, 
530], they presumably would not mediate clinically 
relevant, long-term immune responses. In turn, this 
casts some doubts on the practical utility of classifying 
immunotherapies into “antigen-specific” or “non-specific”.

Recently, great attention has been given to 
the immunostimulatory effects of conventional 
chemotherapeutics [420, 421, 531, 532]. Indeed, several 
compounds that have been successfully used in the clinic, 
including the nucleoside analogs gemcitabine (which is 
approved by the US FDA for the treatment of pancreatic, 
ovarian, breast and non-small cell carcinoma) [533, 534] 
and 5-fluorouracil (which is licensed for use in patients 
affected by various neoplasms) [535, 536] have off-
target immunostimulatory effects, in particular when 
administered as low doses and according to metronomic 
schedules (while, similar to radiation therapy, they are 
generally immunosuppressive when given at high doses) 
[537, 538]. It is therefore tempting to speculate that most 
(if not all) anticancer agents that are truly beneficial to 
patients operate as active immunotherapeutics, stimulating 
the host immune system to mount an antigenically broad 
(and hence insensitive to antigen loss) response against 
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malignant cells. In support of this notion, an ever 
increasing number of combinatorial immuno(chemo)
therapeutic regimens is being designed and tested in 
clinical trials, with promising results [34]. This being 
said, only the adequate implementation of protocols 
to monitor immune system-related parameters among 
patients participating in clinical trials (immunomonitoring) 
will provide insights into this possibility [539-543]. Such 
protocols are inherently complex, calling for international 
efforts toward standardization [544]. Harmonized 
immunomonitoring procedures will undoubtedly guide the 
development of new (immuno)therapies, and facilitate the 
identification of novel prognostic or predictive biomarkers 
[544]. We are positive that the next clinical success of 
anticancer immunotherapy is just behind the door.
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